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1. Introduction

After Roper and Suffridge [46] introduced the following extension operator

Φ(f)(z) = (f(z1),
√
f ′(z1)z̃), z = (z1, z̃) ∈ Bn,

which extends locally univalent functions on the unit disc U in C to locally biholo-
morphic mappings on the Euclidean unit ball Bn in Cn, the preservation of starlike
mappings, spirallike mappings, the first elements of Loewner chains and Bloch map-
pings by similar extension operators have been extensively studied (see e.g. [3], [10],
[11], [14], [19], [20], [21], [22], [33], [35], [36], [40], [41], [46], [48], [49] and [50]).

The Roper-Suffridge extension operator Φ preserves the following geometric and
analytic properties from the one dimensional case to higher dimensions:

(i) Φ(S∗(B1)) ⊆ S∗(Bn), where S∗(Bn) denotes the family of normalized starlike
(univalent) mappings on Bn ([20]).
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(ii) If f ∈ S, where S denotes the family of normalized univalent functions on U,
then Φ(f) can be embedded as the first element of a Loewner chain on Bn ([19],
[22]).

(iii) Φ maps the family of normalized univalent Bloch functions on U with Bloch
semi-norm 1 into the family of normalized univalent Bloch mappings on Bn
([20]).

For further properties of the Roper-Suffridge extension operator Φ, see e.g. [46].
Let α ≥ 0, β ≥ 0 be given. Then the modification Φn,α,β of the Roper-Suffridge

extension operator ([19]) is given by:

Φn,α,β(f)(z) =

(
f(z1),

(
f(z1)

z1

)α
(f ′(z1))β z̃

)
, z = (z1, z̃) ∈ Bn,

for any f ∈ LS(U) such that f(z1) 6= 0 for z1 ∈ U \ {0}, where LS(U) denotes the
family of normalized locally univalent functions on U. The branches of the power
functions are chosen such that(

f(z1)

z1

)α ∣∣∣∣
z1=0

= 1 and (f ′(z1))β
∣∣
z1=0

= 1.

The extension operator Φn,α,β has the following properties:

(i) Φn,α,β(S∗(B1)) ⊆ S∗(Bn), for α, β ≥ 0 with α ≤ 1, β ≤ 1/2 and α+β ≤ 1 ([19]).
(ii) If f ∈ S, then Φn,α,β(f) can be embedded as the first element of a Loewner

chain on Bn, for α, β ≥ 0 with α ≤ 1, β ≤ 1/2 and α+ β ≤ 1 ([19]).
(iii) Φn,0,β maps the family of normalized univalent Bloch functions on U with Bloch

semi-norm 1 into the family of normalized univalent Bloch mappings on Bn, for
all β ∈ [0, 1/2] ([22]).

The Muir extension operator Φn,Q, which is another modification of the Roper-
Suffridge extension operator, is given by ([40])

Φn,Q(f)(z) =
(
f(z1) +Q(z̃)f ′(z1),

√
f ′(z1)z̃

)
, z = (z1, z̃) ∈ Bn,

where f ∈ LS(U) and Q : Cn−1 → C is a homogeneous polynomial mapping of degree

2. The branch of the power function is chosen such that
√
f ′(z1)

∣∣
z1=0

= 1.

One of the properties of the Muir extension operator is as follows:

(i) Φn,Q(S∗(B1)) ⊆ S∗(Bn) if and only if ‖Q‖ ≤ 1/4 ([40]).

Muir [41] also studied the extension operator ΦG : S → S(Bn) given by

ΦG(f)(z) =
(
f(z1) +G

(√
f ′(z1)z̃

)
,
√
f ′(z1)z̃

)
, z = (z1, z̃) ∈ Bn,

where G : Cn−1 → C is a holomorphic function such that G(0) = 0 and DG(0) = 0,
and the branch of the power function is chosen such that√

f ′(z1)
∣∣
z1=0

= 1.

Note that DG(0) is the Frechét derivative of G at 0. One of the properties of the
extension operator ΦG is as follows:

(i) If α ∈ [0, 1) and ΦG(S∗(α)) ⊆ S∗(Bn), where S∗(α) denotes the family of all nor-
malized starlike functions of order α on U, then G is a homogeneous polynomial
of degree 2 from Cn−1 into C and ‖G‖ ≤ 1/4 ([41]).
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Further study of the above operator has been given in [41], [50] (cf. [11]).

On the other hand, g-Loewner chains have been extensively studied in [13],
[15], [17], [31]. Chirilă ([3], [4]) studied the preservation of the first elements of g-
Loewner chains by the extension operators Φn,α,β and Φn,Q on Bn, in the case that

g(ζ) = 1−ζ
1+(1−2γ)ζ for ζ ∈ U and γ ∈ (0, 1).

Let Φn,r : LS(Bn) → LS(Bn+r) be the Pfaltzgraff-Suffridge type extension
operator, where LS(Bn) denotes the family of normalized locally univalent mappings
from Bn to Cn, given by (see [23] and [43], in the case r = 1)

Φn,r(f)(z) =
(
f(x), [Jf (x)]

1
n+1 y

)
, z = (x, y) ∈ Bn+r, (1.1)

where Jf (x) is the Jacobian determinant of f at x, and r ≥ 1 is an integer. The branch

of the power function is chosen such that [Jf (x)]1/(n+1)
∣∣
x=0

= 1. We note that the
operator Φ1,r reduces to the Roper-Suffridge extension operator. The Pfaltzgraff-
Suffridge type extension operator Φn,r has the following properties (see [23] in the
case r = 1):

(i) Φn,r(S
∗(Bn)) ⊆ S∗(Bn+r).

(ii) If f ∈ S(Bn) can be embedded as the first element of a Loewner chain on Bn,
then F = Φn,r(f) can be embedded as the first element of a Loewner chain on
Bn+r.

