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Abstract. We survey a number of recent generalizations and sharpenings of Ne-
hari’s extension of Schwarz’ lemma for holomorphic self–maps of the unit disk. In
particular, we discuss the case of infinitely many critical points and its relation
to the zero sets and invariant subspaces for Bergman spaces, as well as the case
of equality at the boundary.
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1. Introduction

Let D = {z ∈ C : |z| < 1} be the open unit disk in the complex plane C, and let
B denote the set of holomorphic functions from D into D. A finite Blaschke product
of degree n is a rational function B ∈ B of the form

B(z) = η

n∏
j=1

zj − z
1− zjz

, |η| = 1 , (1.1)

with zeros z1, . . . , zn ∈ D, not necessarily pairwise distinct. Hence the multiplicative
building blocks of finite Blaschke products are exactly the elements of the group of
conformal automorphisms of D,

Aut(D) =

{
η
z0 − z
1− z0z

: |η| = 1, z0 ∈ D
}
.

Blaschke products are omnipresent, and occur for instance as fundamental norm-
preserving factors in many important classes of holomorphic functions on D. We refer
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to the recent monograph [19] and the references therein for an state–of–the–art ac-
count of the properties and abundant applications of FBP, the set of all finite Blaschke
products. In this note, we discuss a number of recent generalizations of Nehari’s cel-
ebrated extension [37] of Schwarz’ lemma, a topic which is intrinsically related to
FBPs, but which has not been treated in [19].

As point of departure, we note that a geometric–topological way of thinking
about (non–constant) FBPs is to view them as proper holomorphic self–maps of D
or – equivalently – as finite branched coverings of D, see [19, Chapter 3]. From this
view point, it seems natural to describe a finite Blaschke product B not in terms of
its zeros as in (1.1), but in terms of its critical points, that is, the zeros of its first
derivative B′. That this is indeed possible is the content of the following celebrated
result of M. Heins [24] (see also [19, Chapter 6], [47] and [48, 8, 53, 45, 30, 31, 41, 49]).

Theorem 1.1 (Heins 1962). Let c1, . . . , cn−1 be points in D. Then there is a Blaschke
product B of degree n with critical points c1, . . . , cn−1 in D and no others. The
Blaschke product B is unique up to post–composition with an element of Aut(D).

The Blaschke product B in Theorem 1.1 can be characterized as the essentially
unique extremal function in a sharpened form of the Schwarz–Pick inequality. This
fundamental observation [37] is due to Nehari in 1947. In order to state Nehari’s
result we need to introduce some notation. We denote by Cf the collection of all
critical points of a non–constant function f ∈ B counting multiplicities. By slight
abuse of language, we call Cf the critical set of f and write Cg ⊆ Cf whenever each
critical point of a function g ∈ B is also a critical point of f ∈ B of at least the same
multiplicity. This is in accordance with standard practices, see [14, §4.1].

Theorem 1.2 (The Nehari–Schwarz lemma). Let f ∈ B and let B ∈ FBP such that
CB ⊆ Cf . Then:

(i) (Nehari–Schwarz inequality)

|f ′(z)|
1− |f(z)|2

≤ |B′(z)|
1− |B(z)|2

for all z ∈ D; (1.2)

(ii) (Strong form of the Nehari–Schwarz lemma at an interior point)
Equality holds in (1.2) for some point z ∈ D \ CB if and only if f = T ◦ B for
some T ∈ Aut(D).

Remark 1.3 (The Schwarz–Pick lemma). In Theorem 1.2, one can always take B
as a finite Blaschke product without any critical points, that is, as a conformal au-
tomorphism of D. In this case, Theorem 1.2 reduces to the standard Schwarz–Pick
lemma:

(i) (Schwarz–Pick inequality)

|f ′(z)|
1− |f(z)|2

≤ 1

1− |z|2
for all z ∈ D; (1.3)

(ii) (Strong form of the Schwarz–Pick lemma at an interior point)
Equality holds in (1.3) for some point z ∈ D if and only if f ∈ Aut(D).
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The main purpose of this note is to survey some recent sharpenings and exten-
sions of the Nehari–Schwarz lemma. In Section 3 we discuss a generalization of the
Nehari–Schwarz lemma which allows for taking into account infinitely many critical
points instead of only finitey many as in Theorem 1.2. In Section 4 we describe the
connections with the specific Bergman space A2

