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Abstract. In this work we first consider a certain monotonicity relative to some
given one-to-one operator and prove the counterparts, adjusted to this new con-
text, of most results obtained before in the joint work with G. Kassay [10]. For
two operators with the same status relative to injectivity, such as two local in-
jective operators, we define what we call mutual h-monotonicity and prove that
every two mutual h-monotone local diffeomorphisms can be obtained from each
other via a composition with a h-monotone diffeomorphism.
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1. Introduction

The importance of the Minty-Browder monotonicity stands in its applications
to the theory of partial differential equations (see for example [2, 3, 4],[13, 14]) and
in its connection with convex analysis, due to the characterization ofconvexity, within
the class of semicontinuous functions, through the Minty-Browder monotonicity of
the subdifferential operator (see for instance [6]). In the previous joint work with G.
Kassay ([10]) we extended the class of Minty-Browder monotone operators to the
class of h-monotone operators. While the inverse images of maximal Minty-Browder
monotone operators are well-known to be convex sets [16, p. 105], we only proved in
[10] that the inverse images of such operators, with finite dimensional source space,
are indivisible by closed connected hypersurfaces. In a joint work with G. Kassay
and F. Szenkowitz [11] we provided an elementary proof for the convexity of inverse
images of Minty-Browder monotone operators. The lack of divisibility of the inverse
images of the h-monotone operators through closed connected hypersurfaces allowed
us to establish some global injectivity results.
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In this work we first consider a certain monotonicity concept relative to some
given one-to-one operator. Note that the Minty-Browder monotonicity as well as the
h-monotonicity are particular notions of this relative monotonicity. Indeed, the role of
the given operator in the definitions of Minty-Browder monotonicity and in that of h-
monotone operators is played by the identity operator. We also prove the counterparts,
adjusted to this new context, of most results obtained before in [10]. For two operators
with the same status relative to injectivity, such as two local injective operators,
we define what we call mutual h-monotonicity and prove that every two mutual h-
monotone local diffeomorphisms can be obtained from each other via a composition
with a h-monotone diffeomorphism. As a consequence we observe that two mutual
h-monotone local diffeomorphisms have the same valence and provide some examples
of h-monotone operators relative to the gradient operator of some strictly convex
functions.

2. h-monotonicity relative to an injective operator

In this section we first emphasize some geometrical properties of the Minty-
Browder monotone operators which suggest an interesting enlargement of this class.

Let Sn ⊆ Rn+1 be the unit sphere and d
Sn : Sn × Sn −→ R+ be the metric

associated to the Riemann structure of Sn, i.e., d
Sn (x, y) = arccos〈x, y〉, x, y ∈ Sn is

the measure of the angle between the vectors x and y. Note that 0 ≤ d
Sn ≤ π. Denote

by pr
Sn the radial projection

Rn+1 \ {0} −→ Sn, z 7−→ z

||z||
.

The next important geometric characterizations of Minty-Browder monotonicity allow
us to enlarge this class.

Let D be a subset of Rn+1. The following statements hold:

1. T : D −→ Rn+1 is a Minty-Browder increasing operator if and only if

d
Sn (pr

Sn (x− y), pr
Sn (Tx− Ty)) ≤ π

2

for all x, y ∈ D, Tx 6= Ty.
2. T : D −→ Rn+1is a Minty-Browder decreasing operator if and only if

d
Sn (pr

Sn (x− y), pr
Sn (Tx− Ty)) ≥ π

2

for all (x, y) ∈ (D ×D) \ kerT .

Indeed, the stated facts follow from the following obvious relation

〈x− y, Tx− Ty〉
||x− y|| · ||Tx− Ty||

= cos[d
Sn (pr

Sn (x− y), pr
Sn (Tx− Ty))].

Taking into account the characterizations above, a natural extension of monotonicity
occurs. Recall that 0 ≤ d

Sn ≤ π for any x, y ∈ Sn.

Definition 2.1. Let T : D −→ Rn+1 be a given operator, where D is a subset of Rn+1.
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1. T is said to be h-increasing if d
Sn (pr

Sn (x − y), pr
Sn (Tx − Ty)) < π for all

(x, y) ∈ (D ×D) \ kerT .
2. T is said to be h-decreasing if d

Sn (pr
Sn (x − y), pr

Sn (Tx − Ty)) > 0 for all
(x, y) ∈ (D ×D) \ kerT .

3. T is said to be h-monotone if T is either h-increasing or T is h-decreasing.

Remark 2.2. Let T : Rn+1 −→ Rn+1 be a linear isometry.

1. T is h-increasing if and only if −1 6∈ Spec(A).
2. T is h-decreasing if and only if 1 6∈ Spec(A).

Indeed, if T is not h-increasing, then d
Sn (pr

Sn (x− y), pr
Sn (Tx− Ty)) = π for some

(x, y) ∈ (D ×D) \ kerT , i.e.

Tx− Ty
‖Tx− Ty‖

= −
x− y
‖x− y‖

⇔ T (x− y) = −(x− y)⇒ −1 ∈ Spec(T ).

