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Runge pairs of Φ-like domains
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Abstract. We prove that if E ⊆ Cn is a Φ-like domain and D ⊆ E is a Φ
∣∣
D

-

like domain, then (D,E) is a Runge pair. Certain applications, examples and
questions are also provided.
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1. Introduction

Every starlike domain in Cn is a Runge domain. According to [27, p. 410], this
observation goes back at least to Almer [3] and it has been rediscovered several times
(cf. [7], [9]). Some of the proofs use the envelopes of holomorphy and/or a result due
to Docquier and Grauert [10] (see e.g. [7], [29]). A simple proof has been given by El
Kasimi [11]. Hamada [17] has adapted this proof to prove that every spirallike domain
in Cn is a Runge domain.

In this paper, we want to exploit further El Kasimi’s ideas [11], in order to
develop a criterion for two domains in Cn to form a Runge pair, in terms of Φ-likeness,
a notion introduced by Brickman [8], for one complex variable, and later extended
by Gurganus [16], for several complex variables. Certain general results that give
sufficient conditions for two pseudoconvex domains in Cn to form a Runge pair are
given in e.g. [10], [23, Theorem 4.25] and [29] (cf. [19, Proposition 3.1.22]). However,
in our case, the domains are not necessarily pseudoconvex. The following is our main
result.

Theorem 1.1. Let E ⊆ Cn be a Φ-like domain. If D ⊆ E is a Φ
∣∣
D

-like domain, then

(D,E) is a Runge pair.

For the proof, we combine the ideas from the proof of [11, Proposition 1] with
some results from the theory of semigroups of holomorphic self-mappings, extended
by Abate [2] for domains in Cn.

We shall provide some examples that point out various aspects of our main
result. For example, the domains in Theorem 1.1 are not necessarily Runge domains,
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even though they form a Runge pair. As an application to Theorem 1.1, we prove
that every Φ-like domain admits a Runge exhaustion - see [12]. Also, we obtain a
result related to [4, Proposition 5.1]. Further, we shall take a look at the invariant
domains of a semigroup of holomorphic mappings on a Φ-like domain. Furthermore,
we deduce the Runge property of spirallike domains after generalizing [17, Theorem
3.1]. Finally, we point out a version of our main result for taut domains.

2. Preliminaries

For every open sets D ⊆ Cn and E ⊆ Cm we denote by H(D,E) the space of
holomorphic mappings from D into E. For every open set D ⊆ Cn, we denote by
O(D) the space of holomorphic functions from D into C. We consider the topology of
locally uniform convergence on these spaces. Also, we denote by L(Cn,Cm) the space
of complex linear mappings from Cn into Cm.

We present the definition of Runge pairs (see e.g. [24]).

Definition 2.1. Let D ⊆ E ⊆ Cn be open sets. We say that (D,E) is a Runge pair, if,
for every f ∈ O(D) and every compact set K ⊂ D, there exists a sequence in O(E)
that converges uniformly on K to f . We say that an open set D ⊆ Cn is Runge, if
(D,Cn) is a Runge pair.

Remark 2.2. Let D ⊆ E ⊆ Cn be open sets. We note that (D,E) is a Runge pair
if and only if the family of functions in O(E) restricted to D is dense in O(D). In
particular, D is Runge if and only if the family of complex polynomial functions on
Cn is dense in O(D).

In the case n = 1, (D,E) is a Runge pair if and only if E \D has no nonempty
relatively open, compact subsets (see e.g. [21, Theorem 4.9]), i.e., each connected
component of E \ D is not compact. In particular, we have the well known Runge
theorem: D ⊆ C is a Runge domain if and only if D is simply connected.

Next, we consider the definition of a Φ-like domain. It was introduced by Brick-
man [8], in dimension one, as a generalization of starlike and spirallike domains in C.
Later, Gurganus [16] extended the definition to higher dimensions.

In the following, we use the notation m(A) = min{<〈A(z), z〉 : ‖z‖ = 1}, for
A ∈ L(Cn,Cn), where ‖ · ‖ is the Euclidean norm.

Definition 2.3. Let Ω ⊆ Cn be a domain. If 0 ∈ Ω and there exists Φ ∈ H(Ω,Cn) such
that Φ(0) = 0, m(DΦ(0)) > 0 and, for every z ∈ Ω, the initial value problem

∂w

∂t
(z, t) = −Φ(w(z, t)), t ≥ 0, w(z, 0) = z, (2.1)

has a solution w(z, ·) on [0,∞) such that w(z, t) ∈ Ω, t ≥ 0, and w(z, t) → 0, as
t→∞, then we say that Ω is a Φ-like domain.

The initial value problem (2.1) is related to the study of one-parameter semi-
groups of holomorphic self-mappings (see e.g. [1], [25]). We consider below the defini-
tion of a one-parameter semigroup on a domain in Cn (see e.g. [2]).

Definition 2.4. Let Ω ⊆ Cn be a domain. We say that w : Ω × [0,∞) → Ω is a
one-parameter semigroup (or, simply, a semigroup) on Ω if t 7→ wt = w(·, t) is a
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continuous map from [0,∞) into H(Ω,Ω), w0 = idΩ and ws+t = ws ◦ wt, for all
s, t ≥ 0.