1, in particular its zero sets and in-
variant subspaces. Our presentation is based on recent work of Kraus [28], Dyakonov
[15, 16], and Ivrii [26, 27]. In Section 5 we discuss the so–called strong form of the
Nehari–Schwarz lemma, that is, the case of equality in the Nehari–Schwarz inequality
at the boundary which has recently been obtained in [9, Theorem 2.10] as a special
case of a general boundary rigidity theorem for conformal pseudometrics. In order to
make this paper self–contained we also provide a fairly concise proof of the Nehari–
Schwarz inequality (1.2) in Section 2. The proof we give is slightly different from the
standard proofs which can be found in [37, Corollary, p. 1037] and [24, Theorem 24.1].
The Nehari–Schwarz lemma has found many further applications, for which we refer
to other works such as [6, 22, 34, 35, 45], for instance.

2. Proof of the Nehari–Schwarz inequality

We give a proof of the Nehari–Schwarz inequality (1.2) which is based on the
observation that a finite Blaschke product B has the property that

lim
|z|→1

(
1− |z|2

) |B′(z)|
1− |B(z)|2

= 1 . (2.1)

In fact, condition (2.1) characterizes finite Blaschke products (Heins [25], see also [33]
and [19, Chapter 6.5]). We point out that a simple and direct proof that (2.1) holds
for any finite Blaschke product

B(z) = η

n∏
j=1

z − zj
1− zjz

is possible by making appeal to an identity due to Frostman [18], namely

1− |B(z)|2

1− |z|2
=

n∑
k=1

k−1∏
j=1

∣∣∣∣ z − zj1− zjz

∣∣∣∣2
 1− |zk|2

|1− zkz|2
, |z| 6= 1 , (2.2)

and the elementary formula for the logarithmic derivative of B given by

B′(z)

B(z)
=

n∑
k=1

1− |zk|2

(1− zkz) (z − zk)
. (2.3)

Frostman’s identity (2.2) can be easily established by induction, see [19, p. 77].
Clearly, (2.2) and (2.3) immediately imply (2.1).

Using (2.1) we now give a proof of Theorem 1.2 following very closely the stan-
dard proof of Ahlfors’ lemma [1] with only minor modifications.
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Proof of Theorem 1.2 (i). Let f ∈ B be non–constant, so Cf is a discrete subset of D.
We consider the auxiliary function

u(z) := log

(
|f ′(z)|

1− |f(z)|2
1− |B(z)|2

|B′(z)|

)
.

Since CB ⊆ Cf (“including multiplicities”), we see that u is well–defined and real
analytic on D \ Cf . For each ξ ∈ Cf the limit

lim
z→ξ

u(z) ∈ R ∪ {−∞}

exists, so u extends to an upper semicontinuous function on D with values in R∪{−∞}
which we continue to denote by u. Now, a straightforward computation reveals

∆u = 4

(
|B′(z)|

1− |B(z)|2

)2 (
e2u − 1

)
, z ∈ D \ Cf .

In particular,

u+ := max{u, 0}
is subharmonic in D. On the other hand, in view of the Schwarz–Pick inequality,(

1− |z|2
) |f ′(z)|

1− |f(z)|2
≤ 1 ,

we deduce from (2.1) that

lim sup
|z|→1

u(z) ≤ 0 .

Hence u+ ≤ 0 in D by the maximum principle. This implies u ≤ 0 and completes the
proof of (1.2). �

Remark 2.1 (Strong form of the Nehari–Schwarz lemma at an interior point). The
case of equality for the Nehari–Schwarz inequality (1.2) for some interior point z ∈
D \ CB can be handled in a similar way as the case of equality at some interior point
for Ahlfors’ lemma, which has been treated in [24, 40, 36, 12, 33]. We refer to e.g. [33,
Remark 2.2 (d)] for the details.

3. Infinitely many critical points

We begin with an extension of the theorems of Heins’ (Theorem 1.1) and Nehari–
Schwarz (Theorem 1.2) essentially due to Kraus [28].

