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A polynomial algorithm for some instances
of NP-complete problems

Marius Costandin and Bogdan Gavrea

Abstract. In this paper, given a fixed reference point and a fixed intersection of
finitely many equal radii balls, we consider the problem of finding a point in the
said set which is the most distant, under Euclidean distance, to the said reference
point. This proble is NP-complete in the general setting. We give sufficient condi-
tions for the existence of an algorithm of polynomial complexity which can solve
the problem, in a particular setting. Our algorithm requires that any point in the
said intersection to be no closer to the given reference point than the radius of the
intersecting balls. Checking this requirement is a convex optimization problem
hence one can decide if running the proposed algorithm enjoys the presented the-
oretical guarantees. We also consider the problem where a fixed initial reference
point and a fixed polytope are given and we want to find the farthest point in the
polytope to the given reference point. For this problem we give sufficient condi-
tions in which the solution can be found by solving a linear program. Both these
problems are known to be NP-complete in the general setup, i.e the existence of
an algorithm which solves any of the above problem without restrictions on the
given reference point and search set is undecided so far.
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1. Introduction

In this paper we begin by presenting a novel framework for asserting the feasi-
bility of the intersection of convex sets. Our approach is to synthesize the information
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in the given convex sets in a non-smooth convex function whose unconstrained mini-
mizer can be used to assert the feasibility of the intersection. This problem is known in
the literature as the so called ”convex feasibility problem”. Classic algorithms for this
problem exist and can be found in [16], [18], [17], [19], while more novel approaches
are found here [5], [13]. Our approach to this problem is the presentation of a simple
and elegant criterion for asserting the feasibility of the intersection of two convex sets.
Unlike (some of) the references above, we do not focus on the convex minimization
problem itself, but on the formation of the convex function to be minimized and on
the interpretation of the resulting minimizer.

Next we extend the presented method to a particular case of mathematical
programming: the assertion of the inclusion of an intersection of equal radii balls in
another, bigger, ball. We are able to give meaningful results under some requirements
regarding the distance between the center of the bigger ball and the the intersection
of the balls.

We will use throughout the paper the symbol d(·,×) where · can be a point
and × can be a point or a convex set of points, to designate the Euclidean distance

between · and ×. For a vector u ∈ Rn, u = (u1, ..., un)
T

and r > 0, we denote by
B(u, r) the open ball centered at u and of radius r and we denote by

B̄(u, r) = {x ∈ Rn|‖x− u‖ ≤ r}

the closed ball centered in u and of radius r. We also denote by ‖u‖, ‖u‖2 = uTu, the
Euclidean norm of the vector u.

Finally, for a function f : Rn → R we denote by

f+(x) = max{f(x), 0} f−(x) = min{f(x), 0} (1.1)

Note that f(x) = f+(x) + f−(x).

1.1. Convex domains of interest

Let x ∈ Rn, n,m ∈ N+ and let gk : Rn → R be convex functions for k ∈ {1, . . . ,m}.
We define the convex sets:

Sk =

{
x ∈ Rn

∣∣∣∣gk(x) ≤ 0

}
and we are interested if the set

S =

m⋂
k=1

Sk (1.2)

is empty or not.

For this we define the following function G̃(x) : Rn → R:

G̃(x) =

m∑
k=1

g+k (x)
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2. Main results

In this section we present a novel feasibility criteria for the finite intersection of
certain convex sets. One classic method from the literature for solving this problem
is the method of alternating projections, [4], [13], for finding a feasible solution in
the intersection of convex sets. Below, we give a projection-free method for solving
set intersection problems. Our approach reformulates the feasibility problem as a
non-smooth convex minimization problem.

2.1. Convex feasibility

The following result is a characterization of the set S in terms of a global mini-

mum of G̃(x).