Let Y be a complex Banach space and let r ≥ 1. Recently, the authors [18]
studied the Roper-Suffridge type extension operator Φα,β that provides a way of
extending a locally univalent function f on U to a locally biholomorphic mapping
F ∈ H(Ωr), where Ωr = {(z1, w) ∈ C × Y : |z1|2 + ‖w‖rY < 1} and proved the
preservation result of the first element of a g-Loewner chain and the Bloch mappings
by the Roper-Suffridge type extension operator Φα,β . They also studied the Muir type
extension operator ΦPk

that provides a way of extending a locally univalent function
f on U to a locally biholomorphic mapping F ∈ H(Ωk), where k ≥ 2 is an integer
and Pk : Y → C is a homogeneous polynomial mapping of degree k, and proved the
preservation result of the first element of a Loewner chain and the Bloch mappings
by the Muir type extension operator ΦPk

.

In [16], Graham, Hamada and Kohr have considered a generalization of the
Pfaltzgraff-Suffridge extension operator on bounded symmetric domains in Cn, and
proved that if BX is a bounded symmetric domain in X = Cn, and Fn,α is an extension
operator which maps normalized locally biholomorphic mappings on BX to locally
biholomorphic mappings on Dα, where Dα ⊆ BX × BY is a certain domain with
BX × {0} ⊂ Dα, then Fn,α extends the first elements of Loewner chains from BX to
the first elements of Loewner chains on Dα, when α ≥ n/(2c(BX)), where c(BX) is
a constant defined by the Bergman metric on X (see (5.1)). Also, they proved that
normalized locally univalent I-Bloch mappings, which have finite trace order on BX ,
are mapped into R-Bloch mappings on Ωα by the operator Fn,α when α ≥ 1/2, where
Ωα ⊂ X × Y is a bounded balanced convex domain such that BX × {0} ⊂ Ωα ⊆ Dα.

In this paper, we survey the above results obtained in [16] and [18].
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2. Preliminaries

Let X and Y be complex Banach spaces. Let L(X,Y ) denote the family of
continuous linear operators from X to Y . The family L(X,X) is denoted by L(X),
and the identity in L(X) is denoted by IX . Let Ω ⊂ X be a domain which contains
the origin and let H(Ω) be the family of holomorphic mappings from Ω into X. If a
mapping f ∈ H(Ω) satisfies f(0) = 0, Df(0) = IX , we say that f is normalized, where
Df(z) is the Fréchet derivative of f at z. Let LS(Ω) denote the family of normalized
locally biholomorphic mappings on Ω and let S(Ω) denote the family of normalized
biholomorphic mappings on Ω. Also, let S∗(Ω) (respectively, K(Ω)) be the subset of
S(Ω) consisting of starlike (respectively, convex) mappings on Ω, where a mapping
f ∈ S(Ω) is said to be starlike (respectively, convex) if f(Ω) is a starlike (respectively,
convex) domain in X. The family S(U) is denoted by S, where U is the unit disc in
C. The family S∗(U) (respectively, K(U)) is denoted by S∗ (respectively, K).

Definition 2.1 (cf. [29]). Let X be a complex Banach space and let Ω ⊆ X be a bounded
balanced domain. Also, let γ ∈ (−π2 ,

π
2 ) and let f ∈ H(Ω). We say that f is spirallike

of type γ on Ω if f ∈ S(Ω) and exp(−e−iγt)f(Ω) ⊆ f(Ω), for all t ≥ 0.
In the case γ = 0, a spirallike mapping f of type 0 is starlike in the usual sense.

Let Ŝγ(Ω) denote the family of spirallike mappings of type γ on Ω.

Assumption 2.1. Let g : U → C be a univalent holomorphic function such that
g(0) = 1 and <g(ζ) > 0 on U.

Next we recall the notions of subordination and Loewner chain on a complex
Banach space X (see e.g. [16], [18], [21] and [45]).

Definition 2.2. Let X be a complex Banach space and let Ω ⊆ X be a domain which
contains the origin.

(i) If f, g ∈ H(Ω), we say that f is subordinate to g (denoted by f ≺ g ) if there
exists a Schwarz mapping v (i.e. v ∈ H(Ω), v(0) = 0 and v(Ω) ⊆ Ω ) such that
f = g ◦ v.

(ii) A mapping f : Ω× [0,∞)→ X is called a univalent subordination chain if f(·, t)
is univalent on Ω, f(0, t) = 0 for t ≥ 0, and f(·, s) ≺ f(·, t), 0 ≤ s ≤ t < ∞. A
univalent subordination chain f : Ω × [0,∞) → X is called a Loewner chain if
f(·, t) is biholomorphic on Ω and Df(0, t) = etIX , for all t ≥ 0.

Remark 2.3. Note that if f : Ω × [0,∞) → X is a Loewner chain, then the subor-
dination condition is equivalent to the existence of a unique biholomorphic Schwarz
mapping v = v(·, s, t), called the transition mapping associated with f(x, t), such
that f(x, s) = f(v(x, s, t), t) for x ∈ Ω and t ≥ s ≥ 0. Also, Dv(0, s, t) = es−tIX for
t ≥ s ≥ 0 (see e.g. [21]).

For various applications of the Loewner theory in the study of univalent map-
pings in higher dimensions, see e.g. [21, Chapter 8].

For x ∈ X \ {0}, we define

T (x) =
{
lx ∈ L(X,C) : lx(x) = ‖x‖X , ‖lx‖ = 1

}
.

Then T (x) 6= ∅ in view of the Hahn-Banach theorem.
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Let BX be the unit ball of a complex Banach space X. Next, we recall the
definition of the Carathéodory family M =M(BX) in H(BX) (see [47]):

M(BX) =
{
h ∈ H(BX) : h(0) = 0, Dh(0) = IX ,

<lx(h(x)) > 0,∀x ∈ BX \ {0},∀lx ∈ T (x)
}
.

If X = C, then f ∈M(U) if and only if f(x)/x ∈ P, where

P =
{
p ∈ H(U) : p(0) = 1,<p(z1) > 0,∀z1 ∈ U

}
is the Carathéodory family on U.