Theorem 3.1. Let C be the critical set of a non–constant function in B. Then there is
a Blaschke product B with critical set C such that

|f ′(z)|
1− |f(z)|2

≤ |B′(z)|
1− |B(z)|2

for all z ∈ D and any f ∈ B such that Cf ⊇ C. If equality holds at a single point z 6∈ C,
then f = T ◦B for some T ∈ Aut(D). The Blaschke product B is uniquely determined
by C up to post–composition with an element of Aut(D).
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See [28], while the case of equality has been settled in [32]. The Blaschke product
B in Theorem 3.1 is called maximal Blaschke product for C. The set of all maximal
Blaschke products will be denoted by MBP.

Remarks 3.2 (Properties of maximal Blaschke products).

(a) Maximal Blaschke products are indestructible: f ∈ MBP, T ∈ Aut(D) =⇒
T ◦ f ∈ MBP.

(b) (FBP ⊆ MBP)
Maximal Blaschke products for finite sets C are finite Blaschke products and vice
versa, see [32, Remark 1.2 (b)]. In particular, Theorem 3.1 generalizes Theorem
1.1 and Theorem 1.2.

(c) Any maximal Blaschke product is uniquely determined by its critical set up
to postcomposition with an element of Aut(D). This does not hold for general
infinite Blaschke products. Neat examples are the nontrivial Frostman shifts

πa(z) :=
a− π0(z)

1− aπ0(z)
, a ∈ D \ {0} ,

of the standard singular inner function

π0(z) := exp

(
−1 + z

1− z

)
which are Blaschke products without critical points.

(d) The accumulation points of the critical set of a maximal Blaschke product B are
exactly the accumulation points of its zero set, and B has an analytic continua-
tion across any other point of the unit circle, see [32, Theorem 1.4 and Corollary
1.5].

(e) The set of maximal Blaschke products is closed with respect to composition, see
[32, Theorem 1.7].

4. Zeros sets and invariant subspaces for Bergman spaces

Remark 4.1 (MBPs and zero sets in Bergman spaces). Theorem 3.1 shows in partic-
ular that a set C ⊆ D is the critical set of a function in B if and only if it is the critical
set of some maximal Blaschke product. It has been shown in [28] that this is the case
if and only if C is the zero set of a function in the Bergman space ([14, 23])

A2
1 =

{
ϕ : D→ C holomorphic :

∫∫
D
(1− |z|2) |ϕ(z)|2 dxdy <∞

}
.

Hence

MBP/Aut(D) =
{

zero sets of A2
1

}
. (4.1)

This can be seen as an analogue of the classical fact that up to a rotation (=
multiplication by a number η ∈ S1 = {z ∈ C : |z| = 1}) the zero sets of functions in
the Hardy space H2 are exactly the zero sets of Blaschke products,

BP/S1 =
{

zero sets of H2
}
.
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Remark 4.2 (Critical sets in B and singly generated invariant subspaces in Bergman
spaces). Remark 4.1 has a simple operator theoretic interpretation, cf. [14, 23] for
background. A closed subspace of A2

1 is called zero–based if it is defined as the set of
all A2

1–functions that vanish at a prescribed set of points in D. Each such subspace is
invariant, that is, invariant w.r.t. to multiplication by z. Hence (4.1) can be trivially
rewritten as

MBP/Aut(D) =
{

zero–based invariant subspaces of A2
1

}
.

In particular, if we denote by [H] the subspace generated by a function H ∈ A2
1, that

is, the minimal closed invariant subspace of A2
1 which contains H, then each zero–

based subspace of A2
1 has the form [B′], meaning that it is singly generated by the

derivative B′ ∈ A2
1 of some maximal Blaschke product B. Combining this observation

with the beautiful concept of asymptotic spectral synthesis of Nikol’skii [38] and a deep
result of Shimorin [43] about approximation of singly–generated invariant subspaces
of Bergman spaces by zero–based subspaces, O. Ivrii [27] has recently been led to the
following striking conjecture

Inner functions/Aut(D) =
{

singly generated invariant subspaces of A2
1

}
,

or in more explicit terms:

Conjecture 4.3 (Ivrii [27]). Any singly generated subspace of A2
1 can be generated by

the derivative of an inner function. This inner function is uniquely determined up to
postcomposition with a unit disk automorphism.

This conjecture can be seen as an analogue of the celebrated result of Beurling
that the invariant subspaces of H2 are generated by inner functions:

Inner functions/S1 =
{

invariant subspaces of H2
}
.

We refer to the original papers [26, 27] for details and a number of substantial
results in support of Conjecture 4.3.