Remark 2.5. For every one-parameter semigroup w on a domain Ω, wt is univalent
on Ω, for all t ≥ 0 (see [2, Proposition 1]).

It is well known that there is a one-to-one correspondence between one-parameter
semigroups and infinitesimal generators. To be more precise, we consider first the
following definition (see e.g. [1], [25]).

Definition 2.6. Let Ω ⊆ Cn be a domain. We say that Φ ∈ H(Ω,Cn) is an infinitesimal
generator on Ω if, for every z ∈ Ω, the initial value problem (2.1) associated to Φ has
a solution w(z, ·) on [0,∞). We mention that, if these solutions exist, then they are
necessarily unique (see e.g. [2]).

Remark 2.7. For every semigroup w on a domain Ω ⊆ Cn, there is a unique infini-

tesimal generator Φ, which is given by Φ(z) = lim
t↘0

1

t
(z − w(z, t)), locally uniformly

with respect to z ∈ Ω, such that w(z, ·) is the solution on [0,∞) of the initial value
problem (2.1) associated to Φ, for every z ∈ Ω (see [2, Theorem 5]). Conversely, let Φ
be an infinitesimal generator on a domain Ω ⊆ Cn and let w : Ω× [0,∞)→ Ω be such
that, for every z ∈ Ω, w(z, ·) is the solution of the initial value problem (2.1) associ-
ated to Φ. Then w is a one-parameter semigroup on Ω (see [2, p. 169]). In particular,
wt = w(·, t) ∈ H(Ω,Ω), for all t ≥ 0.

Remark 2.8. Taking into account Definitions 2.3 and 2.4, it is clear that if Ω ⊆ Cn is
a Φ-like domain, then Φ is an infinitesimal generator on Ω.

The following family of infinitesimal generators on the Euclidean unit ball Bn
plays an important role in the geometric function theory in several complex variables
(see [15], [25]).

Definition 2.9. Let

N = {h ∈ H(Bn,Cn) : h(0) = 0,< 〈h(z), z〉 > 0, z ∈ Bn \ {0}}.

By [16, Lemma 2], Bn is a Φ-like domain with respect to every Φ ∈ N . In particular,
every mapping in N is an infinitesimal generator on Bn.

3. Main result

The following lemmas are useful in our proof of the main result.
The first lemma points out that in every Φ-like domain there is a sufficiently

small ball which is invariant with respect to the semigroup generated by Φ (see the
discussion in [16, p. 393]).

Lemma 3.1. Let Ω ⊆ Cn be a domain with 0 ∈ Ω and let Φ ∈ H(Ω,Cn) be an
infinitesimal generator on Ω with Φ(0) = 0 and m(DΦ(0)) > 0. Also, let w be the
semigroup on Ω generated by Φ. Then there exists δ > 0 such that δBn ⊂ Ω and
wt(δBn) ⊆ δBn, for all t ≥ 0.
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Proof. Let A = DΦ(0) and let ω(z) = Φ(z)−Az, for z ∈ Ω. In view of the definition

of the Fréchet differential of Φ at 0, we have limz→0
‖ω(z)‖
‖z‖ = 0. Let δ > 0 be such

that δBn ⊂ Ω and ‖ω(z)‖ ≤ m(A)
2 ‖z‖, for all z ∈ δBn. Then

< 〈Φ(z), z〉 = < 〈Az, z〉+ < 〈ω(z), z〉 ≥ m(A)‖z‖2 − ‖ω(z)‖‖z‖≥m(A)

2
‖z‖2>0,

for all z ∈ δBn \ {0}.
Let h(z) = 1

δΦ(δz), for z ∈ Bn. In view of the above inequalities, h ∈ N . For
every z ∈ Bn, let v(z, ·) be the solution on [0,∞) of the initial value problem

∂v

∂t
(z, t) = −h(v(z, t)), t ≥ 0, v(z, 0) = z,

which is given by [16, Lemma 2]. We easily deduce that

∂

∂t

(
δv(

1

δ
ζ, t)

)
= −Φ(δv(

1

δ
ζ, t)), t ≥ 0, ζ ∈ δBn.

For every ζ ∈ δBn, w(ζ, ·) is the unique solution on [0,∞) of the initial value problem
(2.1) associated to Φ, and thus w(ζ, t) = δv( 1

δ ζ, t) ∈ δB
n, for all t ≥ 0. �

In Definition 2.3, we have that every trajectory in a Φ-like domain, given by the
initial value problem (2.1), converges to 0, as time goes to infinity. In the following
we prove that the convergence is actually uniform on compact subsets of Ω.

Lemma 3.2. Let Ω ⊆ Cn be a Φ-like domain. Also, let w be the semigroup on Ω
generated by Φ. Then wt → 0, as t→∞, locally uniformly on Ω.