Lemma 2.1. Let

x? ∈ argmin
x∈Rn

G̃(x). (2.1)

Then the following are equivalent:

1. The set S is not empty, i.e ∃ x0 ∈ Rn such that

gk(x0) ≤ 0 ∀k ∈ {1, . . . ,m}

2. The point x? defined by (2.1) satisfies

gk(x?) ≤ 0 ∀k ∈ {1, . . . ,m}

Proof. The part 2 ⇒ 1 follows immediately from gk(x?) ≤ 0 for all k ∈ {1, . . . ,m}
which implies x? ∈ S and therefore S 6= ∅. To prove 1⇒ 2, let x0 such that gk(x0) ≤ 0
for all k ∈ {1, . . . ,m} and assume that ∃k such that gk(x?) > 0. This implies

0 = G̃(x0) < G̃(x?)

which contradicts the fact that x? is a global minimum of G̃. �

Remark 2.2. The simple result above shows that the feasibility of the intersection of
m convex sets (sub-level sets of convex functions) can be asserted by examining the
global minimum of a non-smooth convex function.

Encouraged by the simplicity of the above result we propose a somewhat similar
approach to study the following problem: assert if a fixed intersection of finitely many
equal radii balls is included in another given ball.

2.2. Test for the inclusion of an intersection of balls into another ball

We want to solve the following non-convex optimization problem:

max ‖x− c‖2

s.t ‖x− ck‖2 ≤ R2, ∀k ∈ {1, . . . ,m}, (2.2)

where ck, c ∈ Rn and R ∈ R, R > 0. Problem (2.2) is equivalent to finding a point in
the intersection of the balls centered at ck and of radius R which is the farthest away
from the point c. Please note that for any polytope one can choose ck and R in such
a way that the intersection of the balls provide an approximation of the polytope.
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Although we will not expand this approximation here, this is the main reason for
considering problem (2.2).

It is obviously a quadratically constrained quadratic maximization problem. Al-
gorithms for such, or similar problem, have been proposed in the literature, see [7],
[12], [15], [1]. These treat a similar problem, i.e optimizing a quadratic function with
box constraints. The S-procedure, [10], is a well known algorithm for solving programs
with quadratic objective and quadratic constraints. However, the presented problem
is fundamentally different to the problems which the S-procedure can solve in poly-
nomial time. That is, we are interested if an intersection of more balls is included
in another ball, whereas the S-procedure can be used for testing ellipsoid contain-
ment, i.e to assert if an ellipsoid is included in another. The S-procedure cannot be
used to assert if an intersection of ellipsoids is included in another ellipsoid. Also, the
presented problem is fundamentally different to the sphere/ellipsoid packing prob-
lem, as we are not interested in finding the maximum number of non-overlapping
spheres/ellipsoids which can be included in a given sphere/ellipsoid. In our case all
the geometrical objects (the balls) are fixed and given. We are just supposed to an-
swer with YES or NO to the question: ”is the intersection of the these given balls
included in this other ball?”. Here is is worth noting the work done in [6] which finds
the smallest ball enclosing an intersection of balls. This problem is somewhat similar
to ours as one would, in absence of other choices, propose an ”approximate” solution
to our problem by simply computing the smallest ball enclosing the intersection of
balls, then asserting if that is or not included in the bigger ball. Unfortunately, in [6]
the number of intersecting balls is required to be strictly smaller than the dimension
of the search space. Finally the work presented here [3] treats a slightly more general
problem to what we will be discussing in the next section, i.e maximizing a quadratic
function over an intersection of half spaces. However, we limit ourselves to analyzing
the simpler to understand problem of maximizing the distance to an external point
over an intersection of half spaces. The authors of [3] approach is to cover the search
space with ellipsoids then to maximize over each to finally obtain an approximation to
the initial problem. Unfortunately, covering the search space (or at least its frontier)
with small enough ellipsoids (as required by the precision requirements) requires an
exponential number of ellipsoids [2], so this approach does not seem to be able to
provide a polynomial complexity algorithm for arbitrary small tolerances.