Conversely, if −1 ∈ Spec(T ), then Tx = −x for some x 6= 0, i.e.

Tx

‖x‖
= −

x

‖x‖
⇔

Tx− To
‖Tx− T0‖

= −
x− 0

‖x− 0‖
⇔ d

Sn (pr
Sn (x− 0), pr

Sn (Tx− T0)) = π

which shows that T is not h-increasing. The statement (1) can be similarly proved.

Remark 2.3. The vector-valued function T : D −→ Rn+1 is h-monotone but not
Minty-Browder monotone whenever −1 < iT < 0, where iT stands for

inf

{
〈Tx− Ty, x− y〉
‖Tx− Ty‖ · ‖x− y‖

| (x, y) ∈ D ×D \ kerT

}
.

Several estimates of some parameters of monotonicity of type iT are provided in [12].

Definition 2.4. Let T,A : D −→ Rn+1 be given operators with A injective, where D
is a subset of Rn+1.

1. T is said to be h-increasing relative to A or simply A-increasing if

d
Sn (pr

Sn (Ax−Ay), pr
Sn (Tx− Ty)) < π,∀(x, y) ∈ (D ×D) \ kerT.

2. T is said to be h-decreasing relative to A or simply A-decreasing if

d
Sn (pr

Sn (Ax−Ay), pr
Sn (Tx− Ty)) > 0,∀(x, y) ∈ (D ×D) \ kerT.

3. T is said to be h-monotone relative to A or simply A-monotone if T is either
A-increasing or T is A-decreasing.

Remark 2.5. Analyzing Definition 2.1, the next (geometric) interpretations become
obvious.

1. T is A-increasing if and only if

Tx− Ty
||Tx− Ty||

6= Ay −Ax
||Ay −Ax||

,

for all (x, y) ∈ (D ×D) \ kerT .
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2. T is A-decreasing if and only if

Tx− Ty
||Tx− Ty||

6= Ax−Ay
||Ay −Ax||

,

for all (x, y) ∈ (D × D) \ kerT . In other words, for A-increasing operators,
the action represented by Figure 1(a) is not allowed, while for A-decreasing
operators, the action represented by Figure 1(b) is not allowed.
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Figure 1. Actions not allowed for A-increasing/decreasing operators

3. T is A-increasing if and only if

〈Tx− Ty,Ax−Ay〉 > −‖Tx− Ty‖ · ‖Ax−Ay‖,∀(x, y) ∈ (D ×D) \ kerT.

4. T is A-decreasing if and only if

〈Tx− Ty,Ax−Ay〉 < ‖Tx− Ty‖ · ‖Ax−Ay‖,∀(x, y) ∈ (D ×D) \ kerT.

5. T is A-increasing and A-decreasing if and only if

|〈Tx− Ty,Ax−Ay〉| < ‖Tx− Ty‖ · ‖Ax−Ay‖,∀x, y ∈ (D ×D) \ ker(T ).

6. If T is h-increasing/decreasing, then T ◦A is A-increasing/decreasing.
7. Let A : D −→ Rn+1 be an injective local homeomorphism/diffeomorphism, i.e.

the range of A is open as well as the restriction and the corestriction

D −→ Im(A), x 7→ Ax

is a homeomorphism/diffeomorphism still denoted by A. Then T is A-
increasing/decreasing if and only if the composition T ◦ A−1 : A(D) −→ Rn+1

is h-increasing/decreasing.
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8. The h-increasing/decreasing monotonicity coincides with the iD-increasing/de-
creasing monotonicity, where iD : D ↪→ Rn+1 stands for the inclusion operator.

9. If D ⊆ Rn+1 is a convex open set and f : D −→ R is a strictly convex function
whose convexity is ensured by the everywhere positive definiteness of its Hessian
matrix, then its gradient is an injective local diffeomorphism.

Remark 2.6. In the Definition 2.4 and in Remark 2.5, the role of the injective operator
A can be taken over by a (possibly non-injective) local diffeomorphism which we could
still denote by A. Thus, we obtain the definition and equivalent forms of monotonicity
with respect to (possibly non-injective) local diffeomorphisms.

The increasingA-monotonicity allows the angles between the vectors Tx−Ty and
Ax−Ay to exceed π/2 and approach π arbitrarily close for (x, y) ∈ (D×D) \ker(T ),
although the upper bound π is never reached by these angles in the case of increasing
A-monotone operators. The classes of (A, η)-increasing and (A, η)-decreasing opera-
tors η ∈ (−1, 1) can still be defined by means of these angles which are not allowed
to exceed the upper bound arccos η, i.e.

〈Tx− Ty,Ax−Ay〉 ≥ η‖Tx− Ty‖ · ‖Ax−Ay‖, ∀x, y ∈ D

for the increasing option and they are not allowed to decrease under the lower bound
arccos η for the decreasing option, i.e.

〈Tx− Ty,Ax−Ay〉 ≤ η‖Tx− Ty‖ · ‖Ax−Ay‖, ∀x, y ∈ D.