Definition 2.4 (cf. [1], [9]). Let X be a complex Banach space. A mapping h = h(x, t) :
BX × [0,∞) → X is called a generating vector field (Herglotz vector field) if the
following conditions hold:

(i) h(·, t) ∈M(BX), for a.e. t ≥ 0;
(ii) h(x, ·) is strongly measurable on [0,∞), for all x ∈ BX .

Definition 2.5 (see e.g. [13] and [15]). Let g : U→ C satisfy Assumption 2.1. Also, let
h ∈ H(BX) be normalized. We say that h belongs to the family Mg =Mg(BX) if

1

‖x‖X
lx(h(x)) ∈ g(U), ∀x ∈ BX \ {0}, ∀lx ∈ T (x).

Further, we define the notion of a g-Loewner chain in the case of complex Banach
spaces (not necessarily reflexive), where g : U → C satisfies Assumption 2.1. In the
case X = Cn, see [13], [15].

Definition 2.6. Let g : U → C satisfy Assumption 2.1. We say that a mapping
f = f(x, t) : BX × [0,∞) → X is a g-Loewner chain if the following conditions
hold:

(i) f(x, t) is a Loewner chain such that {e−tf(·, t)}t≥0 is uniformly bounded on each
ball ρBX (0 < ρ < 1);

(ii) there exists a null set E ⊂ [0,∞) such that ∂f
∂t (x, t) exists for t ∈ [0,∞) \ E

and for all x ∈ BX , and there exists a generating vector field h = h(x, t) :
BX × [0,∞)→ X with h(·, t) ∈Mg(BX) for t ∈ [0,∞) \ E, such that

∂f

∂t
(x, t) = Df(x, t)h(x, t), t ∈ [0,∞) \ E, ∀x ∈ BX . (2.1)

Remark 2.7. In general, if X is a complex Banach space and if f(x, t) satisfies con-

dition (i) of Definition 2.6, it is not known whether ∂f
∂t (x, t) exists for x ∈ BX and

t ∈ [0,∞) \ E, where E ⊂ [0,∞) is a null set. Also, if ∂f
∂t (x, t) exists for x ∈ BX and

t ∈ [0,∞) \ E, it is not known whether there exists a generating vector field h(x, t)
such that the Loewner differential equation (2.1) holds. However, positive answers to
these questions may be obtained in the case of separable reflexive complex Banach
spaces. A discussion of Loewner chains and the associated Loewner differential equa-
tion in the case of separable reflexive complex Banach spaces may be found in [32].
In the finite dimensional case X = Cn, see [44, Chapter 6] for n = 1; see [1], [9], and
[13], in the case n ≥ 2.
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Definition 2.8 (see [26]). Let g : U → C satisfy the conditions of Assumption 2.1.
A mapping f ∈ LS(BX) is said to be g-starlike if h ∈Mg(BX), where

h(x) = [Df(x)]−1f(x), x ∈ BX .
Let S∗g (BX) denote the class of g-starlike mappings on BX .

Definition 2.9 (see e.g. [5], and [37]). A complex Banach space X is called a JB∗-triple
if X is a complex Banach space equipped with a continuous Jordan triple product

X ×X ×X → X (x, y, z) 7→ {x, y, z}
satisfying

(J1) {x, y, z} is symmetric bilinear in the outer variables, but conjugate linear in the
middle variable,

(J2) {a, b, {x, y, z}} = {{a, b, x}, y, z} − {x, {b, a, y}, z}+ {x, y, {a, b, z}},
(J3) x�x ∈ L(X,X) is a hermitian operator with spectrum = 0,
(J4) ‖{x, x, x}‖ = ‖x‖3

for a, b, x, y, z ∈ X, where the box operator x�y : X → X is defined by

x�y(·) = {x, y, ·},
and ‖ · ‖ is the norm on X.

A complex Banach space X is a JB∗-triple if and only if the open unit ball of X
is homogeneous (see e.g. [5, Section 3.3]).

Next we recall the notion of R-Bloch mappings on the unit ball of a complex
Banach space X and also that of I-Bloch mappings on the unit ball of a JB∗-triple.

Definition 2.10. (i) (cf. [25]) Let BX be the unit ball of a complex Banach space X
and let f : BX → Y be a holomorphic mapping. We say that f is an R-Bloch
mapping on BX if

sup
x∈BX

(1− ‖x‖2)‖Df(x)x‖ <∞. (2.2)

(ii) (cf. [6], [7], [24]) Let BX be the unit ball of a JB∗-triple X and let f : BX → Y
be a holomorphic mapping. We say that f is an I-Bloch mapping on BX if

sup
g∈Aut(BX)

‖D(f ◦ g)(0)‖ <∞, (2.3)

where Aut(BX) denotes the family of biholomorphic automorphisms of BX .

Remark 2.11. (i) When BX is the unit ball of a JB∗-triple X, I-Bloch mappings are
R-Bloch mappings by [34, Corollary 3.6] (cf. [7, Corollary 3.5], [24]). Chu, Hamada,
Honda and Kohr [8, Example 2.9] and Miralles [39, Proposition 2.5] independently
gave an example such that the converse is not true for BX = U2.

(ii) When BX is a Hilbert ball and Y = C, then conditions (2.2) and (2.3) are
equivalent to the following relation:

sup
x∈BX

(1− ‖x‖2)‖Df(x)‖ <∞, (2.4)

by [2, Proposition 2.4, Theorems 2.6 and 3.8] (cf, [25, Theorem 2.8]). Moreover, (2.2),
(2.3) and (2.4) give equivalent semi-norms for a holomorphic function f : BX → C
which satisfies one of the relations (2.2), (2.3) and (2.4). Then for f ∈ H(BX), by
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considering the function fa = 〈f, a〉 with ‖a‖ = 1, we obtain that conditions (2.2),
(2.3) and (2.4) are equivalent. Namely, the notions of R-Bloch mappings and I-Bloch
mappings are equivalent to the usual notion of Bloch mappings on the Hilbert ball.
In particular, f ∈ H(U) is a Bloch function if and only if

sup
ζ∈U

(1− |ζ|2)|f ′(ζ)| <∞.