Our approach is different to those presented above and focuses on solving a
non-smooth minimization problem.

Given R, r > 0, we consider the following sets:

B0 = B(c, r) =

{
x ∈ Rn

∣∣∣∣‖x− c‖2 ≤ r2} ,
Bk = B(ck, R) =

{
x ∈ Rn

∣∣∣∣‖x− ck‖ ≤ R2

}
,

C1 =

m⋂
k=1

Bk, C0 = B0 (2.3)
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. In order to solve the problem (2.2), we keep R fixed and design a test which can
assert if C1 ⊆ C0 for various values of r.

We start by defining the functions f, fk : Rn → R:

fk(x) = ‖x− ck‖2 −R2

f(x) = ‖x− c‖2 − r2 (2.4)

and the function Gk : Rn → R, given by

Gk(x) = fk(x)− f−(x) +

m∑
i=1,i6=k

f+i (x)

for k ∈ {1, ...,m}.

Remark 2.3. It can be seen that Gk is a convex function. First the “sum”–term∑m
i=1,i6=k f

+
i (x) is convex, since each term in the sum is convex. On the other hand,

the remaining term of Gk(x), namely fk(x)− f−(x), can be written as

fk(x)− f−(x) = fk(x)− f(x) + f(x)− f−(x) = fk(x)− f(x) + f+(x)

which is convex since it is the sum of the convex function f+(x) and the affine function
fk(x)− f(x) = ‖x− ck‖2 − ‖x− c‖2 −R2 + r2 = (c− ck)T · (2 · x− c− ck)−R2 + r2.

We take G(x) to be the maximum of Gk(x), when k ranges from 1 to m. That is,

G(x) = max

{
Gk(x)

∣∣∣∣k ∈ {1, . . . ,m}} = max
k=1,m

Gk(x)

Remark 2.4. We note that, since G : Rn → R is defined as the pointwise maximum
of the convex functions Gk : Rn → R, it follows that G is convex.

Finally we use x?, a global minimizer of G(x), i.e.,

x? ∈ argmin
x∈Rn

G(x) (2.5)

Before giving our main result, we present a few simple, but usefull lemmas.

Lemma 2.5. Let a, b ∈ Rn and r > 0 such that b 6∈ B(a, r). Then ∀x ∈ B(a, r) the
inequality

(x− b)T (a− b) > 0

holds.

Proof. Using the Euclidean norm properties over Rn, we write

‖x− a‖2 = ‖(x− b) + (b− a)‖2

= ‖x− b‖2 + ‖b− a‖2 − 2(x− b)T (a− b). (2.6)

For x ∈ B(a, r), b /∈ B(a, r), we have ‖x − a‖2 < r2 and ‖b − a‖2 ≥ r2. Combining
these together with ‖x− b‖2 ≥ 0 in (2.6), leads to (x− b)T (a− b) > 0 and concludes
the proof. �

Lemma 2.6. Let x ∈ C1, with C1 defined by (2.3). Then for y ∈ Rn such that d(y, C1) >
R one has

(x− y)T (ck − y) > 0, ∀k ∈ {1, . . . ,m}
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Proof. For x ∈ C1, one has d(x, ck) ≤ R and therefore ck ∈ B(x,R). From d(y, C1) >
R, it follows that d(x, y) > R, hence y 6∈ B(x,R). Applying 2.5, with a := x, b := y,
r := R, and x := ck, one obtains the desired conclusion. �

Lemma 2.7. Let z, y, c1, c2 ∈ Rn with ‖y − c1‖ = ‖y − c2‖. Assume, without loss of
generality, that ‖z − c1‖2 ≥ ‖z − c2‖2 then

‖y + t(z − y)− c1‖2 ≥ ‖y + t(z − y)− c2‖2, ∀t ≥ 0.