Proof. In view of Vitali’s theorem, it suffices to show that {wt}t≥0 is a normal family.
Let K ⊂ Ω be a compact set. Also, let δ > 0 be such that wt(δBn) ⊆ δBn, for all
t ≥ 0, whose existence is ensured by Lemma 3.1. By Definition 2.3, for every z ∈ Ω,
wt(z)→ 0, as t→∞. For every z ∈ Ω, let tz ≥ 0 be such that wtz (z) ∈ δBn, and then
let Vz ⊂ Ω be an open set with z ∈ Vz such that wtz (Vz) ⊆ δBn. Since K is compact,
there exist z1, . . . , zm ∈ K such that K ⊂ Vz1 ∪ . . .∪Vzm . Let T = max{tz1 , . . . , tzm}.
Then, for every j ∈ {1, . . . ,m} and t ≥ T , we have

wt(Vzj ) = wt−tzj (wtzj (Vzj )) ⊆ wt−tzj (δBn) ⊆ δBn.

Hence wt(K) ⊆ δBn, for all t ≥ T . Since t 7→ w(·, t) is a continuous map from [0,∞)
into H(Ω,Ω), we deduce that w is continuous on Ω× [0,∞), and thus w(K × [0, T ])
is compact. Therefore we conclude that the family {wt}t≥0 is bounded on K. �

The next lemma is a consequence of [18, Theorem 1.1], which tells us that every
semigroup extends holomorphically in a neighborhood of any nonnegative time.

Lemma 3.3. Let w be a semigroup on a domain Ω ⊆ Cn. Then, for every compact
K ⊂ Ω, there exist an open set V ⊆ Ω that contains K and a domain U ⊆ C that
contains the interval [0,∞) such that w

∣∣
V×[0,∞)

has a holomorphic extension to V ×U
which takes values in Ω.
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Proof. Step 1. Let Φ be the infinitesimal generator of w and let z0 ∈ Ω. By [18,
Theorem 1.1] (cf. [22, Theorem 1.8.10]), there exists ε > 0 such that

Vz0 =
{
z ∈ Cn : |zj − z0,j | < ε, j = 1, n

}
⊂ Ω

and, for every z ∈ Vz0 , the initial value problem

∂v

∂ζ
(z, ζ) = −Φ(v(z, ζ)), |ζ| < ε, v(z, 0) = z, (3.1)

has a unique holomorphic solution v(z, ·) on Uz0,0 = {ζ ∈ C : |ζ| < ε} which takes
values in Ω and depends holomorphically on z ∈ Vz0 . Let z ∈ Vz0 . In view of (3.1), we
have that v(z, ·) is a solution on [0, ε) of the initial value problem

∂v

∂t
(z, t) = −Φ(v(z, t)), t ∈ [0, ε), v(z, 0) = z.

Taking into account the uniqueness of this solution, we deduce that w(z, t) = v(z, t),
for all t ∈ [0, ε). Hence w has a holomorphic extension to Vz0×Uz0,0 which takes values
in Ω. Since wt0 is holomorphic on Ω and wt = wt0 ◦wt−t0 , for all t ≥ t0 ≥ 0, we deduce
that w has a holomorphic extension to Vz0×Uz0,t0 , where Uz0,t0 =

{
ζ : ζ−t0 ∈ Uz0,0

}
,

for all t0 ≥ 0, which takes values in Ω.
Step 2. Using the notations from the previous step, let z1, z2 ∈ Ω and t1, t2 ∈ [0,∞)
be such that Vz1 ∩ Vz2 6= ∅ and Uz1,t1 ∩ Uz2,t2 6= ∅ and let vj be the holomorphic
extension of w to Vzj ×Uzj ,tj , j ∈ {1, 2}. If (z, ζ) ∈ (Vz1 ×Uz1,t1)∩ (Vz2 ×Uz2,t2), then
v1(z, ζ) = v2(z, ζ). Indeed, since v1(z, t) = v2(z, t) = w(z, t), for all z ∈ Vz1 ∩ Vz2 and
t ∈ Uz1,t1 ∩ Uz2,t2 ∩ [0,∞) 6= ∅, we deduce, by the Identity Principle, that v1(z, ζ) =
v2(z, ζ), for all z ∈ Vz1 ∩ Vz2 and ζ ∈ Uz1,t1 ∩ Uz2,t2 .
Step 3. For every z0 ∈ Ω, let Uz0 =

⋃
t0≥0 Uz0,t0 and note that Uz0 is a domain in C

that contains [0,∞) and w has a well defined holomorphic extension to Vz0 × Uz0 , in
view of the previous step, which takes values in Ω.
Step 4. Since K is compact, there exist z1, . . . , zm ∈ K such that K is a subset of the
open set V = Vz1 ∪ . . . ∪ Vzm . U = Uz1 ∩ . . . ∩ Uzm is a domain that contains [0,∞).
w has a holomorphic extension to V ×U (this extension is well defined in view of the
second step) which takes values in Ω. �

The next lemma is a consequence of a result of Laufer [21, Theorem 4.11].

Lemma 3.4. Let E ⊆ Cn be a domain and let K ⊂ E be a compact set. Then there
exists an open set V ⊂ E relatively compact in E (i.e., V is a compact subset of E)
such that K ⊂ V and, for every f ∈ O(V ), there exists a sequence in O(E) that
converges uniformly on K to f .