For η = 0 we call the first type of operators A-Minty-Browder increasing (or shortly
A−M−B-increasing operators) and the second type A-Minty-Browder decreasing op-
erators (or shortly A−M−B-decreasing operators). These angles are therefore allowed
to exceed π/2 when η ∈ (−1, 0), for the increasing option, but not to approach π arbi-
trarily close. This ensure, for the class of (A, η)-increasing operators when η ∈ (−1, 0),
the status of intermediate class between the class of A-Minty-Browder increasing op-
erators and the class of h-increasing operators. If, on the contrary η ∈ [0, 1), then the
class of η-monotone operators is contained in the class of A-Minty-Browder operators.
A similar discussion can be done for decreasing operators. The η-increasing/decreasing
monotonicity corresponds to the (iD, η)-increasing/decreasing monotonicity, where
iD : D ↪→ Rn+1 stands for the inclusion. (see [12]).

Remark 2.7. Another direction in which the A-monotonicity can be extended, due to
the Remarks 2.5[(1)-(4)], is for operators T : D −→ H, where (H, 〈·, ·〉) is a Hilbert
space, D ⊆ H is an open set and A : D −→ H is injective. This is also the case for
(A, η)-monotonicity.

Remark 2.8. Let T : D −→ H be a given operator. If A : H −→ H is a linear
isomorphism, then the A-Minty-Browder increasing/decreasing monotonicity of T is
equivalent with the Minty-Browder increasing/decreasing monotonicity of A∗ ◦ T .

Remark 2.9. 1. Let A : H −→ H be a linear unitary automorphism, i.e. A is an
isometric linear automorphism. Then T is

(
A
∣∣
D
, η
)
-increasing/decreasing if and

only if A∗ ◦ T is η-increasing/decreasing.
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2. If A : H −→ H is a linear unitary automorphism, then T is A
∣∣
D

-increasing/de-

creasing if and only if A∗ ◦ T is h-increasing/decreasing.
3. If A : D −→ H be an injective operator, then T is

(
A
∣∣
D
, η
)
-increasing/decreasing

if and only if T ◦A−1 is η-increasing/decreasing.

Proposition 2.10. Let (H, 〈·, ·〉) be a Hilbert space and D ⊆ H be an open set. Let
also T : D −→ H be a given operator and let A : H −→ H be a bounded linear
isomorphism such that bA∗ := inf{‖A∗z‖ : ‖z‖ = 1} > 0. If −bA∗ < ηaA ≤ 0 and T
is (A, η)-increasing, then A∗ ◦ T is (ηaA)/bA∗-increasing, where aA stands for ‖A‖.
If 0 ≤ ηaA < bA∗ and T is (A, η)-decreasing, then A∗ ◦ T is (ηaA)/bA∗-decreasing.

Proof. Assume that T is (A, η)-increasing for η ∈ (−1, 0), i.e. we have

〈Tx− Ty,Ax−Ay〉 ≥ η‖Tx− Ty‖ · ‖Ax−Ay‖ ⇐⇒
〈(A∗ ◦ T )x− (A∗ ◦ T )y, x− y〉 ≥ η‖Tx− Ty‖ · ‖Ax−Ay‖, ∀x, y ∈ D.

Therefore, for x, y ∈ D, x 6= y, we have

(A∗ ◦ T )x− (A∗ ◦ T )y, x− y〉 ≥ η‖Tx− Ty‖ · ‖x− y‖
‖Ax−Ay‖
‖x− y‖

= η‖A∗(Tx)−A∗(Ty)‖
1∥∥∥∥∥A∗

(
Tx− Ty
‖Tx− Ty‖

)∥∥∥∥∥
· ‖x− y‖ ·

∥∥∥∥∥A
(

x− y
‖x− y‖

)∥∥∥∥∥

≥ η

 sup
‖z‖=1

‖Az‖

inf
‖z‖=1

‖A∗z‖

 ‖(A∗ ◦ T )x− (A∗ ◦ T )y‖ · ‖x− y‖

=
ηaA

bA∗
· ‖(A∗ ◦ T )x− (A∗ ◦ T )y‖ · ‖x− y‖

and the proof of the first statement is now complete. The second statement can be
similarly proved. �

Corollary 2.11. Let D ⊆ Rn+1 be an open set, let T : Rn+1 → Rn+1 and A : Rn+1 →
Rn+1 be a linear isomorphism. If −bA∗ < ηaA ≤ 0 and T is (A, η)-increasing, then
A∗ ◦ T is (ηaA)/bA∗-increasing. If 0 ≤ ηaA < bA∗ and T is (A, η)-decreasing, then
A∗ ◦ T is (ηaA)/bA∗-decreasing.

Remark 2.12. The gradients of strictly convex functions whose strict convexity is
ensured by the everywhere positive definiteness of the Hessian matrix are good can-
didates to play the role of the injective operator A. Indeed, the gradient of such a
function defined on a convex open subset D of Rn is injective, as the everywhere
positive definiteness of the Hessian matrix is equivalent with the everywhere positive
definiteness the Fréchet differentials of the gradient. In fact the Jacobian matrix of the
gradient of such a C2-smooth function is precisely the Hessian matrix of that function.
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In fact the h-monotonicity of a certain operator coincides with its ∇f -monotonicity,
where f : D ⊆ Rn −→ R is the strictly convex function given by

f(x) =
1

2
‖x‖2.