Proof. Let

h(t) = ‖y + t(z − y)− c1‖2 − ‖y + t(z − y)− c2‖2.
From the identity above, it can be seen that h(t) is a polynomial of degree at most
1 in t. Since ‖y − c1‖ = ‖y − c2‖ gives h(0) = 0 and ‖z − c1‖ ≥ ‖z − c2‖ gives
h(1) ≥ h(0) = 0, it follows that h(t) is a non-decreasing first order polynomial in t
and therefore

h(t) ≥ 0 = h(0), ∀t ≥ 0,

which completes the proof. �

Lemma 2.8. Let y, c1, . . . , cm ∈ Rn and v ∈ Rn such that ‖v‖ = 1. Let p ∈ {1, ...,m−1}
be such that

‖y − ci‖ = ‖y − cj‖ > ‖y − cl‖ (2.7)

for all i, j ∈ {1, . . . , p} and l ∈ {p+ 1, . . . ,m}. Then ∃kv ∈ {1, ..., p} and δv > 0 such
that for all i ∈ {1, . . . ,m} one has

‖y + tv − ckv‖ ≥ ‖y + tv − ci‖ ∀t ∈ (0, δv), (2.8)

which is stating that there is a small segment starting at y in the direction of v, such
that for all the points on this segment, ckv remains the furthest away. For the case
p = m, (2.8) holds without any additional requirements.

Proof. First, we consider the case p ∈ {1, ...,m− 1}. We define

ρ := ‖y − c1‖ = . . . = ‖y − cp‖.

Let δ > 0 and z ∈ B(y, δ). The triangle inequality gives

‖z − ck‖ ≥ ‖ck − y‖ − ‖z − y‖,
‖z − ci‖ ≤ ‖ci − y‖+ ‖z − y‖.

Using the above inequalities with arbitrary k ∈ {1, ..., p} and i ∈ {p+ 1, ...,m}, gives{
d(z, ck) ≥ ρ− δ,
d(z, ci) ≤ η + δ.

(2.9)

where η = ‖y − ci‖ < ‖y − ck‖ = ρ Following (2.9), we will pick δ > 0 such that
ρ−δ > η+δ. Since (2.7) implies ρ−η > 0, it follows that any δ ∈

(
0, ρ−η2

)
will satisfy

this requirement. Thus, for any δ ∈
(
0, ρ−η2

)
and any z ∈ B(y, δ), we have

d(z, ck) > d(z, ci) ∀k ∈ {1, . . . , p}, ∀i ∈ {p+ 1, . . . ,m}. (2.10)
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Let δv = δ
2 , z = y + δvv and kv ∈ argmax

k∈{1,...,p}
‖z − ck‖. For the points ck, k ∈ {1, ..., p},

we apply Lemma 2.7 to obtain

‖y + (tδv)v − ckv‖2 ≥ ‖y + (tδv)v − ck‖2, ∀t ≥ 0, ∀k ∈ {1, ..., p}. (2.11)

On the other hand, for the points ci, i ∈ {p + 1, ...,m} we let z := y + tv in (2.10)
which gives

‖y + tv − ckv‖2 > ‖y + tv − ci‖2 ∀i ∈ {p+ 1, ...,m}, ∀t ∈ (0, δv). (2.12)

Combining (2.11) and (2.12) leads to the desired conclusion (2.8). For the case p = m,
(2.8) follows immediately. �

The following theorem represents our main result. This is a localization result
for x? using the balls intersection denoted by C1 and the “outside” ball denoted C0.

Theorem 2.9. For R, C, C1 defined by (2.3), if d(C, C1) > R then

C1 \ int(C0) 6= ∅ ⇐⇒ x? ∈ C1 \ int(C0) (2.13)

where x? is defined by (2.5)

Proof. Clearly the implication x? ∈ C1 \ int(C0)⇒ C1 \ int(C0) 6= ∅ is trivial. We now
assume that C1 \ int(C0) 6= ∅ and first show that in such a case x? ∈ C1.