Next, we recall the notion of a linearly invariant family (L.I.F.) and the trace-
order of a L.I.F. on the unit ball BX of a finite-dimensional complex Banach space X
([28]; cf. [42], [21, Chapter 10]).

Definition 2.12. Let X be a complex Banach space and let BX be the open unit ball of
X. A family F ⊆ H(BX) is called a linearly invariant family (L.I.F.) if the following
conditions hold:

(i) F ⊆ LS(BX);
(ii) Λφ(f) ∈ F , for all f ∈ F and φ ∈ Aut(BX),

where Λφ(f) is the Koebe transform given by

Λφ(f)(x) = [Dφ(0)]−1[Df(φ(0))]−1(f(φ(x))− f(φ(0))), ∀x ∈ BX .

Definition 2.13 ([28]; cf. [42]). If F is a linearly invariant family on the unit ball of a
finite dimensional complex Banach space X, we define the trace order of F , by

ordF = sup
f∈F

sup
‖y‖=1

{
1

2

∣∣trace
[
D2f(0)(y, ·)

]∣∣} .
Since the trace is a similarity invariant, the above definition is well-defined. When

X = C and BX = U, the trace order is the usual order of a linearly invariant family
on U.

Let Λ[{f}] be the linearly invariant family generated by f ∈ LS(BX) (see [28];
cf. [42]). In this case, ord Λ[{f}] is called the trace order of f .

3. Roper-Suffridge type extension operators

Let Y be a complex Banach space and let r ≥ 1. Also, let

Ωr =
{

(z1, w) ∈ Z = C× Y : |z1|2 + ‖w‖rY < 1
}
. (3.1)

Then, the Minkowski function of Ωr is a complete norm ‖ · ‖Z on Z and Ωr is the
unit ball of Z with respect to this norm. Let α, β ≥ 0 and let Φα,β : S → S(Ωr) be
the Roper-Suffridge type extension operator given by

Φα,β(f)(z1, w) =

(
f(z1),

(
f(z1)

z1

)α
(f ′(z1))βw

)
, (z1, w) ∈ Ωr. (3.2)

The branches of the power functions are chosen such that(
f(z1)

z1

)α ∣∣∣∣
z1=0

= 1 and (f ′(z1))β |z1=0 = 1.
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3.1. g-Loewner chains and Roper-Suffridge type extension operators

Let g : U → C be a convex (univalent) function which satisfies Assumption
2.1. In the first part of this section, we are concerned with preservation of the first
elements of g-Loewner chains from U into Ωr under the Roper-Suffridge type extension
operators Φα,β , where r ≥ 1 (cf. [1, Theorem 7.1], [3, Theorem 2.1], [14, Corollary
2.9], [19, Theorem 2.1], [22, Theorem 2.1]).

Theorem 3.1. Let g : U→ C be a convex (univalent) function which satisfies Assump-
tion 2.1. Let Y be a complex Banach space and let Ωr be the unit ball of Z = C× Y
given by (3.1), where r ≥ 1. Let Φα,β be the Roper-Suffridge type extension operator
given by (3.2). Assume that f ∈ S can be embedded as the first element of a g-Loewner
chain on U. Then F = Φα,β(f) ∈ S(Ωr) can be embedded as the first element of a
g-Loewner chain on Ωr for α ∈ [0, 1], β ∈ [0, 1/r], α+ β ≤ 1.

As a corollary of Theorem 3.1, we obtain the following preservation of the first
elements of Loewner chains from U into the unit ball Ωr under the Roper-Suffridge
type extension operators Φα,β (cf. [14, Corollary 2.9], [19, Theorem 2.1], [22, Theorem
2.1], [36]).

Corollary 3.2. Let Ωr and Φα,β be as in Theorem 3.1. If f ∈ S, then F = Φα,β(f) ∈
S(Ωr) can be embedded as the first element of a Loewner chain on Ωr for α ∈ [0, 1],
β ∈ [0, 1/r], α+ β ≤ 1.

As another consequence of Theorem 3.1, we obtain that the Roper-Suffridge type
extension operators Φα,β preserve g-starlike mappings. This result is a generalization

of [20, Theorem 2.2], in the case Y = Cn−1, r = 2 and g(ζ) = 1−ζ
1+ζ , ζ ∈ U (cf. [3,

Corollary 2.2], [4, Corollary 2.3]).

Corollary 3.3. Let Ωr, Φα,β and g be as in Theorem 3.1. If f is a g-starlike mapping
on U, then F = Φα,β(f) ∈ S(Ωr) is also a g-starlike mapping on Ωr for α ∈ [0, 1],
β ∈ [0, 1/r], α+ β ≤ 1.

As particular cases of Corollary 3.3, we obtain that strongly starlike mappings
of order d ∈ (0, 1] and almost starlike mappings of order d ∈ [0, 1) (see e.g. [21])
are preserved by the Roper-Suffridge type extension operators Φα,β for α ∈ [0, 1],
β ∈ [0, 1/r], α+ β ≤ 1.

In the case β = 0, [26, Theorem 5.1] can be generalized as follows.

Theorem 3.4. Let Ωr and Φα,β be as in Theorem 3.1. Let g be a univalent holomorphic
function on U which satisfies Assumption 2.1 such that g(U) is a starlike domain with
respect to 1. Assume that f ∈ S can be embedded as the first element of a g-Loewner
chain on U. Then F = Φα,0(f) ∈ S(Ωr) can be embedded as the first element of a
g-Loewner chain on Ωr for α ∈ [0, 1].

As a corollary of Theorem 3.4, we obtain the following generalization of [27,
Theorem 5.3] to certain complex Banach spaces.

Corollary 3.5. Let Ωr and Φα,β be as in Theorem 3.1. If f is a parabolic starlike
mapping of order d ∈ [0, 1) on U, then F = Φα,0(f) ∈ S(Ωr) is also a parabolic
starlike mapping of order d on Ωr for α ∈ [0, 1].
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3.2. Bloch mappings and Roper-Suffridge type extension operators

In the second part of this section, we show that normalized univalent Bloch
functions on U (respectively normalized uniformly locally univalent Bloch functions
on U) are extended to R-Bloch mappings on Ωr by the Roper-Suffridge type extension
operators Φα,β , for α > 0 and β ∈ [0, 1/r) (respectively for α = 0 and β ∈ [0, 1/r]).