Proof. Taking into account that every domain admits a normal exhaustion (see e.g.
[24, p. 17, E.1.2]), we deduce that there exists a sequence of open sets {Vk}k∈N rela-
tively compact in E such that K ⊂ V1 ⊂ V2 ⊂ . . . and E =

⋃∞
k=1 Vk. By [21, Theorem

4.11], there exists m ∈ N such that, for every f ∈ O(Vm), there exists a sequence in
O(E) that converges uniformly on K to f . �

Remark 3.5. We mention that the above lemma cannot, in general, be strengthened,
in the sense that: if E is a domain and K ⊂ E is a compact set, then there exists an
open set V ⊂ E relatively compact in E such that K ⊂ V and (V,E) is a Runge pair
(see the example of Fornaess and Zame [12]).
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Now, we are ready to prove the main result.

Theorem 3.6. Let E ⊆ Cn be a Φ-like domain. If D ⊆ E is a Φ
∣∣
D

-like domain, then

(D,E) is a Runge pair.

Proof. We follow some basic ideas in the proof of [11, Proposition 1] (cf. the proof
of [17, Theorem 3.1]). Let f ∈ O(D) and let K ⊂ D be a compact set. We note
that O(E) is a linear subspace of the space C(K) of continuous functions on K with
the supremum norm. Hence, by a consequence of the Hahn-Banach theorem (see [26,
Theorem 5.19]), f can be approximated uniformly on K by functions in O(E) if
and only if every continuous linear functional on C(K) which vanishes on O(E) also
vanishes at f . Taking into account the Riesz-Markov-Kakutani representation theorem
for C(K) (see [26, Theorem 6.19]), it suffices to prove that: if µ is a complex Borel

measure on K such that

∫
K

g(z)dµ(z) = 0, for all g ∈ O(E), then

∫
K

f(z)dµ(z) = 0.

This strategy of proof has been used in [11] and [17] (cf. the proof of [26, Theorem
13.6]).

Fix a measure µ that satisfies the above assumptions. Let w be the semigroup
on E generated by Φ. Let V ⊂ E be an open set relatively compact in E such that
K ⊂ V and every function in O(V ) can be approximated uniformly on K by functions
in O(E), whose existence is ensured by Lemma 3.4. Since D is a domain that contains
the origin, Lemma 3.2 implies that there exists T ≥ 0 such that wt(V ) ⊆ D, for all
t ≥ T . Hence, for every t ≥ T , f ◦wt is well-defined and holomorphic on V , and thus,
there exists a sequence (gk)k∈N in O(E) such that gk → f ◦wt, as k →∞, uniformly
on K. Therefore, we have∫

K

f(w(z, t))dµ(z) = 0, for all t ≥ T. (3.2)

Since D is a Φ
∣∣
D

-like domain, we have that w restricted to D×[0,∞) is a semigroup on

D (in particular, wt(D) ⊆ D, for all t ≥ 0). In the following, we use the same notation
w for this restriction. By Lemma 3.3, there exist an open set W ⊆ D that contains
K and a domain U ⊆ C that contains the interval [0,∞) such that w

∣∣
W×[0,∞)

has a

holomorphic extension to W ×U which takes values in D. We use the same notation

w for this extension. The function ϕ : U → C given by ϕ(ζ) =

∫
K

f(w(z, ζ))dµ(z),

ζ ∈ U , is well-defined and holomorphic on U . In view of (3.2), we have ϕ(t) = 0, for
all t ∈ [T,∞). By the Identity Principle, we deduce that ϕ(ζ) = 0, for all ζ ∈ U . In

particular, ϕ(0) = 0, and thus

∫
K

f(z)dµ(z) = 0. Taking into account the discussion

at the beginning, the proof is complete. �

4. Applications, examples and questions

Definition 4.1. We say that D ⊆ Cn is a starlike domain with respect to 0 if rz ∈ D,
for all z ∈ D and r ∈ [0, 1]. We say that D ⊆ Cn is a starlike domain if there exists
z0 ∈ D such that −z0 +D is starlike with respect to 0.
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Remark 4.2. Theorem 3.6 implies that every starlike domain is Runge (cf. [7, p. 666],
[11, Proposition 1], [19, Corollary 3.1.23]).

Proof. Let D ⊆ Cn be a starlike domain with respect to 0 and I be the identity
mapping on Cn. D is an I

∣∣
D

-like domain and Cn is an I-like domain (see [16, Section

4]). Theorem 3.6 implies that D is a Runge domain. The general case follows easily
from Definitions 2.1 and 4.1. �

The following proposition, related to [16, Theorem 1, Corollary 1], is useful in
providing some examples of Φ-like domains.

Proposition 4.3. Let Ω ⊆ Cn be a Φ1-like domain and let F : Ω→ Cn be a univalent
mapping with F (0) = 0 such that DF (0) and DΦ1(0) commute. Then F (Ω) is a
Φ2-like domain, where Φ2 ∈ H(F (Ω),Cn) is given by

Φ2(z) = DF (F−1(z))Φ1(F−1(z)), z ∈ F (Ω).

