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A maximum theorem for generalized convex
functions

Zsolt Páles

Dedicated to the memory of Professors Gábor Kassay and Csaba Varga.

Abstract. Motivated by the Maximum Theorem for convex functions (in the set-
ting of linear spaces) and for subadditive functions (in the setting of Abelian
semigroups), we establish a Maximum Theorem for the class of generalized
convex functions, i.e., for functions f : X → R that satisfy the inequality
f(x◦y) ≤ pf(x)+ qf(y), where ◦ is a binary operation on X and p, q are positive
constants. As an application, we also obtain an extension of the Karush–Kuhn–
Tucker theorem for this class of functions.
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1. Introduction

In what follows, a linear space X always means a vector space over the field
of real numbers. If X is a topological linear space, then its (topological) dual space
is denoted by X∗. The Maximum Theorem for convex functions, which is due to
Dubovitskii and Milyutin (cf. [9]), can be stated as follows.

Theorem 1.1. Let X be a linear space, let D ⊆ X be a convex set and let f1, . . . , fn :
D → R be convex functions such that

0 ≤ max(f1(x), . . . , fn(x)) (x ∈ D).

Then there exist λ1, . . . , λn ≥ 0 with λ1 + · · ·+ λn = 1 such that

0 ≤ λ1f1(x) + · · ·+ λnfn(x) (x ∈ D).
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A standard application of the Maximum Theorem is to prove the subdifferential
formula for the pointwise maximum of convex functions, which was established by
Dubovitskii and Milyutin (see [9]). For the standard terminologies and notations, we
refer to the list of monographs in the list of references, where the reader can find
many more details and applications.

Theorem 1.2. Let X be a topological vector space, D ⊆ X be an open convex set, p ∈ D
and f1, . . . , fn : D → R be continuous convex functions with f1(p) = · · · = fn(p) and
define f := max(f1, . . . , fn). Then

∂f(p) = conv
(
∂f1(p) ∪ · · · ∪ ∂fn(p)

)
.

Proof. Using that f(p) = f1(p) = · · · = fn(p), for all h ∈ X, we obtain

f ′(p, h) : = lim
t→0+

f(p+ th)− f(p)

t

= lim
t→0+

max(f1(p+ th), . . . , fn(p+ th))− f(p)

t

= lim
t→0+

max

(
f1(p+ th)− f(p)

t
, . . . ,

fn(p+ th)− f(p)

t

)
= lim

t→0+
max

(
f1(p+ th)− f1(p)

t
, . . . ,

fn(p+ th)− fn(p)

t

)
= max

(
lim
t→0+

f1(p+ th)− f1(p)

t
, . . . , lim

t→0+

fn(p+ th)− fn(p)

t

)
= max(f ′1(p, h), . . . , f ′n(p, h)).

First assume that a continuous linear functional ϕ ∈ X∗ belongs to ∂f(p). Then, in
view of the above formula for directional derivatives, we get

ϕ(h) ≤ f ′(p, h) = max(f ′1(p, h), . . . , f ′n(p, h)) (h ∈ X).

This relation implies that

0 ≤ max(f ′1(p, h)− ϕ(h), . . . , f ′n(p, h)− ϕ(h)) (h ∈ X).

This inequality states that the maximum of the convex functions h 7→ f ′i(p, h)−ϕ(h)
is nonnegative. Thus, by the Maximum Theorem, there exist λ1, . . . , λn ≥ 0 with
λ1 + · · ·+ λn = 1 such that

0 ≤ λ1(f ′1(p, h)− ϕ(h)) + · · ·+ λn(f ′n(p, h)− ϕ(h)) (h ∈ X),

equivalently,

ϕ(h) ≤ λ1f ′1(p, h) + · · ·λnf ′n(p, h) = (λ1f1 + · · ·λnfn)′(p, h) (h ∈ X).

Using the so-called Sum Rule, we get

ϕ ∈ ∂(λ1f1 + · · ·λnfn)(p) = λ1∂f1(p) + · · ·+ λn∂fn(p)

⊆ conv
(
∂f1(p) ∪ · · · ∪ ∂fn(p)

)
.

The proof of the reversed inclusion is simpler, thus it is left to the reader. �
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Another motivation for this paper comes from the theory of subadditive functions
defined on Abelian semigroups. The following result was stated in the monograph [7]
of Fuchssteiner and Lusky.

Theorem 1.3. Let (X,+) be an Abelian semigroup and let f1, . . . , fn : X → R be
subadditive functions such that

0 ≤ max(f1(x), . . . , fn(x)) (x ∈ X).

Then there exist λ1, . . . , λn ≥ 0 with λ1 + · · ·+ λn = 1 such that

0 ≤ λ1f1(x) + · · ·+ λnfn(x) (x ∈ X).