The following theorem is a generalization of [20, Theorem 2.6] and [22, Theorem
4.1] to certain complex Banach spaces (cf. [10, Proposition 6.1]).

Theorem 3.6. Let Ωr and Φα,β be as in Theorem 3.1. If f ∈ S is a Bloch function
on U, then F = Φα,β(f) ∈ S(Ωr) is an R-Bloch mapping on Ωr for α > 0 and
β ∈ [0, 1/r).

In the case α = 0 and β ∈ [0, 1/r], we obtain that uniformly locally univalent
Bloch functions on U are extended to R-Bloch mappings on Ωr by the extension
operator Φ0,β . This result is a generalization of [20, Theorem 2.6] and [22, Theorem
4.1] to certain complex Banach spaces and also is an improvement of Theorem 3.6.

Theorem 3.7. Let Ωr and Φα,β be as in Theorem 3.1. If f ∈ LS(U) is a uniformly
locally univalent Bloch function on U, then F = Φ0,β(f) ∈ LS(Ωr) is an R-Bloch
mapping on Ωr for β ∈ [0, 1/r].

4. Muir type extension operators

Let k ≥ 2 be an integer and let Y be a complex Banach space and let Ωk be the
unit ball of Z = C× Y given by (3.1). Let Pk : Y → C be a homogeneous polynomial
mapping of degree k. The Muir type extension operator ΦPk

is defined by (cf. [40])

ΦPk
(f)(z) =

(
f(z1) + Pk(w)f ′(z1), (f ′(z1))

1
kw
)
, z = (z1, w) ∈ Ωk, (4.1)

where f is a locally univalent function on U, normalized by f(0) = f ′(0)− 1 = 0. The

branch of the power function is chosen such that (f ′(z1))
1
k |z1=0 = 1.

4.1. g-Loewner chains and Muir type extension operators

We begin this section with the following preservation result of the first elements
of g-Loewner chains by the Muir type extension operators ΦPk

, where g is a convex
function on U which satisfies Assumption 2.1. In the case Y = Cn−1, k = 2 and
g(ζ) = 1−ζ

1+(1−2γ)ζ , ζ ∈ U, where γ ∈ (0, 1), see [4, Theorem 3.1] (cf. [33, Theorem 5.6],

[35, Theorem 2.1 and Corollary 2.2] ).

Theorem 4.1. Let k ≥ 2 be an integer. Let Y be a complex Banach space and let Ωk
be the unit ball of Z = C × Y given by (3.1). Let Pk : Y → C be a homogeneous
polynomial mapping of degree k and let ΦPk

be the Muir type extension operator given
by (4.1). Let g be a convex function on U which satisfies Assumption 2.1. Assume
that f ∈ S can be embedded as the first element of a g-Loewner chain on U and that
‖Pk‖ ≤ d(1, ∂g(U))/4, where

d(1, ∂g(U)) = inf
ζ∈∂g(U)

|ζ − 1|.

Then F = ΦPk
(f) ∈ S(Ωk) can be embedded as the first element of a g-Loewner chain

on Ωk.
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As a corollary of Theorem 4.1, we obtain the following result. This result is a
generalization of [35, Theorem 2.1 and Corollary 2.2], in the case Y = Cn−1, k = 2

and g(ζ) = 1−ζ
1+ζ , ζ ∈ U to certain complex Banach spaces (cf. [33, Theorem 5.6]).

Corollary 4.2. Let Ωk and ΦPk
be as in Theorem 4.1, where ‖Pk‖ ≤ 1/4. If f ∈ S,

then F = ΦPk
(f) can be embedded as the first element of a Loewner chain on Ωk.

In view of Theorem 4.1, it would be interesting to give an answer to the following
questions:

Question 4.3. Under the assumptions of Theorem 4.1, is the coefficient bound ‖Pk‖ ≤
d(1, ∂g(U))/4 also necessary for the preservation of the first elements of g-Loewner
chains under the Muir type extension operator ΦPk

?

Question 4.4. Under the assumptions of Theorem 4.1, is the coefficient bound ‖Pk‖ ≤
d(1, ∂g(U))/4 sharp for the preservation of the first elements of g-Loewner chains
under the Muir type extension operator ΦPk

?

In the case that f ∈ K can be embedded as the first element of a g-Loewner
chain f(z1, t) on U such that f(·, t) is convex on U for t ≥ 0, then Theorem 4.1 may
be refined as follows (cf. [4], [35], [40]).

Proposition 4.5. Let Ωk and ΦPk
be as in Theorem 4.1. Let g be a convex function on

U which satisfies Assumption 2.1. Assume that f ∈ K can be embedded as the first
element of a g-Loewner chain f(z1, t) on U, such that e−tf(·, t) ∈ K, for all t ≥ 0. If
‖Pk‖ ≤ d(1, ∂g(U))/2, then F = ΦPk

(f) ∈ S(Ωk) can be embedded as the first element
of a g-Loewner chain on Ωk.

Let g be a linear fractional transformation with real coefficients, which satisfies
Assumption 2.1. Then the image g(U) is one of the following sets:

g(U) =

{
ζ ∈ C :

∣∣∣∣ζ − 1

2γ

∣∣∣∣ < δ

2γ

}
, γ > 0, δ ∈ (0, 1], |2γ − 1| < δ,

g(U) = {ζ ∈ C : <ζ > δ} , δ ∈ [0, 1).

As a corollary of Theorem 4.1, we obtain the following results.

Corollary 4.6. Let Ωk and ΦPk
be as in Theorem 4.1. Let g be a linear fractional

transformation with real coefficients which satisfies Assumption 2.1. Assume that f ∈
S can be embedded as the first element of a g-Loewner chain on U.