5. The strong form of the extended Nehari–Schwarz lemma at the
boundary

We now return to Theorem 3.1 and discuss the case of equality at the boundary.
For this purpose it is convenient to denote by

fh(z) :=
(
1− |z|2

) |f ′(z)|
1− |f(z)|2

the hyperbolic derivative of a holomorphic function f : D→ D, see [4, Definition 5.1].
If f ∈ B and B is a maximal Blaschke product with CB ⊆ Cf , then

fh

Bh
: D \ CB → R

has a continuous extension to D which will still be denoted by fh/Bh. Theorem 3.1
(see also [32, Theorem 2.2 (b)]) implies:
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(i) (Extended Nehari–Schwarz inequality)

fh(z)

Bh(z)
≤ 1 for all z ∈ D;

(ii) (Strong form of the extended Nehari–Schwarz lemma at an interior point)

fh(z)

Bh(z)
= 1 for some point z ∈ D ⇐⇒ f = T ◦B for some T ∈ Aut(D) .

Recently, a boundary version of this interior rigidity result for functions in B has been
obtained in [9]:

Theorem 5.1 (The strong form of the generalized Nehari–Schwarz lemma at the
boundary). Let C be the critical set of a non–constant function in B, B a maximal
Blaschke product with critical set CB = C, and f ∈ B such that Cf ⊇ C. If

fh(zn)

Bh(zn)
= 1 + o

(
(1− |zn|)2

)
for some sequence (zn) in D such that |zn| → 1, then f = T ◦B for some T ∈ Aut(D)
and f is a maximal Blaschke product.

The proof of Theorem 5.1 in [9] is based on PDE methods, in particular a
Harnack–type inequality for solutions of the Gauss curvature equation, see [9] for
details. This approach also yields a version of the strong form of the Ahlfors–Schwarz
lemma [1, 12, 24, 36, 40, 50] at the boundary, see [9, Theorem 2.6]. The special case
C = ∅ of Theorem 5.1 is the following boundary version of the strong form of the
classical Schwarz–Pick lemma:

Theorem 5.2 (The strong form of the Schwarz–Pick lemma at the boundary). Let
f : D→ D be holomorphic. If

fh(zn) = 1 + o((1− |zn|)2)

for some sequence (zn) in D such that |zn| → 1, then f ∈ Aut(D).

The error term is sharp. For f(z) = z2 we have

fh(z) =
2|z|

1 + |z|2
= 1− (1− |z|)2

1 + |z|2
= 1− 1

2
(1− |z|)2 + o

(
(1− |z|)2

)
(|z| → 1) .

Hence one cannot replace “little o” by “big O” in Theorem 5.2. Theorem 5.2 can also
be deduced from the inequality

fh(z) ≤
fh(0) +

2|z|
1 + |z|2

1 + fh(0)
2|z|

1 + |z|2

for all |z| < 1 , (5.1)

which has been proved by Golusin (see [20, Theorem 3] or [21, p. 335], and indepen-
dently by Yamashita [51, 52], Beardon [3], and by Beardon & Minda [4, 5] as part of
their elegant work on multi–point Schwarz–Pick lemmas. With hindsight, inequality
(5.1) is exactly the case w = 0 in Corollary 3.7 of [4].
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Remark 5.3 (The boundary Schwarz–Pick lemma and the boundary Schwarz lemma
of Burns and Krantz). From Theorem 5.2 one can easily deduce the well–known
boundary Schwarz lemma of Burns and Krantz [10], which asserts that if f is a
holomorphic selfmap of D such that

f(z) = z + o
(
|1− z|3

)
as z → 1 , (5.2)

then f(z) ≡ z. We refer to [9, Remark 2.2] for details.

Remark 5.4. Baracco, Zaitsev and Zampieri [2] have improved the boundary Schwarz
lemma of Burns and Krantz by proving that if f : D→ D is a holomorphic map such
that

f(zn) = zn + o
(
|1− zn|3

)
for some sequence (zn) in D converging nontangentially to 1, then f(z) ≡ z. Does the
result of Baracco, Zaitsev and Zampieri follow from Theorem 5.2?

We refer to [7, 11, 13, 39, 44, 46] and in particular to the survey [17] by Elin et
al. for more on boundary Schwarz–type lemmas in the one variable setting.
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