Proposition 2.13. Let T,A : D −→ Rn+1 be given operators with A injective, where
D is a subset of Rn+1. The operator T + A is A-increasing and A-decreasing if and
only if T is A-increasing and A-decreasing.

Proof. Indeed,

〈Tx+Ax− Ty −Ay,Ax−Ay〉2 =
(
‖Ax−Ay‖2 + 〈Tx− Ty,Ax−Ay〉

)2
= ‖Ax−Ay‖4 + 2‖Ax−Ay‖2〈Tx− Ty,Ax−Ay〉+ 〈Tx− Ty,Ax−Ay〉2.

and

‖Tx+Ax− Ty −Ay‖2 · ‖Ax−Ay‖2 = ‖Tx− Ty +Ax−Ay‖2 · ‖Ax−Ay‖2

=
(
‖Ax−Ay‖2 + 2〈Tx− Ty,Ax−Ay〉+ ‖Tx− Ty‖2

)
· ‖Ax−Ay‖2

= ‖Ax−Ay‖4 + 2‖Ax−Ay‖2〈Tx− Ty,Ax−Ay〉+ ‖Tx− Ty‖2‖Ax−Ay‖2.

The statement follows easily by using Remark 2.5(5). �

Corollary 2.14. Let D ⊆ Rn+1 be a convex open set and f : D −→ R be a C2-
smooth strictly convex function whose convexity is ensured by the everywhere positive
definiteness of its Hessian matrix. The operator T + ∇f is ∇f -increasing and ∇f -
decreasing if and only if T : D −→ Rn+1 is ∇f -increasing and ∇f -decreasing.

3. On the degree of some spherical projections

Since in our study on h-monotone operators the degree of differentiable maps
plays an important role, in this section we discuss some of its properties. In this
respect we first recall the notions of critical/regular points and critical/regular values.

Let M,N be differential manifolds and f : M → N be a differentiable mapping.
We first define the rank of f at a point p ∈M as rankpf := rank(df)p = dim[Im(df)p,
where (df)p : Tp(M) −→ Tf(p)(N) is the differential (or tangent map) of f at p, and
observe that rank

p
f ≤ min{m,n}, where m = dim(M) and n = dim(N). The point

p ∈ M is called a regular point of f if rank
p
f = min {m,n} and it is called critical

point of f if rankpf < min{m,n}. One can immediately observe that the set R(f)
of all regular points of f is open while the set C(f) := M\R(f) of all critical points
of f is closed. A value y ∈ f(C(f)) =: B(f) is called critical value of f , and a point
q ∈ N\B(f) is called regular value of f .

If m = n, then a point x ∈M is a regular point of f : M −→ N if and only if f
is a local diffeomorphism at x. Consequently the preimage f−1(y) of a regular value
y of f is discrete. If f is additionally proper (i.e. the inverse images of compact sets
are compact), then the preimage f−1(y) of such a regular value is finite.

If H ⊂ Rn+1 is a hypersurface, i.e. an n-dimensional submanifold, and
p ∈ H, then denote by Tp(H) the collection of all tangent vectors γ′(0), where
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γ : (−ε, ε) −→ H is a parameterized differentiable curve such that γ(0) = p and recall
that Tp(H) is an n-dimensional vector subspace of Rn+1. Denote by iH : H ↪→ Rn+1

the inclusion mapping and recall that two hyperplanes of Rn+1 are orthogonal if their
normal vectors are orthogonal. A compact hypersurface of Rn+1 without boundary
(in the sense of manifold theory) will be called closed hypersurface.

If M,N are compact connected oriented n-dimensional manifolds, f : M −→ N is a
differentiable map and y ∈ N is a regular value of f , then

degy(f) :=


∑

x∈f−1(y)

εx if f−1(y) 6= ∅

0 if f−1(y) = ∅,

where

εx :=

{
1 if (df)x preserves the orientation
−1 if (df)x reverses the orientation.

In fact degy(f) does not depend on y and is called the degree of f , being simply
denoted by deg(f) (see [1], pp. 253]). If f is not onto, observe that deg(f) = 0, since
every y ∈ N \ Im(f) is a regular value of f . On the other hand, one can show that
deg is invariant on differential homotopy classes of maps from M to N . Since every
continuous homotopy class of maps from M to N contains a differentiable map, the
notion of degree can be extended to the class of all continuous maps and its invariance
on continuous homotopy classes is part of the extension procedure. For more details
the reader could consult [8], pp. 165, 166, 21-221]. A different approach of degree
theory for continuous maps appears in [7], pp. 62-65, 266-271].

Proposition 3.1. If X is a topological space and f, g : X −→ Sn, n ≥ 1 are continuous
maps such that d

Sn (f(x), g(x)) < π for all x ∈ X, then f ' g, i.e. f and g are
homotopic.