This result has beautiful applications in the book [7], for instance, the
Phragmen–Lindelöf Principle and the Hadamard Three Circle Theorem (both results
belong to the theory of complex functions) can elegantly be verified in terms of them.

2. The general maximum problem

The two Maximum Theorems described in the Introduction motivate the follow-
ing definition.

Definition 2.1. Let X be a nonempty set. A family F ⊆ {f : X → R} is said to have
the discrete maximum property if

f1, . . . , fn ∈ F , 0 ≤ max(f1(x), . . . , fn(x)) (x ∈ X)

implies that there exist (λ1, . . . , λn) ∈ Sn such that

0 ≤ λ1f1(x) + · · ·+ λnfn(x) (x ∈ X).

Here, for convenience, Sn denotes the (n− 1)-dimensional simplex

{(λ1, . . . , λn) ∈ Rn | λ1, . . . , λn ≥ 0, λ1 + · · ·+ λn = 1}.

If X has at least two elements, then the set of all functions F := {f : X → R}
does not have the discrete maximum property. Indeed, Let {A1, A2} be a partition
of X and fi(x) := 0 if x ∈ Ai, fi(x) := −1 if x 6∈ Ai. Then max(f1, f2) = 0, but
λf1 + (1 − λ)f2 < 0 for all λ ∈ [0, 1]. This example shows that, in order to possess
the discrete maximum property, the family F ⊆ {f : X → R} must satisfy some
additional nontrivial conditions.

In the next result we characterize the situation when a finite family of given
functions possess a nonnegative convex combination.

Theorem 2.2. Let X be nonempty and f1, . . . , fn : X → R. Then there exists
(λ1, . . . , λn) ∈ Sn such that

0 ≤ λ1f1(x) + · · ·+ λnfn(x) (x ∈ X) (2.1)

if and only if

0 ≤ max
i∈{1,...,n}

(
t1fi(x1) + · · ·+ tnfi(xn)

)
(x1, . . . , xn ∈ X, (t1, . . . , tn) ∈ Sn). (2.2)
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Proof. Assume first that (2.1) holds for some λ ∈ Sn. To verify the necessity of
(2.2), let x1, . . . , xn ∈ X and (t1, . . . , tn) ∈ Sn be arbitrary. Then, using (2.1) for
x ∈ {x1, . . . , xn}, we get

0 ≤
n∑

j=1

tj
(
λ1f1(xj) + · · ·+ λnfn(xj)

)
=

n∑
i=1

λi
(
t1fi(x1) + · · ·+ tnfi(xn)

)
≤ max

i∈{1,...,n}

(
t1fi(x1) + · · ·+ tnfi(xn)

)
.

This shows the necessity of condition (2.2).
Now assume that (2.2) holds and, for x ∈ X, define the set Λx ⊆ Sn by

Λx :=
{

(λ1, . . . , λn) ∈ Sn | 0 ≤ λ1f1(x) + · · ·+ λnfn(x)
}
. (2.3)

The inequality (2.1) is now equivalent to the condition⋂
x∈X

Λx 6= ∅, (2.4)

because every element λ of the above intersection will satisfy (2.1). It easily follows
from the definition that Λx is a compact convex subset of the (n − 1)-dimensional
affine space

{(λ1, . . . , λn) ∈ Rn | λ1 + · · ·+ λn = 1}.
Therefore, according to Helly’s Theorem, the condition (2.4) is satisfied if and only
every n-member subfamily of {Λx | x ∈ X} has a nonempty intersection. To verify
this, let x1, . . . .xn ∈ X be fixed arbitrarily. According to inequality (2.2), the pointwise
maximum of the convex functions

Sn 3 (t1, . . . , tn) 7→ t1fi(x1) + · · ·+ tnfi(xn)

is nonnegative over Sn.
Therefore, in view of Theorem 1.1, there exists (λ1, . . . , λn) ∈ Sn such that

0 ≤
n∑

i=1

λi
(
t1fi(x1) + · · ·+ tnfi(xn)

)
=

n∑
j=1

tj
(
λ1f1(xj) + · · ·+ λnfn(xj)

)
((t1, . . . , tn) ∈ Sn).

If i ∈ {1, . . . , n}, then substituting (t1, . . . , tn) := (δi,j)
n
j=1 into the above inequality,

we get that

λ1f1(xi) + · · ·+ λnfn(xi) (i ∈ {1, . . . , n}).
This shows that λ ∈ Λx1

∩ · · · ∩Λxn
, proving that this intersection is nonempty, as it

was desired. �

In the case n = 2, the above theorem immediately implies the following statement.
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Corollary 2.3. Let X be a nonempty set and f, g : X → R. Then there exists λ ∈ [0, 1]
such that

0 ≤ λf(x) + (1− λ)g(x) (x ∈ X) (2.5)

if and only if

0 ≤ max
(
tf(x) + (1− t)f(y), tg(x) + (1− t)g(y)

)
(x, y ∈ X, t ∈ [0, 1]). (2.6)

3. Generalized convexity

The general convexity property that we introduce below is going to play an
important role in the sequel.