In particular, if Ω is a starlike domain with respect to 0 and F : Ω→ Cn is a univalent
mapping with F (0) = 0, then F (Ω) is a Φ-like domain, where Φ ∈ H(F (Ω),Cn) is
given by

Φ(z) = DF (F−1(z))F−1(z), z ∈ F (Ω).

Proof. Let v be the semigroup on Ω generated by Φ1. Let w : F (Ω)× [0,∞)→ Cn be
given by w(z, t) = F (vt(F

−1(z))), for z ∈ F (Ω). Then it is not difficult to show that
w is a semigroup on F (Ω), which is generated by Φ2. Moreover, since vt(ζ) → 0, as
t→∞, for all ζ ∈ Ω, then wt(z)→ 0, as t→∞, for all z ∈ F (Ω). Also, it is easy to
prove that Φ2(0) = 0 and DΦ2(0) = DΦ1(0). Hence F (Ω) is a Φ2-like domain.

The particular result for a starlike domain with respect to 0 follows by taking
Φ1 = idΩ. �

Question 4.4. Is every Φ-like domain E ⊆ Cn biholomorphic to a starlike domain
D ⊆ Cn for n ≥ 2?

Remark 4.5. Every Φ-like domain E ⊆ Cn is simply connected.

Proof. Let w be the semigroup on E generated by Φ. Let f : ∂U→ E be a continuous
closed curve. Let F : U → E be given by F (rζ) = w(f(ζ),− log r), for r ∈ (0, 1],
ζ ∈ ∂U, and F (0) = 0. Since w(·, 0) = idE , we have F

∣∣
∂U = f . Since w is jointly

continuous on E × [0,∞) (it has continuous partial derivatives) and wt → 0, as
t → ∞, uniformly on the compact set f(∂U) (see Lemma 3.2), we deduce that F is
continuous on U. Hence f can be continuously contracted inside E to 0. �

The following example points out that the domains D ⊆ E ⊆ Cn in Theorem
3.6 are not necessarily Runge domains, for n ≥ 2 (in the case n = 1, D and E are
always Runge domains, because they are simply connected, see Remarks 2.2 and 4.5).
We shall use the example of non-Runge domain biholomorphic to a polydisc due to
Wermer [30], as it is presented in [20, Example 6.8].

Example 4.6. Let ϕ : C3 → C3 be given by ϕ(z) = (z1, z1z2 + z3, z1z
2
2 − z2 + 2z2z3),

for z = (z1, z2, z3) ∈ C3. Let ε1, ε2 ∈ (0, 1
2 ), ε1 ≤ ε2, be sufficiently small such that ϕ

is biholomorphic on the polydiscs

Pj = {(z1, z2, z3) ∈ C3 : |z1| < 1 + εj , |z2| < 1 + εj , |z3| < εj}, j ∈ {1, 2}.
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For the existence of such εj , j ∈ {1, 2}, see [20, Example 8.4].
Let E = ϕ(P2) and D = ϕ(P1). Then E and D satisfy the assumptions of

Theorem 3.6 (i.e., E is a Φ-like domain and D is a Φ
∣∣
D

-like domain, for some Φ ∈
H(E,Cn)), but neither of these domains is Runge.

Proof. Let Φ : E → C3 be given by Φ(ζ) = Dϕ(ϕ−1(ζ))ϕ−1(ζ), for ζ ∈ E. Since P1

and P2 are starlike domains with respect to 0, we deduce, by Proposition 4.3, that E
is a Φ-like domain and D is a Φ

∣∣
D

-like domain. In view of [20, Example 6.8], neither
of these domains is Runge. �

The next example is related to the previous one.

Example 4.7. Let φ : C2 → C2 be a univalent mapping with φ(0) = 0 such that φ(C2)
is not a Runge domain (the existence of such a mapping is due to Wold [31]). Then
there exists r > 0 such that E = φ(C2) and D = φ(rB2) are not Runge domains,
but they satisfy the assumptions of Theorem 3.6 with Φ(z) = Dφ(φ−1(z))φ−1(z), for
z ∈ E.

Proof. The result follows in view of [5, Example 2.2] (cf. [24, Theorem VI.1.12]) and
Proposition 4.3. �

Regarding Theorem 3.6, we consider the following useful proposition.

Proposition 4.8. Let E ⊆ Cn be a Φ-like domain and let D ⊆ E. Also, let w be the
semigroup on E generated by Φ. Then the following are equivalent:
i) D is a Φ|D-like domain.
ii) D is a domain with 0 ∈ D and wt(D) ⊆ D, for all t ≥ 0.
iii) there exists an open set U ⊆ E with 0 ∈ U such that D = w(U, [0,∞)).

Proof. The equivalence i)⇔ii) is straightforward, in view of Definition 2.3. For the
implication ii)⇒iii), we just take U = D. For the implication iii)⇒ii), we observe
that: D =

⋃
t≥0 wt(U) is open, wt(D) = w(U, [t,∞)) ⊆ D, for all t ≥ 0, and every

z ∈ D is connected with 0 through the path

γ(s) =

{
w(z,− log s), s ∈ (0, 1],
0, s = 0.

�

Related to [12] (see also Remark 3.5), we have the following corollary, which tells
us that every Φ-like domain has a Runge exhaustion (see [12, p. 1]).