(i) If g(U) =
{
ζ ∈ C :

∣∣ζ − 1
2γ

∣∣ < δ
2γ

}
, where γ > 0, δ ∈ (0, 1], and |2γ − 1| < δ,

and if ‖Pk‖ ≤ (δ − |2γ − 1|)/(8γ), then F = ΦPk
(f) ∈ S(Ωk) can be embedded

as the first element of a g-Loewner chain on Ωk.
(ii) If g(U) = {ζ ∈ C : <ζ > δ}, where δ ∈ [0, 1), and if ‖Pk‖ ≤ (1 − δ)/4, then

F = ΦPk
(f) ∈ S(Ωk) can be embedded as the first element of a g-Loewner chain

on Ωk.

As in Corollary 3.3, we obtain the following result (cf. [4, Corollary 3.3], [35,
Corollary 2.3] [40, Theorem 4.1]).

Corollary 4.7. Let Ωk, ΦPk
and g be as in Theorem 4.1. If f is a g-starlike mapping

on U and if ‖Pk‖ ≤ d(1, ∂g(U))/4, then F = ΦPk
(f) ∈ S(Ωk) is also a g-starlike

mapping on Ωk.
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In particular, we have the following corollary.

Corollary 4.8. Let Ωk and ΦPk
be as in Theorem 4.1.

(i) If f : U → C is a strongly starlike mapping of order d ∈ (0, 1] on U and if
‖Pk‖ ≤ sin

(
π
2 d
)
/4, then F = ΦPk

(f) ∈ S(Ωk) is also a strongly starlike mapping
of order d on Ωk.

(ii) If f : U → C is an almost starlike mapping of order d ∈ [0, 1) on U and if
‖Pk‖ ≤ (1− d)/4, then F = ΦPk

(f) ∈ S(Ωk) is also an almost starlike mapping
of order d on Ωk.

Taking into account Corollary 4.7, it would be interesting to give an answer to
the following question.

Question 4.9. Under the same assumptions of Corollary 4.7, is the condition ‖Pk‖ ≤
d(1, ∂g(U))/4 necessary for the preservation of g-starlikeness under the Muir type
extension operator ΦPk

?

Note that if g(ζ) = 1−ζ
1+ζ , ζ ∈ U, k = 2 and Y = Cn−1, the answer is positive, in

view of [40, Theorem 4.1].
Next, let G : Y → C be a holomorphic function such that G(0) = 0 and

DG(0) = 0. Also, let ΦG,k : LS(U) → LS(Ωk) be the following modification of
the Muir extension operator (cf. [41])

ΦG,k(f)(z) =
(
f(z1) +G

(
(f ′(z1))

1
kw
)
, (f ′(z1))

1
kw
)
, z = (z1, w) ∈ Ωk, (4.2)

where Ωk is the unit ball of Z = C × Y given by (3.1). The branch of the power

function is chosen such that (f ′(z1))
1
k

∣∣
z1=0

= 1.

It is natural to ask the following question, in connection with Corollary 4.7 (cf.
[41], [50]):

Question 4.10. Let k ≥ 2 be an integer and let Ωk be the unit ball of Z = C×Y given
by (3.1). Assume that g : U → C is a univalent function, which satisfies Assumption
2.1. Let G : Y → C be a holomorphic function such that G(0) = 0 and DG(0) = 0. If
ΦG,k(S∗g (U)) ⊆ S∗(Ωk), what conditions for G must be satisfied ?

The following result provides an answer to the above question (cf. [41, Theorem
5.1], [50, Theorem 3.1]).

Theorem 4.11. Let Ωk be as in Theorem 4.1. Let g be a univalent function with real
coefficients on U, which satisfies Assumption 2.1. Assume that there exists the limit

a := lim inf
r→1−

g(r)

1− r
< +∞. (4.3)

Let G : Y → C be a holomorphic function such that G(0) = 0 and DG(0) = 0 and
ΦG,k be the extension operator given in (4.2). Let f be a g-starlike function on U such

that f(ζ)
ζf ′(ζ) = g(ζ) for ζ ∈ U. If ΦG,k(f) is a starlike mapping on Ωk, then G is a

polynomial of degree at most k.

As a corollary of Theorem 4.11, we obtain the following result (cf. [41, Corollary
5.2], [50, Corollary 3.2]).

Corollary 4.12. Let Ωk, ΦG,k and g be as in Theorem 4.11. If ΦG,k(S∗g (U)) ⊆ S∗(Ωk),
then G is a polynomial of degree at most k.
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4.2. Bloch mappings and Muir type extension operators

The next result shows that normalized uniformly locally univalent Bloch func-
tions on U are extended to normalized locally univalent R-Bloch mappings on Ωk by
the Muir type extension operators ΦPk

given by (4.1).

Theorem 4.13. Let Ωk and ΦPk
be as in Theorem 4.1. If f ∈ LS(U) is a uniformly

locally univalent Bloch function on U, then F = ΦPk
(f) ∈ LS(Ωk) is an R-Bloch

mapping on Ωk.

As a corollary of Theorem 4.13, we obtain the following result.

Corollary 4.14. Let Ωk and ΦPk
be as in Theorem 4.1. If f ∈ S is a Bloch function

on U, then F = ΦPk
(f) ∈ S(Ωk) is an R-Bloch mapping on Ωk.