Proof. Indeed, the following homotopy

H : X × [0, 1] −→ Sn, H(x, t) :=
(1− t)f(x) + tg(x)

‖(1− t)f(x) + tg(x)‖

is well defined and H(·, 0) = f,H(·, 1) = g. �

Remark 3.2. If X is a topological space and f, g : X −→ Sn, n ≥ 1 are continuous
maps such that d

Sn (f(x), g(x)) > 0 for all x ∈ X, then f ' −g, i.e. f and −g are
homotopic.

For a given function f : X −→ Y we define its kernel as the equivalence re-
lation on X whose graph is ker(f) := {(x1, x2) ∈ X ×X : f(x1) = f(x2)}. The next
statements reveal some important homotopy properties of the A-monotone operators.

Corollary 3.3. Let D ⊆ Rn+1 be an open set and let A : D −→ Rn+1 be an injective
local diffeomorphism. If T : D → Rn+1 is an A-monotone operator, then the map

D ×D \ ker(T )→ Sn, (x, y) 7−→ pr
Sn (Tx− Ty)
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is homotopic to one of the maps

D ×D \ ker(T )→ Sn, (x, y) 7−→ pr
Sn (Ax−Ay)

or

D ×D \ ker(T )→ Sn, (x, y) 7−→ pr
Sn (Ay −Ax).

Corollary 3.4. Let D ⊆ Rn+1 be an open set and let A : D −→ Rn+1 be an injective
local diffeomorphism. If T : D → Rn+1 is a differentiable A-monotone operator and
H ⊂ D is a closed connected hypersurface, then the degree of pr

Sn ◦ (A
∣∣
H
− Az) is

invariant over every connected component of D \ T−1(T (H)).

Proof. We assume that T is A-increasing, as the decreasing option can be similarly
treated. Let us consider a continuous path γ : [0, 1] −→ D \ T−1(T (H)). Therefore
γ(0) = z0 and γ(1) = z1 belong to the same connected component of T−1(T (H)). By
using Corollary 3.3 one can deduce that

pr
Sn ◦(A

∣∣
H
−Az0) ' pr

Sn ◦(T
∣∣
H
−Tz0)

and

pr
Sn ◦(A

∣∣
H
−Az1) ' pr

Sn ◦(T
∣∣
H
−Tz1)

along with

deg pr
Sn ◦ (A

∣∣
H
−Az0) = deg pr

Sn ◦ (T
∣∣
H
− Tz0) (3.1)

and

deg pr
Sn ◦ (A

∣∣
H
−Az1) = deg pr

Sn ◦ (T
∣∣
H
− Tz1). (3.2)

On the other hand

H : H× [0, 1] −→ T−1(T (H)), H(x, t) =
Tx− T (γ(t))

‖Tx− T (γ(t))‖

realizes a homotopy between pr
Sn ◦(T

∣∣
H
−Tz0) and pr

Sn ◦(T
∣∣
H
−Tz1). Therefore

deg pr
Sn ◦(T

∣∣
H
−Tz0) = deg pr

Sn ◦(T
∣∣
H
−Tz1)

which combined with (3.1) and (3.2) leads us to the equality

deg pr
Sn ◦ (A

∣∣
H
−Az0) = deg pr

Sn ◦ (A
∣∣
H
−Az1). �

Remark 3.5. Let X be a compact differential n-dimensional manifold and

f, g : X −→ Sn, n ≥ 1

be continuous maps such that

1. If d
Sn (f(x), g(x)) < π for all x ∈ X , then deg(g) = deg(f). Indeed, f and g are,

according to Proposition 3.1, homotopic to each other.
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2. If d
Sn (f(x), g(x)) > 0 for all x ∈ X, then deg(g) = (−1)n+1 deg(f). Indeed,

d
Sn (f(x), g(x)) > 0, ∀ x ∈ X ⇔ d

Sn (−f(x), g(x)) < π, ∀ x ∈ X,

which shows, according to Proposition 3.1, that

deg(g) = deg(−f) = deg(A ◦ f) = deg(A) deg(f) = (−1)n+1 deg(f),

where A : Sn −→ Sn, Ax = −x is the antipodal map.
Consequently, if deg(g) 6= (−1)n+1 deg(f), then the coincidence set

C(f, g) := {x ∈ X : f(x) = g(x)}

is not empty.

If H ⊂ Rn+1 is a closed connected hypersurface, then, according to [9], Theorem 4.6]
and the related results therein, H separates Rn+1 and Rn+1 \ H has precisely two
connected components, one of which is bounded and denoted by int(H) and another
one which is unbounded and denoted by ext(H).
On the other hand ∂

[
int(H)

]
= H = ∂

[
ext(H)

]
, where ∂S stands for the topological

frontier of S.

Proposition 3.6. Let D ⊆ Rn+1 be an open set and let A : D −→ Rn+1 be a C1-smooth
injective local diffeomorphism. If H ⊂ D ⊆ Rn+1 is a closed connected hypersurface,
then

deg[pr
Sn ◦ (A

∣∣
H
−Az)] = 0, ∀z ∈ A−1(ext(A(H))),

and either

deg[pr
Sn◦ (A

∣∣
H
−Az)] = 1,∀z ∈ A−1(int(A(H)))

or

deg[pr
Sn◦ (A

∣∣
H
−Az)] = −1,∀z ∈ A−1(int(A(H)).