Corollary 4.9. Let E be a Φ-like domain. Then for every compact set K ⊂ E, there
exists an open set V ⊂ E relatively compact in E such that K ⊂ V and (V,E) is a
Runge pair. Moreover, V can be chosen to be a Φ

∣∣
V

-like domain.

Proof. Let w be the semigroup on E generated by Φ. Since K ⊂ E is compact, there
exists an open set U ⊂ E relatively compact in E such that 0 ∈ U and K ⊂ U (one
can take U to be a finite union of small balls that cover K∪{0}). Let V = w(U, [0,∞)).
In view of Lemma 3.2, we have that V is relatively compact in E. By Proposition 4.8,
V is a Φ

∣∣
V

-like domain. By Theorem 3.6, (V,E) is a Runge pair. �
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Remark 4.10. In [12, p. 1] it is pointed out that every pseudoconvex domain has a
Runge exhaustion (see e.g. the proof of [24, Theorem VI.1.17]; see also [23, Theorem
4.25]). Regarding Corollary 4.9, we mention that, in general, not every Φ-like domain
is pseudoconvex. For example, let

E = {(z1, z2) ∈ C2 : |z1| < 1, |z2| < 1} \
{

(ζ, 0) :
1

2
≤ |ζ| < 1

}
.

Then E is a starlike domain with respect to 0. To prove that it is not pseudoconvex,
it suffices to observe that every holomorphic function on E is holomorphic on the
Hartogs domain

{(z1, z2) ∈ C2 : |z1| < 1,
1

2
< |z2| < 1} ∪ {(z1, z2) ∈ C2 : |z1| <

1

2
, |z2| < 1}⊂E

and thus it extends to the whole unit polydisc centered at 0 (see e.g. [24, Theorem
II.1.1]).

In view of the above example, we also note that the domains in Theorem 3.6 are
not necessarily pseudoconvex.

Question 4.11. Taking a look at the arguments used in [7, p. 666] (see also [29]) to
prove that every starlike domain is Runge, we ask the following: is it possible to prove
Theorem 3.6 using envelopes of holomorphy and the result of Docquier and Grauert
[10]?

The following corollary of Theorem 3.6, is related to [4, Proposition 5.1].

Corollary 4.12. Let E ⊆ Cn be a Φ-like domain. Let w be the semigroup on E gener-
ated by Φ. Then (wt(E), E) is a Runge pair, for all t ≥ 0.

Proof. Let t ≥ 0 be fixed and let D = wt(E). Then

wτ (D) = wτ (wt(E)) = wτ+t(E) = wt(wτ (E)) ⊆ wt(E) = D, for all τ ≥ 0.

Since Φ(0) = 0, we have wt(0) = 0, by [1, Proposition 2.5.23], and thus 0 ∈ D. By
Remark 2.5 and Proposition 4.8, D is a Φ

∣∣
D

-like domain. Hence, by Theorem 3.6, we

deduce that (D,E) is a Runge pair. �

Looking at Theorem 3.6 and Corollary 4.12, one might suspect that: if E ⊆ Cn
is a Φ-like domain and D ⊆ E is a Φ

∣∣
D

-like domain, then there exists t ≥ 0 such that

D = wt(E), where w is the semigroup on E generated by Φ. The following example
shows that this is, in general, false.

Example 4.13. Let E = Bn and let D = Bn\
{
te1 : t ∈ [ 1

2 , 1]
}

, where e1 = (1, 0, . . . , 0).

Let Φ = idE . Then E is a Φ-like domain and D is a Φ
∣∣
D

-like domain, but D 6= wτ (E),
for all τ ≥ 0, where w is the semigroup on E generated by Φ.

Proof. Since wt(z) = e−tz, for z ∈ Bn, t ≥ 0, we easily deduce that E is a Φ-like
domain. We observe that

wτ (D) =
(
e−τBn

)
\
{
te1 : t ∈

[e−τ
2
, e−τ

]}
⊂ Bn \

{
te1 : t ∈

[e−τ
2
, 1
]}
⊂ D,

for all τ ≥ 0. Since 0 ∈ D, we have that D is a Φ
∣∣
D

-like domain, by Proposition 4.8.

Since wτ (E) = e−τBn, we deduce that D 6= wτ (E), for all τ ≥ 0. �



246 Hidetaka Hamada, Mihai Iancu and Gabriela Kohr

Taking into account Proposition 4.8, we shall use the following definition.

Definition 4.14. Let w be a semigroup on a domain E ⊆ Cn. We say that D ⊆ E is
an invariant domain of w, if wt(D) ⊆ D, for all t ≥ 0.

We consider the following question (cf. [25, Chapter 7]).

Question 4.15. Let w be a semigroup on a domain E ⊆ Cn and D ⊂ E be a domain.
Under what conditions is D an invariant domain of w?

Remark 4.16. Let E ⊆ Cn be a Φ-like domain and let w be the semigroup on E
generated by Φ. By Theorem 3.6 and Proposition 4.8, a necessary condition for a
domain D ⊆ E with 0 ∈ D to be an invariant domain of w is (D,E) to be a Runge
pair. In the next example, we shall see that this condition is not sufficient.