5. Pfaltzgraff-Suffridge type extension operators

In this section, let X be an n-dimensional JB∗-triple. Also, let BX be the open
unit ball ofX with respect to the norm ‖·‖X and for every x, y ∈ X, letB(x, y) ∈ L(X)
be the Bergman operator defined by

B(x, y)(z) = z − 2(x�y)(z) + {x, {y, z, y}, x}, z ∈ X.
If f ∈ H(BX), let Jf (x) = detDf(x), x ∈ BX . Also, let h0 be the Bergman metric
on X at 0, and let c(BX) be the constant given by (see [28])

c(BX) =
1

2
sup

x,y∈BX

|h0(x, y)|. (5.1)

In view of [24, Lemma 2.4] (cf. [30, Lemma 2.2]), the following distortion result holds:

detB(x, x) ≥ (1− ‖x‖2X)2c(BX), x ∈ BX . (5.2)

Equality holds for every x ∈ X such that x/‖x‖X is a maximal tripotent in X.
Next, let Y be a complex Banach space with the norm ‖ · ‖Y , and let BY be the

unit ball of Y . For α > 0, let

Dα =
{

(x, y) ∈ BX × Y : ‖y‖Y < [detB(x, x)]1/(4αc(BX))
}

(5.3)

and

Ωα =
{

(x, y) ∈ X × Y : ‖x‖2X + ‖y‖2αY < 1
}
. (5.4)

Also, for α > 0, let Fn,α : LS(BX) → LS(Dα) be the Pfaltzgraff-Suffridge type
extension operator given by

Fn,α(f)(z) =
(
f(x), [Jf (x)]1/(2αc(BX))y

)
, z = (x, y) ∈ Dα. (5.5)

The branch of the power function is chosen such that [Jf (x)]1/(2αc(BX))|x=0 = 1. Note
that this branch is well defined on BX , since BX is a starlike domain with respect to
the origin in X = Cn. It is not difficult to deduce that if f ∈ LS(BX) and F = Fn,α(f),
then F ∈ H(Dα) and the Frechét derivativeDF (z) has a bounded inverse at each point
z ∈ Dα, i.e. F is locally biholomorphic on Dα. Hence the Pfaltzgraff-Suffridge type
extension operator Fn,α is well defined and extends normalized locally biholomorphic
mappings on BX into normalized locally biholomorphic mappings on the domain Dα.
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Example 5.1. (i) If X is the space Cn with the Euclidean norm ‖ · ‖e, then BX = Bn,
detB(x, x) = (1 − ‖x‖2e)n+1, and c(Bn) = n+1

2 (see e.g. [28]). Therefore, we have
Dα = Ωα for α > 0, that is

Dα =
{

(x, y) ∈ Cn × Y : ‖x‖2e + ‖y‖2αY < 1
}
.

In this case, the operator Fn,α will be denoted by Γn,α. Thus, we obtain the extension
operator Γn,α : LS(Bn)→ LS(Ωα) given by (see [14, Definition 2.7]):

Γn,α(f)(z) =
(
f(x), [Jf (x)]1/(α(n+1))y

)
, ∀ f ∈ LS(Bn), z = (x, y) ∈ Ωα. (5.6)

If α = 1, BX = Bn and BY = Br, then Ω1 = Bn+r and the operator Γn,1 reduces
to the Pfaltzgraff-Suffridge type extension operator Φn,r. On the other hand, if n = 1
and α = 1, then the operator Γ1,1 reduces to the Roper-Suffridge extension operator
Ψ : LS(B1)→ LS(B) given by (cf. [46]; see also [14])

Ψ(f)(z) =
(
f(x),

√
f ′(x)y

)
, z = (x, y) ∈ B,

where B =
{

(x, y) ∈ C× Y : |x|2 + ‖y‖2Y < 1
}
.

(ii) If X = Cn with respect to the maximum norm ‖ · ‖∞, then c(Un) = n
(see [28]), and detB(x, x) =

∏n
j=1(1 − |xj |2)2, x = (x1, . . . , xn) ∈ Un. Denoting the

domain Dα by ∆α for α > 0, we obtain that

∆α =
{

(x, y) ∈ Un × BY : ‖y‖Y <

n∏
j=1

(1− |xj |2)1/(2nα)
}
. (5.7)

In this case, we denote the operator Fn,α by Θn,α. Thus, we obtain the extension
operator Θn,α : LS(Un)→ LS(∆α) given by (cf. [14])

Θn,α(f)(z) =
(
f(x), [Jf (x)]1/(2nα)y

)
, z = (x, y) ∈ ∆α. (5.8)

5.1. Loewner chains and Pfaltzgraff-Suffridge type extension operators

We begin this section with the preservation of Loewner chains from the open
unit ball BX of an n-dimensional JB∗-triple X into the domain Dα given by (5.3) by
the Pfaltzgraff-Suffridge type extension operator Fn,α. This result is a generalization
of [23, Theorem 2.1] (cf. [14, Theorem 2.1]).

Theorem 5.2. Let BX be the unit ball of an n-dimensional JB∗-triple X, and let
α ≥ n

2c(BX) . Also, let Dα ⊂ Z = X × Y be the domain given by (5.3) and Fn,α be the

Pfaltzgraff-Suffridge type extension operator given by (5.5). Assume that f ∈ S(BX)
can be embedded as the first element of a Loewner chain on BX . Then Fn,α(f) ∈ S(Dα)
can be embedded as the first element of a Loewner chain on Dα.

As corollaries of Theorem 5.2, we obtain the following results (cf. [10], [14], [20],
[21, Chapter 11] ).

Corollary 5.3. Let BX , Dα and Fn,α be as in Theorem 5.2. If γ ∈ (−π2 ,
π
2 ) and

f ∈ Ŝγ(BX), then Fn,α(f) ∈ Ŝγ(Dα). In particular, if f ∈ S∗(BX), then Fn,α(f) ∈
S∗(Dα).
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Let BX = Bn be the Euclidean unit ball in Cn. Since c(Bn) = n+1
2 , in view of

Theorem 5.2 and Corollary 5.3, we obtain the following consequence (cf. [14, Corollary
2.8], [23, Theorem 2.1]).

Corollary 5.4. Let Γn,α be the extension operator given by (5.6), and let Ωα be the
domain given by (5.4), where α ≥ n

n+1 . Then the following statements hold:

(i) If f ∈ S(Bn) can be embedded as the first element of a Loewner chain on Bn,
then Γn,α(f) can be embedded as the first element of a Loewner chain on Ωα.

(ii) If γ ∈ (−π2 ,
π
2 ) and f ∈ Ŝγ(Bn), then Γn,α(f) ∈ Ŝγ(Ωα). In particular, if f ∈

S∗(Bn), then Γn,α(f) ∈ S∗(Ωα).
(iii) If d ∈ [0, 1) and f ∈ S(Bn) is an almost starlike mapping of order d on Bn, then

Γn,α(f) is almost starlike of order d on Ωα.