Proof. Since A : D −→ Rn+1 is an injective local diffeomorphism, the image A(H)
of H through A is a closed connected hypersurface and according to [10, Proposition
3.7] we conclude that

deg[pr
Sn ◦ (i

A(H)
−Az)] = 0 for all z ∈ A−1(ext(A(H))),

as well as either

deg[pr
Sn ◦ (iH −Az)] = 1 for all z ∈ A−1(int(A(H)))

or

deg[pr
Sn ◦ (i

A(H)
−Az)] = −1 for all z ∈ A−1(int(A(H))).

Note that

pr
Sn ◦ (A

∣∣
H
−Az)] = [pr

Sn ◦ (i
A(H)
−Az)] ◦ r,

where r stands for the restriction and corestriction H −→ A(H), x 7→ Ax, which is a
diffeomorphism. The multiplicative property of the degree combined with the obvious
fact that either deg r ≡ 1 or deg r ≡ −1, concludes the proof. �
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4. Properties of the inverse images of A-monotone operators

In this section we provide some examples of closed subsets of the Euclidean
space Rn+1 which can be separated by closed connected hypersurfaces. We close this
section by proving that the inverse images of continuous A-monotone operators cannot
be separated by closed smooth hypersurfaces.

Definition 4.1. A subset X of Rn+1 is separated by a closed connected hypersurface
H of Rn+1 if H ⊆ Rn+1\X and each int(H), ext(H) contains a connected component
of X at least. We say that X is divisible by closed connected hypersurfaces if X is
separated by one closed connected hypersurface, at least. Otherwise we say that X is
indivisible by closed connected hypersurfaces.

Theorem 4.2. ([10]) If the closed set C ⊂ Rn+1 has a compact connected component
K such that C \ K is nonempty and closed, then C is divisible by closed connected
hypersurfaces.

Theorem 4.3. Let D ⊆ Rn+1 be an open set, let A : D −→ Rn+1 be a C1-smooth
injective local diffeomorphism and T : D −→ Rn+1 be a continuous A-monotone
operator. If y ∈ Im(T ), then T−1(y) is indivisible by closed connected hypersurfaces.

Proof. Assume that T−1(y) is divisible by closed connected hypersurfaces, for some
y ∈ Im(T ) and consider a closed connected hypersurface H ⊂ Rn+1 with the property
that one component of T−1(y), say C, is contained in int(H) and another component
of T−1(y), say K, is contained in ext(H).
If z0 ∈ C ⊆ A−1(int(A(H)) and z1 ∈ K ⊆ A−1(ext(A(H)), then, according to
Proposition 3.6 and Corollary 3.4, one gets

±1 = deg[pr
Sn ◦ (A

∣∣
H
−Az0)] = ±deg[pr

Sn ◦ (A
∣∣
H
−Az1)] = 0,

which is absurd. �

Corollary 4.4. Let D ⊆ Rn+1 be an open set, let A : D −→ Rn+1 be a C1-smooth
injective local diffeomorphism and T : D −→ Rn+1 be a continuous A-monotone
operator. If y ∈ Im(T ), then either T−1(y) is connected or the set T−1(y) \K is not
closed for every compact connected component K of T−1(y).

Proof. Assume that T−1(y) is not connected and T−1(y) \K is closed for some com-
pact connected component K of T−1(y). Then T−1(y) \ K is nonempty and the
statement follows by using Theorems 4.2, 4.3. �

Theorem 4.5. Let D ⊆ Rn+1 be an open set, let A : D −→ Rn+1 be a C1-smooth
injective local diffeomorphism and T : D −→ Rn+1 be a continuous A-monotone
operator. If q ∈ Im(T ), then either T−1(q) is a singleton or dim

(
T−1(q)

)
≥ 1.

Proof. Recall that, according to Remark 2.5(7), the operator T : D −→ Rn+1 is
A-monotone if and only if T ◦ A−1 : A(D) −→ Rn+1 is h-monotone. By using [10,
Theorem 4.8] one gets that either (T ◦A−1)−1(q) = A(T−1(q)) is a singleton or

dim(T ◦A−1)−1(q) = dim(A(T−1(q)) ≥ 1,

i.e., T−1(q) is a singleton or dim
(
T−1(q)

)
≥ 1. �
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The next properties of the inverse images of A-monotone operators are immedi-
ate consequences of Theorem 4.5.

Corollary 4.6. Let D ⊆ Rn+1 be an open set, let A : D −→ Rn+1 be a C1-smooth
injective local diffeomorphism and T : D −→ Rn+1 be a continuous A-monotone
operator. Then either T is injective or dim

(
T−1(y)

)
≥ 1 for some y ∈ Im(T ).