Indeed, for x 6∈ C1 (=
⋂m
k=1 Bk) i.e. it is not in the intersection of congruent

balls, follows that ‖x − ck‖ > R2 for some k ∈ {1, ...,m} or equivalently fk(x) > 0
for some k ∈ {1, ...,m}. From the definitions of f− and f+i , we have −f−(x) ≥ 0
and f+i (x) ≥ 0. Combining this with fk(x) > 0, leads to the fact that for x /∈ C1 we
have Gk(x) > 0, hence G(x) = maxk∈{1,...,m}Gk(x) > 0 as well. On the other hand if

x ∈ C1 \ int(C0), we have −f−(x) = 0, fk(x) ≤ 0, ∀k ∈ {1, ...,m}, implying G(x) ≤ 0
therefore x?, a minimizer of G, is not outside of C1 since there are ”better” points in
C1.

From the observations above, it follows that x? ∈ C1. Next, we will show that
x? /∈ int(C1 ∩ C0), leading to the desired conclusion. Let y ∈ int(C1 ∩ C0). It follows
that there exists δy > 0 such that B(y, δy) ⊆ int(C1 ∩ C0). We can assume without
loss of generality that ∃p ∈ {1, ...,m− 1} such that

‖y − c1‖ = ... = ‖y − cp‖ > ‖y − cl‖, ∀l ∈ {p+ 1, ...,m}.

This implies

G(y) = G1(y) = ... = Gp(y).

From Lemma 2.8 follows that ∀ v ∈ Rn with ‖v‖ = 1, ∃kv ∈ {1, ..., p} and δv > 0 such
that

G(y + tv) = Gkv (y + tv) ∀t ∈ [0, δv). (2.14)

Let δ := min{δy, δv}, v = y−c
‖y−c‖ and z = y + δ

2 . Clearly z ∈ int(C1 ∩ C0). Let

h(t) := G(y + tv), ∀t ∈ [0, δv). From (2.14), it follows that h(t) = Gkv (y + tv), or
equivalently

h(t) = r2 − ‖y − c+ tv‖2 + ‖y − ckv + tv‖2 −R2, ∀t ∈ [0, δv). (2.15)
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Differentiating (2.15) with respect to t gives

h′(t) = −(y − c+ tv)T v + (y − ckv + tv)T v

= −(ckv − c)T
y − c
‖y − c‖

. (2.16)

Since d(c, C1) > R, it follows from Lemma 2.6 and (2.16) that h′(t) < 0, ∀t ∈ [0, δv)
implying that h(t) is strictly decreasing. Therefore h(0) > h( δ2 ), which is equivalent

to G(z) < G(y), for z = y + δ
2v ∈ int(C0 ∩ C1). It follows that x? ∈ argmin G(x)

x∈Rn
/∈

int(C1 ∩ C0). Since C1 can be partitioned as

C1 = C1 \ C0 ∪ int(C1 ∩ C0) ∪ ∂(C1 ∩ C0)

and we showed that x? ∈ C1, x? /∈ int(C1 ∩ C0), we have

x? ∈ C1 \ C0 ∪ ∂(C1 ∩ C0)

⊆ C1 \ C0 ∪ ∂C0,

implying that x? ∈ C1 \ int(C0). This concludes our proof. �

2.3. Complexity Analysis

Theorem 2.9 allows one to solve (2.2) if d(c, C1) > R. Indeed, let x0 ∈ C1 (this
can be found initially by the use of Section 2.1 assuming that C1 6= ∅). Then one
can show that C1 ⊆ B(x0, 2R). Let r = R and r̄ = 2R + ‖x0 − c‖. It is obvious that
C1 \B(c, r) 6= ∅ and C1 \B(c, r̄) = ∅.

We can now search for r? ∈ [r, r̄] such that C1 \B(c, r?−ε) 6= ∅ and C1 \B(c, r?+
ε) = ∅ for some arbitrarily fixed precision ε > 0, using Theorem 2.9 and the bisection
algorithm.