Example 4.17. Let E be the unit disc centered at the origin of C and let

D = E \
{
t+ i√

2
: t ∈ [0, 1]

}
.

Let Φ = idE . Then E is a Φ-like domain and D⊂E is a domain with 0 ∈ D such
that (D,E) is a Runge pair, but D is not an invariant domain of w, where w is the
semigroup on E generated by Φ.

Proof. Since wt(z) = e−tz, for z ∈ E, t ≥ 0, it is easy to prove that D is not an
invariant domain of w. However, D is a Runge domain, because it is simply connected
(see e.g. Remark 2.2), and thus (D,E) is a Runge pair. �

We mention that the previous example can be easily extended to higher dimen-
sions, in view of [22, Corollary 1.7.8].

Next, we ask the following question.

Question 4.18. Let w be a semigroup on a domain E ⊆ Cn and let D ⊆ E be an
invariant domain of w. Under what conditions is (D,E) a Runge pair?

By Theorem 3.6 and Proposition 4.8, we have that: if E ⊆ Cn is a Φ-like domain
and D ⊆ E is an invariant domain of the semigroup w generated by Φ such that
0 ∈ D, then (D,E) is a Runge pair. In the following example, we show that the
condition 0 ∈ D is essential.

Example 4.19. Let E be the unit disc centered at the origin of C and let D = E \{0}.
Let Φ = idE . Then E is a Φ-like domain and D ⊆ E is an invariant domain of w,
where w is the semigroup on E generated by Φ, but (D,E) is not a Runge pair.

Proof. Since wt(z) = e−tz, for z ∈ E, t ≥ 0, it is easy to show that D is an invariant
domain of w. Since D is not simply connected, (D,E) is not a Runge pair (see Remark
2.2). �

Next, we consider an example in higher dimension, related to the previous one.

Example 4.20. Let E ⊂ C2 be the unit polydisc centered at the origin of C2. Let
D = {(z, w) ∈ C2 : |z| < |w| < 1} (this domain is known as the Hartogs triangle, see
e.g. [19]). Let Φ = idE , and let w be the semigroup on E generated by Φ. Then D is
an invariant domain of w, but (D,E) is not a Runge pair.



Runge pairs of Φ-like domains 247

Proof. We have wt(z, w) = (e−tz, e−tw), for (z, w) ∈ E, t ≥ 0. Clearly, we have that
D is an invariant domain of w. However, since E is a Runge domain and D is not a
Runge domain, we have that (D,E) is not a Runge pair. For the sake of clarity, we
give here an elementary argument for the fact that D is not Runge. Let f ∈ O(D)
be given by f(z, w) = 1

w , for (z, w) ∈ D. Suppose that there is a sequence (pk)k∈N
of polynomial functions such that pk → f , as k → ∞, locally uniformly on D. In
particular, pk(0, ·)→ f(0, ·), as k →∞, uniformly on the circle

Γ =

{
(0, ζ) : |ζ| = 1

2

}
.

Hence 0 =

∫
Γ

pk(0, ζ)dζ →
∫

Γ

f(0, ζ)dζ = 2πi, as k → ∞, which is a contradiction.

�

We note that in both of the previous two examples the invariant domain (of the
corresponding semigroup) is not simply connected, hence we consider the following
question.

Question 4.21. Let n ≥ 2. Does there exist simply connected domains D ⊂ E ⊆ Cn
such that D is an invariant domain of a semigroup on E and (D,E) is not a Runge
pair?

From now on, we consider a slight modification of the definition of a Φ-like
domain in Cn, by dropping the condition m(DΦ(0)) > 0 in Definition 2.3.

Definition 4.22. Let Ω ⊆ Cn be a domain. If 0 ∈ Ω and there exists Φ ∈ H(Ω,Cn)
such that Φ(0) = 0, and, for every z ∈ Ω, the initial value problem

∂w

∂t
(z, t) = −Φ(w(z, t)), t ≥ 0, w(z, 0) = z, (4.1)

has a solution w(z, ·) on [0,∞) such that w(z, t) ∈ Ω, t ≥ 0, and w(z, t) → 0, as
t→∞, then we say that Ω is a Φ-like domain.

Let ‖·‖ be an arbitrary norm on Cn and let B be the unit ball of Cn with respect
to this norm. Then, Cn may be regarded as a finite dimensional complex Banach space
with respect to this norm. For each z ∈ Cn \ {0}, let

T (z) =
{
lz ∈ L(Cn,C) : lz(z) = ‖z‖, ‖lz‖ = 1

}
.

This set is nonempty by the Hahn-Banach theorem.
For a domain Ω ⊆ Cn with 0 ∈ Ω, let

N (Ω) = {h ∈ H(Ω,Cn) : h(0) = 0,<lz(h(z)) > 0, z ∈ Ω \ {0}, lz ∈ T (z)}.
If Φ ∈ N (rB) for some r ∈ (0,∞), then we have <lz(DΦ(0)z) > 0 for z ∈ rB\{0} and
lz ∈ T (z) by [28, Lemma 3]. Therefore, in view of [14, Theorem 3.1] and considering
the map Ψ(z) = r−1Φ(rz) for z ∈ B, we obtain that B is a Ψ-like domain, so rB is
a Φ-like domain (use Proposition 4.3 with F = rI) and Lemma 3.2 holds for every
mapping Φ ∈ N (rB) for arbitrary r ∈ (0,∞).