Proof. If T is not injective, then card
(
T−1(y)

)
≥ 2 for some y ∈ Im(T ). According

to Theorem 4.5, dim
(
T−1(y)

)
≥ 1. �

Definition 4.7. ([5]) A continuous map f : X → Y is said to be light if

dim
(
f−1(y)

)
≤ 0 for every y ∈ Y.

Observe that locally injective operators are light, as their inverse images are discrete
sets.

Corollary 4.8. Let D ⊆ Rn+1 be an open set and let A : D −→ Rn+1 be a C1-smooth
injective local diffeomorphism. If T : D −→ Rn+1 a continuous A-monotone light
operator, then T is injective.

Proof. We need to prove that card
[
A−1(q)

]
= 1 for each q ∈ Im(A). Indeed, if

card
[
A−1(q)

]
were at least 2 for some q ∈ Im(A), then, according to Theorem 4.5,

we would get dim
(
A−1(q)

)
≥ 1. �

Corollary 4.9. Let D ⊆ Rn+1 be an open set and let A : D −→ Rn+1 be a C1-smooth
injective local diffeomorphism. If T : D −→ Rn+1 a continuous A-monotone local
homeomorphism, then T is injective.

Corollary 4.10. Let D ⊆ Rn+1 be an open set and let A : D −→ Rn+1 be a C1-smooth
local diffeomorphism. If T : D −→ Rn+1 is a C1-smooth A-monotone operator, then
T is locally injective. Indeed, according to Corollary 4.9, the restriction T

∣∣
U

, where

U ⊆ D is an open set, is injective whenever the restriction A
∣∣
U

is injective. The later
type of restrictions are one-to-one for suitable choices of the open set U ⊆ D, as A is
a local diffeomorphism. If T is additionally open, then one can conclude that T is a
local homeomorphism.

Remark 4.11. Observe that Corollary 4.9 can be also obtained from Theorem 4.3.
Indeed the inverse images of local diffeomorphisms, as discrete sets, are divisible by
closed connected hypersurfaces provided their cardinality is at least two.

5. Pairs of mutual monotone local homeomorphisms

In this section we deal with pairs operators having a priori the same status
relative to injectivity, i.e. they are local homeomorphisms.

Definition 5.1. Let D ⊆ Rn be an open set and let T,Q : D −→ Rn be two local
homeomorphisms. The two local homeomorphisms are said to be

1. mutual h-increasing if

d
Sn (pr

Sn (Tx− Ty), pr
Sn (Qx−Qy)) < π, ∀(x, y) ∈ (D ×D) \ (kerT ∪ kerQ).
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2. mutual h-decreasing if

d
Sn (pr

Sn (Tx− Ty), pr
Sn (Qx−Qy)) > 0,∀(x, y) ∈ (D ×D) \ (kerS ∪ kerQ).

3. mutual h-monotone if they are either mutual h-increasing or mutual h-decreasing.

Remark 5.2. Let D ⊆ Rn+1 be an open set and let A : D −→ Rn+1 be a C1-smooth
local diffeomorphism. If T : D −→ Rn+1 is an open C1-smooth A-monotone operator,
then, according to Corollary 4.10, the operators T and A have a posteriori some
rather close status with respect to injectivity, i.e. A is a local diffeomorphism and T
is a local homeomorphism and the two operartors T and A are mutual h-monotone
local homeomorphisms.

Remark 5.3. Let D ⊆ Rn be an open set and let T,Q : D −→ Rn be two local
homeomorphisms.

1. The two local homeomorphisms are mutual h-increasing if and only if

〈Tx− Ty,Qx−Qy〉 > −‖Tx− Ty‖ · ‖Qx−Qy‖,∀(x, y) ∈ (D×D) \ (kerT ∪ kerQ);

2. The two local homeomorphisms are mutual h-decreasing if and only if

〈Tx− Ty,Qx−Qy〉 < ‖Tx− Ty‖ · ‖Qx−Qy‖,∀(x, y) ∈ (D ×D) \ (kerS ∪ kerQ).

3. The relation of being mutual h-increasing/decreasing is symmetric.

Theorem 5.4. If D ⊆ Rn is an open set and T,Q : D −→ Rn are two mutual h-
monotone local diffeomorphisms, then kerS = kerT .

Proof. By using Corollary 4.9 it follows that the two local diffeomorphisms are simul-
taneously injective or non-injective. Their injectivity is equivalent with

kerT = kerQ = ∆D := {(x, x) : x ∈ D}.
We now assume that none of them is injective as well as kerT \ kerQ 6= ∅ and
consider (u, v) ∈ kerT \ kerQ, i.e. Tu = Tv and Qu 6= Qv. Let r, ε > 0 be such that
T (B(u, r + ε)), Q(B(u, r + ε)) are open and the restrictions

B̄(u, r) −→ T (B̄(u, r)), x 7→ Tx

B̄(u, r) −→ Q(B̄(u, r)), x 7→ Qx

are diffeomorphisms and Qv 6∈ Q(B̄(u, r)). In particular the sphere S(p, r) is mapped
by T onto a closed hypersurface T (S(p, r)). Since the local diffeomorphisms T,Q are
mutual h-monotone, it follows that either

d
Sn (pr

Sn ◦ (T
∣∣
S(u,r)

− Tv), pr
Sn ◦ (T

∣∣
S(u,r)

− Tv)) < π

or
d

Sn (pr
Sn ◦ (T

∣∣
S(u,r)

− Tv), pr
Sn ◦ (Q

∣∣
S(u,r)

−Qv)) > 0.