From the computational complexity point of view, each bisection step involves
the application of Theorem 2.9 for some r ∈ [r, r̄]. For this, one has to solve (2.5) to find
x?. Once x? is found, asserting its membership to C1\B(c, r) involves computing m+1
distances in Rn, that is (m+1)n flops (for the square of the distances) and comparing
them to some real numbers, hence another m + 1 flops. Finally the computational
complexity analysis for each step is completed by analyzing the cost of finding x?. This
basically involves an unconstrained minimization of a continuous, non-differentiable
convex function. The starting point can be considered x0 and the search radius can
be taken 2R. There are various algorithms (of sub-gradient, [9] or ellipsoid type, [18])
which are known to have polynomial deterministic worst case complexity for such a
problem. Let Λ (a polynomial in n,m, log(R),− log(ε)) denote the number of floating
point operations required to solve (2.5). Then solving (2.2) requires

O
(

(Λ + (m+ 1) · n) · log2

(
R+ ‖X0 − C‖

ε

))
,

where ε > 0 is the precision used to find r?.
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3. Results regarding polytopes

In this section we tackle a similar problem as in the previous section but instead
of considering a finite intersection of balls, we will consider a polytope P (i.e a finite
intersection of half-spaces) and find a vertex that is the farthest away from a point of
the form c+αd with c, d ∈ Rn, for all sufficiently large values of the scalar α. Without
any restrictions on α this is also known to be an NP-hard problem, i.e maximizing
the distance to a point over a polytope, but under certain restrictions, we prove that
this problem can be reduced to a linear program over the polytope P.

Let A ∈ Rm×n, b ∈ Rm and P = {x ∈ Rn| Ax+ b ≤ 0} a given polytope (closed,

bounded polyhedral set). Let b = [b1, ..., bm]
T

and A(i,:), i = 1,m denote the rows of

the matrix A, viewed as column vectors, i.e., AT =
[
A(1,:), ..., A(m,:)

]
. In what follows,

we give several results related to polytopes.

Theorem 3.1. Let c, d ∈ Rn. Then there exists α0 ∈ R∗+ such that if v∗ is a vertex of
P, with v∗ ∈ argmaxx∈P ‖c+ α0d− x‖2, then

v∗ ∈ argmax
x∈P

‖c+ αd− x‖2 (3.1)

for all α ≥ α0.

Proof. Since we are maximizing a continuous function over the compact subset P of
Rn, the maximum is attained for any value of α. For an arbitrarly selected α, writing
(3.1) as a minimization problem, leads to a concave quadratic program (QP), which
is known to attain its minimum in a vertex of the polytope P (see for example [14]).
If v1, ..., vp are the vertices of the polytope P, it then follows that ∀α, ∃iα ∈ {1, ..., p}
such that

viα ∈ argmax
x∈P

‖c+ αd− x‖2.

Let α > 0 and α > α be such that

viα ∈ argmax
x∈P

‖c+ αd− x‖2 and viα /∈ argmax
x∈P

‖c+ αd− x‖2. (3.2)

If (3.2) does not hold, then the conclusion automatically follows, i.e 6 ∃ α > α such
that viα /∈ argmaxx∈P ‖c+ αd− x‖2, hence simply take α0 = α and v? = viα .

Otherwise, if (3.2) holds, then we show that

viα /∈ argmax
x∈P

‖c+ αd− x‖2, ∀α, α ≥ α, (3.3)

i.e., ∀α, α ≥ α, viα is not the vertex furthest away from c + αd. To see this, let
iα ∈ {1, ..., p} \ iα be such that

viα ∈ argmax
x∈P

‖c+ αd− x‖2.

Clearly, we have

‖c+ αd− viα‖ < ‖c+ αd− viα‖. (3.4)

We define

f(α) = ‖c+ αd− viα‖2 − ‖c+ αd− viα‖2.