Definition 3.1. Let X be a nonempty set, ◦ : X × X → X be a binary operation,
p, q > 0 be constants. A function f : X → R is called (◦, p, q)-convex if

f(x ◦ y) ≤ pf(x) + qf(y) (x, y ∈ X).

Trivially, if X is a convex subset of a linear space, p = q = 1
2 , and x ◦ y = x+y

2 ,
then f is (◦, p, q)-convex if and only if f is Jensen convex. On the other hand, if X is
an Abelian semigroup, p = q = 1, and x ◦ y = x+ y, then f is (◦, p, q)-convex if and
only if f is subadditive.

The proof of the following assertion is elementary, therefore it is omitted.

Theorem 3.2. The family of (◦, p, q)-convex functions is closed with respect to addition,
multiplication by positive scalars and pointwise maximum.

The main result of this paper is stated in the following theorem.

Theorem 3.3. Let X be a nonempty set, ◦ : X ×X → X be a binary operation, and
p, q > 0 be constants. Let f1, . . . , fn : X → R be (◦, p, q)-convex functions such that

0 ≤ max(f1(x), . . . , fn(x)) (x ∈ X).

Then there exist λ1, . . . , λn ≥ 0 with λ1 + · · ·+ λn = 1 such that

0 ≤ λ1f1(x) + · · ·+ λnfn(x) (x ∈ X).

The following auxiliary result establishes the key tool for the proof of Theorem 3.3.

Lemma 3.4. Let X be a nonempty set, ◦ : X × X → X be a binary operation, and
p, q > 0 be constants. Let

S :=
{ a

a+ b

∣∣∣There is an operation ∗ : X ×X → X such that

every (◦, p, q)-convex function is (∗, a, b)-convex.
}

Then 1− S ⊆ S and S is dense multiplicative subsemigroup of [0, 1].

Proof. If s ∈ S, then there exists an operation ∗ : X ×X → X and a, b > 0 such that
s = a

a+b and f is (∗, a, b)-convex, i.e.,

f(x ∗ y) ≤ af(x) + bf(y) (x, y ∈ X).

Thus, interchanging the roles of x and y, we get

f(y ∗ x) ≤ bf(x) + af(y) (x, y ∈ X),
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which means that f is (∗′, b, a)-convex, where x∗′y := y∗x. Therefore 1−s = b
a+b ∈ S,

which shows that 1− S ⊆ S.
Additionally, let t ∈ S be arbitrary.
Then there exists a binary operation · : X ×X → X and c, d > 0 such that t = c

c+d

and f is also (·, c, d)-convex, i.e.,

f(x · y) ≤ cf(x) + df(y) (x, y ∈ X).

Using the (·, c, d)- and the (∗, a, b)-convexity of f (twice), for all x, y ∈ X, we obtain

f((x ∗ y) · (y ∗ y)) ≤ cf(x ∗ y) + df(y ∗ y)

≤ c(af(x) + bf(y)) + d(af(y) + bf(y))

= acf(x) + (bc+ ad+ bd)f(y).

This implies that f is (�, ac, bc + ad + bd)-convex, where x � y := (x ∗ y) · (y ∗ y).
Therefore,

st =
ac

ac+ bc+ ad+ bd
∈ S,

which proves that S is closed with respect to multiplication.
By induction, it follows that

sn ∈ S (s ∈ S, n ∈ N). (3.7)

The assumption that f is (◦, p, q)-convex implies that S∩ ]0, 1[ 6= ∅. Therefore, (3.7)
yields that inf S = 0. Using the inclusion 1− S ⊆ S, we can see that supS = 1.
Finally, to prove the density of S in [0, 1], let 0 < a < b < 1 be arbitrary. By supS = 1,

we can choose s ∈ S so that
a

b
< s < 1. Then, for some n ∈ N, (in particular, with

n :=
⌊ log(a)
log(s)

⌋
), we have sn ∈ [a, b], which implies that S ∩ [a, b] is nonempty. �

In the next result, we verify the Maximum Theorem for two functions.

Theorem 3.5. Let X be a nonempty set, ◦ : X ×X → X be a binary operation, and
p, q > 0 be constants. If f, g : X → R are (◦, p, q)-convex functions satisfying

0 ≤ max(f(x), g(x)) (x ∈ X), (3.8)

then there exists λ ∈ [0, 1] such that (2.5) holds true.