If BX = Un, then c(Un) = n, and we obtain the following result from Theorem
5.2 and Corollary 5.3.

Corollary 5.5. Let Θn,α be the extension operator given by (5.8), and let ∆α be the
domain given by (5.7), where α ≥ 1/2. Then the following statements hold:

(i) If f ∈ S(Un) can be embedded as the first element of a Loewner chain on Un,
then Θn,α(f) can be embedded as the first element of a Loewner chain on ∆α.

(ii) If γ ∈ (−π2 ,
π
2 ) and f ∈ Ŝγ(Un), then Θn,α(f) ∈ Ŝγ(∆α). In particular, if

f ∈ S∗(Un), then Θn,α(f) ∈ S∗(∆α).

Next, we mention the following suggestive examples. If we combine Examples 5.6
and 5.7 with Theorem 5.2 and Corollary 5.3, we obtain concrete examples of starlike,
spirallike of type γ, and mappings which can be embedded as the first elements of
Loewner chains on the domain Dα, where α ≥ n

2c(BX) . If we combine Examples 5.6 and

5.7 with Corollary 5.4, we also obtain concrete examples of almost starlike mappings
of order d on the domain Ωα, where α ≥ n

n+1 .

Example 5.6. Let f ∈ LS(U). Let u ∈ X \ {0} be fixed and let lu ∈ T (u). Also, let
Fu ∈ H(BX) be given by

Fu(z) =
f(lu(z))

lu(z)
z, z ∈ BX . (5.9)

Then we have

[DFu(z)]−1Fu(z) =
f(lu(z))

f ′(lu(z))lu(z)
z, z ∈ BX .

Consequently, we deduce the following statements:

(i) Fu ∈ S∗(BX) if and only if f ∈ S∗.
(ii) Fu ∈ Ŝγ(BX), γ ∈ (−π2 ,

π
2 ) if and only if f ∈ Ŝγ(U).

(iii) Fu is almost starlike of order d ∈ [0, 1) on BX if and only if f is almost starlike
of order d on U.

We recall that a Loewner chain (Ft)t≥0 on BX is said to be normal if the family
{e−tFt}t≥0 is a normal family on BX .

Example 5.7. Let f ∈ LS(U). Let u ∈ X \ {0} be fixed and let lu ∈ T (u). Also, let
Fu ∈ H(BX) be given by (5.9). Then Fu may be embedded in a normal Loewner
chain on BX if and only if f ∈ S.
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5.2. Bloch mappings and Pfaltzgraff-Suffridge type extension operators

Next, we prove that locally univalent I-Bloch mappings on BX of finite trace
order are extended to R-Bloch mappings on Ωα by the Pfaltzgraff-Suffridge type
extension operator Fn,α, for α ≥ 1

2 . In the case n = 1, f ∈ LS(U) is uniformly
locally univalent on U if and only if f has a finite order (see [12, Theorem 2.1], [38]).
Therefore, the following results are generalizations of Theorem 3.7.

Theorem 5.8. Let BX be the open unit ball of an n-dimensional JB∗-triple X. Let
Fn,α be the Pfaltzgraff-Suffridge type extension operator given by (5.5), and let Ωα be
the domain given by (5.4), where α ≥ 1

2 . If f ∈ LS(BX) is an I-Bloch mapping on
BX which has finite trace order, then F = Fn,α(f) ∈ LS(Ωα) is an R-Bloch mapping
on Ωα.

Next, we obtain the following consequences of Theorem 5.8.

Corollary 5.9. Let BX , Fn,α and Ωα be as in Theorem 5.8. If f ∈ LS(BX) is a
bounded mapping on BX which has finite trace order, then F = Fn,α(f) ∈ LS(Ωα) is
an R-Bloch mapping on Ωα.

Corollary 5.10. Let BX , Fn,α and Ωα be as in Theorem 5.8. Then the following state-
ments hold:

(i) If f ∈ K(BX) is an I-Bloch mapping on BX , then F = Fn,α(f) ∈ S(Ωα) is an
R-Bloch mapping on Ωα.

(ii) If f ∈ K(BX) is a bounded mapping on BX , then F = Fn,α(f) ∈ S(Ωα) is an
R-Bloch mapping on Ωα.

As a corollary of Theorem 5.8, we obtain that the Pfaltzgraff-Suffridge type
extension operator Γn,1 given by (5.6) maps locally univalent Bloch mappings of finite
trace order from the Euclidean unit ball Bn into locally univalent Bloch mappings on
the unit ball BH of a complex Hilbert space H with dimH ≥ n + 1. Note that BH
can be regarded as the domain

Ω1 =
{

(x, y) ∈ Cn ×H1 : ‖x‖2e + ‖y‖2H1
< 1
}
,

where H1 is a complex Hilbert space with dimH1 ≥ 1.

Corollary 5.11. Let BH be the unit ball of a complex Hilbert space H with
dimH ≥ n+ 1. Then the following statements hold:

(i) If f ∈ LS(Bn) is a Bloch mapping, which has finite trace order, then F =
Γn,1(f) ∈ LS(BH) is a Bloch mapping on BH .

(ii) If f ∈ K(Bn) is a bounded mapping on Bn, then F = Γn,1(f) ∈ S(BH) is a
Bloch mapping on BH .

In view of Corollary 5.11, we obtain the following result related to the preser-
vation of normalized locally univalent Bloch functions under the Roper-Suffridge ex-
tension operator (cf. Theorem 3.7). This result is an improvement of [20, Theorem
2.6].

Corollary 5.12. Let BH be the unit ball of a complex Hilbert space H with dimH ≥ 2,
and let f ∈ LS(U). Then the following statements hold:

(i) If f is a uniformly locally univalent Bloch function on U, then F = Γ1,1(f) ∈
LS(BH) is a Bloch mapping on BH .
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(ii) If f is a bounded convex function on U, then F = Γ1,1(f) ∈ S(BH) is a Bloch
mapping on BH .
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