In the case of ∞B = Cn, if Φ ∈ N (Cn) and wr is the semigroup generated by
Φ
∣∣
rB

for r ∈ (0,∞), then, in view of the uniqueness of the solution of the initial value

problem (4.1), there exists a semigroup generated by Φ such that w(z, ·) = wr(z, ·),
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for all z ∈ rB and r ∈ (0,∞), and, in view of the above, Cn is a Φ-like domain and
Lemma 3.2 holds also for every Φ ∈ N (Cn).

Thus, as in the proof of Theorem 3.6, we obtain the following theorem.

Theorem 4.23. Let B be the unit ball of Cn with respect to an arbitrary norm on Cn
and let D ⊆ Cn be a domain. If D ⊆ rB for some r ∈ (0,∞] and there exists a
Φ ∈ N (rB) such that D is a Φ

∣∣
D

-like domain, then D is a Runge domain.

Next, we consider the definition of a spirallike domain (see [13]).

Definition 4.24. Let A ∈ L(Cn,Cn) be such that m(A) > 0. We say that a domain
D ⊆ Cn is A-spirallike if 0 ∈ D and e−tAz ∈ D, for all z ∈ D and t ≥ 0. In the case
A = I, we obtain the definition of a starlike domain with respect to 0.

We obtain the following corollary from Theorem 4.23.

Corollary 4.25 ([17, Theorem 3.1]). Let A ∈ L(Cn,Cn) be such that m(A) > 0 and
let D ⊆ Cn be an A-spirallike domain. Then D is a Runge domain.

Proof. Let Φ = A. Then the semigroup w on Cn generated by Φ is given by w(z, t) =
e−tAz, for z ∈ Cn, t ≥ 0. By Proposition 4.8, D is a Φ

∣∣
D

-like domain. m(A) > 0

implies A ∈ N (Cn), with respect to the Euclidean norm. So, Theorem 4.23 implies
that D is a Runge domain. �

In view of [6, Theorem 2.1], we ask the following question.

Question 4.26. Let E ⊂ Cn be a Φ-like domain. Under what conditions on Φ do
we have the following extension of the Andersén-Lempert theorem: if f : E → Cn
is a biholomorphic mapping whose image f(E) is a Runge domain, then f can be
approximated by automorphisms of Cn locally uniformly on E?

In the case Φ = A ∈ L(Cn,Cn) with k+(A) < 2m(A), where k+(A) is the largest
real part of the eigenvalues of A, Hamada [17, Theorem 4.2] proved that the theorem
holds.

Finally, we give a version of Theorem 3.6 for taut domains. For various properties
of the taut domains, see e.g. [1].

Definition 4.27. Let U ⊂ C be the unit disc. A domain Ω ⊂ Cn is said to be taut, if
for every sequence (fj)j∈N in H(U,Ω) there exists a subsequence (fjk)k∈N that either
converges locally uniformly on U to a map f ∈ H(U,Ω) or diverges locally uniformly
on U (i.e., for any two compact sets K ⊂ U and L ⊂ Ω there exists k0 ∈ N such that
fjk(K) ∩ L = ∅ for k ≥ k0).

Theorem 4.28. Let E ⊆ Cn be a taut domain with 0 ∈ E that has an infinitesimal
generator Φ such that Φ(0) = 0 and the spectrum of DΦ(0) lies in the right half-plane
{ζ ∈ C : <ζ > 0}. If D ⊆ E is a Φ

∣∣
D

-like domain, then (D,E) is a Runge pair.

Proof. The proof follows from the proof of Theorem 3.6, once we have proved that
wt → 0, as t→∞, locally uniformly on E, where w is the semigroup on E generated
by Φ. By [1, Theorem 2.5.21, Proposition 2.5.23] (see also [1, Corollary 2.1.17]), we
deduce that there exists ρ ∈ H(E,E) such that wt → ρ, as t→∞, locally uniformly
on E. By [1, Corollary 2.4.2, Proposition 2.5.23 (ii)], we have that ρ ≡ 0. �
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Remark 4.29. i) If E ⊆ Cn is a domain that satisfies the assumptions in Theorem
4.28, then, using the same arguments, we deduce that Corollaries 4.9 and 4.12 hold
also in this case.

ii) Let B be the unit ball of Cn with respect to an arbitrary norm on Cn. If
r ∈ (0,∞), then rB is a taut domain (see [1, Corollary 2.1.11]), and, if Φ ∈ N (rB),
then Φ is an infinitesimal generator and the real part of each eigenvalue of DΦ(0) is
positive, because <lz(DΦ(0)z) > 0 for z ∈ rB \ {0} and lz ∈ T (z) (see the discussion
before Theorem 4.23). So, Theorem 4.28 implies Theorem 4.23 in the case r ∈ (0,∞)
and the case r =∞ follows from the finite cases, in view of Definition 2.1.
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