242 Marius Costandin and Bogdan Gavrea

From (3.2) and (3.4), it follows that

f(α) ≥ 0 and f(α) < 0,

which together with α < α and the fact that f is affine, implies that f is a strictly
decreasing function of α. This leads to f(α) < f(α), ∀α > α, which implies (3.3).

To finish the proof, assume that the conclusion of the theorem does not hold.
This is to say that for any α0 > 0, there exists α1 > α0 such that

viα0
∈ argmax

x∈P
‖c+ α0d− x‖2 and viα0

/∈ argmax
x∈P

‖c+ α1d− x‖2.

According to what we have shown above, viα0
will never be the furthest point away

from c + αd for any α ≥ α1. We can repeat this reasoning now with α0 replaced
by α1 and iα0

replaced by iα1
∈ {1, .., p} \ iα0

. After p − 1 such repetitions, we are
exhausting all the vertices from the solution set, which is a contradiction to the fact
that the problem attains its maximum in a vertex for any value of α. �

The next result shows that the point v? of Theorem 3.1 can be found as the
solution of a linear program (LP), whenever the solution set of this LP is a singleton.

Theorem 3.2. Let P be a polytope, c ∈ Rn and d ∈ Rn with ‖d‖ = 1 such that

x? = argmin
x∈P

dTx

is unique. Let α0 and v? be given by Theorem 3.1, i.e.,

v? = argmax
x∈P

‖c+ αd− x‖2 = argmax
x∈P

‖c+ α0d− x‖2 ∀α ≥ α0

Then v? = x?.

Proof. To show that v? = x?, it is enough to prove that

(v?)
T
d ≤ xT d,∀x ∈ P. (3.5)

Now assume, that (3.5) does not hold. It follows that there exists x̃ ∈ P, such that

x̃T d < (v?)
T
d. Define f(α) = ‖c + αd − v?‖2 − ‖c + αd − x̃‖2. A simple calculation

leads to

f ′(α) = (x̃− v?)T d < 0,

implying that the linear function f(α) is decreasing and therefore lim
α→∞

f(α) = −∞.

The latter implies that there exists α1 > 0, such that f(α) < 0, ∀α ≥ α1 or equiva-
lently ‖c+ αd− v?‖2 < ‖c+ αd− x̃‖ , ∀α > α1, which is a contradiction to the way
v? is defined. Therefore v? must satisfy (3.5) or equivalently v? ∈ argmaxx∈P . Since
by assumption, the argmin–set is a singleton, we are led to v? = x?, which concludes
our proof. �
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4. Conclusion and future work

In this paper we have considered two known NP hard problems namely maxi-
mizing the distance to a reference point over (i) an intersection of balls and (ii) an
intersection of half-spaces. We have provided some particular cases of the above men-
tioned problems where algorithms of polynomial complexity exist. In both cases, our
restrictions are in the form of some relation between the given fixed reference point
and the set over which the maximum is searched for.

Consider the first problem (i): for a given finite intersection of equal radii balls,
one can choose the reference point anywhere in the Rn×1 to form a problem. Our
algorithm provides a P time solution to all these choices except for a finite measure
set ”near” the search space, that is, this paper does not offer guarantees for the
reference points whom distance to the search space is less than the radius of the
intersecting balls. It is not known if ”conquering” this last region is even possible, but
obviously reducing it might be the subject of future work. As a first improvement one
can try to provide an P time algorithm which allows the given reference point to be
anywhere outside of the convex hull of the centers of the intersecting balls.

The approach to the first problem is based on a novel feasibility criteria for the
intersection of convex sets which we apply to a non-convex optimization problem. The
restrictions we obtain, are sufficient to actually transform the non-convex problem in
a convex one.

The approach to the second problem, maximizing the distance to a point over a
polytope, is somehow inspired from the first problem, by observing that if the exterior
point is far enough, then in some situations the optimal point is actually obtained by
solving a linear program.
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