Proof. First we show that f and g satisfy the inequality (2.6). To verify this, let
x, y ∈ X and let s ∈ S (where the set S was defined in Lemma 3.4.) Then there exist
a binary operation ∗ : X × X → X and constans a, b > 0 such that the (◦, p, q)-
convexity of f and g implies the (∗, a, b)-convexity of them. Thus, by the maximum
inequality (3.8) at x ∗ y, we get

0 ≤ max(f(x ∗ y), g(x ∗ y)) ≤ max(af(x) + bf(y), ag(x) + bg(y)).

Therefore

0 ≤ max
( a

a+ b
f(x) +

b

a+ b
f(y),

a

a+ b
g(x) +

b

a+ b
g(y)

)
,

and hence
0 ≤ max

(
sf(x) + (1− s)f(y), sg(x) + (1− s)g(y)

)
.
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Because s ∈ S was arbitrary and S is dense in [0, 1] (according to Lemma 3.4), we
can conclude that (2.6) is satisfied for all t ∈ [0, 1].
Having proved that (2.6) is valid, in view of Corollary 2.3, it follows that there exists
λ ∈ [0, 1] such that (2.5) holds. �

Proof of the discrete Maximum Theorem. The statement is trivial for n = 1 and it
has been proved for n = 2. Assume its validity for some n ≥ 2. Let f0, f1, . . . , fn be
(◦, p, q)-convex functions such that

0 ≤ max(f0(x), f1(x), . . . , fn(x)) (x ∈ X).

Let g(x) := max(f1(x), . . . , fn(x)). Then, by Theorem 3.2, we have that g is (◦, p, q)-
convex and

0 ≤ max(f0(x), g(x)) (x ∈ X).

Using now Theorem 3.5, we obtain the existence of λ ∈ [0, 1] such that

0 ≤ λf0(x) + (1− λ)g(x)

= max
(
λf0(x) + (1− λ)f1(x), . . . , λf0(x) + (1− λ)fn(x)

)
(x ∈ X).

By the inductive assumption, there exists (λ1, . . . , λn) ∈ Sn such that

0 ≤ λ1
(
λf0(x) + (1− λ)f1(x)

)
+ · · ·+ λn

(
λf0(x) + (1− λ)fn(x)

)
= λf0(x) + λ1(1− λ)f1(x) + · · ·+ λn(1− λ)fn(x) (x ∈ X),

which proves the statement for (n+ 1) functions. �

4. An application

In the subsequent result we establish an extension of the Karush–Kuhn–Tucker
Theorem.

Theorem 4.1. Let X be a nonempty set, ◦ : X ×X → X be a binary operation, and
p, q > 0 be constants. Let f0, f1, . . . , fn : X → R be (◦, p, q)-convex functions and
assume that f0(x0) = 0 and x0 ∈ X is a solution of the constrained optimization
problem

Minimize f0(x) subject to f1(x), . . . , fn(x) ≤ 0. (4.9)

Then there exist (λ0, λ1, . . . , λn) ∈ Sn+1 such that

λ1f1(x0) = · · · = λ1f1(x0) = 0 (4.10)

and
0 ≤ λ0f0(x) + λ1f1(x) + · · ·+ λnfn(x) (x ∈ X). (4.11)

Conversely, if conditions (4.10) and (4.11) hold for some (λ0, λ1, . . . , λn) ∈ Sn+1 with
λ0 > 0, then x0 is a solution of the optimization problem (4.9).

Proof. If x0 is a solution of the optimization problem then, for all x ∈ X, the inequal-
ities

f0(x) < f0(x0) = 0 and f1(x), . . . , fn(x) ≤ 0

cannot hold simultaneously. Hence

0 ≤ max(f0(x), f1(x), . . . , fn(x)) (x ∈ X).
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Therefore, in view of Theorem 3.3, there exist (λ0, λ1, . . . , λn) ∈ Sn+1 such that (4.11)
holds.
Being a solution to (4.9), x0 is admissible for the optimization problem, that is, we
have that f1(x0), . . . , fn(x0) ≤ 0. Hence

0 ≤ λ0f0(x0) + λ1f1(x0) + · · ·+ λnfn(x0) = λ1f1(x0) + · · ·+ λnfn(x0) ≤ 0.

The terms in the last sum are nonpositive, therefore, the only way this sum can be
zero is that it is zero termwise. Hence the transversality condition (4.10) is also true.
To prove the reversed statement, assume that (4.10) and (4.11) hold for some
(λ0, λ1, . . . , λn) ∈ Sn+1 with λ0 > 0. Let x ∈ X be an admissible point with re-
spect to problem (4.9), i.e., assume that f1(x0), . . . , fn(x0) ≤ 0. Then, by (4.10) and
(4.11), we get

λ0f0(x0) = λ0f0(x0) + λ1f1(x0) + · · ·+ λnfn(x0)

= 0 ≤ λ0f0(x) + λ1f1(x) + · · ·+ λnfn(x) ≤ λ0f0(x),

which, using that λ0 > 0, implies f0(x0) ≤ f0(x), and proves the minimality of x0. �
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