In both cases we get, via Remark 3.5, that

deg pr
Sn ◦(Q

∣∣
S(u,r)

−Qv) = ±deg pr
Sn ◦(T

∣∣
S(u,r)

−Tv) = ±deg pr
Sn ◦(T

∣∣
S(u,r)

−Tu).

On the other hand, by using Proposition 3.6

deg pr
Sn ◦ (Q

∣∣
S(u,r)

−Qv) = 0,
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as Qv ∈ ext (S(u, r)) and

deg pr
Sn ◦ (T

∣∣
S(u,r)

− Tu) = ±1,

as Tu ∈ int T (S(u, r)), which is absurd.
Therefore kerT \kerQ = ∅ ⇐⇒ kerT ⊆ kerQ. The opposite inclusion can be similarly
done by interchanging the roles of T and Q. �

Theorem 5.5. Let D ⊆ Rn be an open set and let T,Q : D −→ Rn be two local
diffeomorphisms. Then T,Q are mutual h-monotone if and only if there exists a h-
monotone diffeomorphism

Φ : Im(Q) −→ Im(T )

such that T = Φ ◦Q.

Proof. If Φ is h-increasing and T = Φ ◦Q, then

〈Tx− Ty,Qx−Qy〉 = 〈Φ(Qx)− Φ(Qy), Qx−Qy〉
> −‖Φ(Qx)− Φ(Qy)‖ · ‖Qx−Qy‖
= −‖Tx− Ty‖ · ‖Qx−Qy‖,

i.e. T = Φ ◦Q is h-increasing. If Φ is h-decreasing and T = Φ ◦Q, then

〈Tx− Ty,Qx−Qy〉 = 〈Φ(Qx)− Φ(Qy), Qx−Qy〉 < ‖Φ(Qx)− Φ(Qy)‖ · ‖Qx−Qy‖
= ‖Tx− Ty‖ · ‖Qx−Qy‖

i.e. T = Φ ◦ Q is h-decreasing. Conversely, if T,Q are mutual h-monotone, then
kerT = kerQ, due to Theorem 5.4. The functions

α : D/ kerT −→ Im T, α(d+ kerT ) = T (d)

β : D/ kerQ −→ Im Q, β(d+ kerQ) = Q(d)

are well-defined, bijective and T = α ◦ πkerT and Q = β ◦ πkerQ, where

πkerT : D −→ D/ kerT and πkerQ : D −→ D/ kerQ

are the canonical projections. The bijections α and β are also unique with their
corresponding properties. Since kerT = kerQ, it follows that D/ kerT = D/ kerQ
and

Im Q
β←− D/ kerQ = D/ kerT

α−→ Im T

are bijections. Therefore Φ := α ◦ β−1 : Im(Q) −→ Im(T ) is a bijection and

Φ ◦Q = α ◦ β−1 ◦Q = α ◦ πkerQ = α ◦ πkerT = T.

Since T and Q are local diffeomorphisms it follows that Φ is differentiable and a
diffeomorphism therefore. Finally

〈Φ(Qx)− Φ(Qy), Qx−Qy〉 = 〈Tx− Ty,Qx−Qy〉 > −‖Tx− Ty‖ · ‖Qx−Qy‖
= −‖Φ(Qx)− Φ(Qy)‖ · ‖Qx−Qy‖

if T,Q are mutual h-increasing and

〈Φ(Qx)− Φ(Qy), Qx−Qy〉 = 〈Tx− Ty,Qx−Qy〉 < ‖Tx− Ty‖ · ‖Qx−Qy‖
= ‖Φ(Qx)− Φ(Qy)‖ · ‖Qx−Qy‖
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if T,Q are mutual h-decreasing. In other words, Φ is h-increasing/decreasing if T,Q
are mutual h-increasing/decreasing. �

Corollary 5.6. Let D ⊆ Rn+1 be an open set and let A : D −→ Rn+1 be a C1-smooth
local diffeomorphism. If T : D −→ Rn+1 is an open C1-smooth A-monotone operator,
then there exists a h-monotone homeomorphism

Φ : Im(Q) −→ Im(T )

such that T = Φ ◦Q.

Proof. According to Remark 5.2, T is a local homeomorphism and T,A are obviously
mutual h-monotone local homeomorphisms. From now on the proof works along the
same lines with the proof of Theorem 5.5. �

Corollary 5.7. Let D ⊆ Rn be an open set and let T,Q : D −→ Rn be two local
diffeomorphisms. If T,Q are mutual h-monotone, then

Val(T ) = Val(Q),

where

Val(F ) := sup{cardF−1(y) : y ∈ Rn}
stands for the valence of F : D −→ Rn, as defined in [15].

Proof. Indeed, according to Theorem 5.5 there exists an h-monotone diffeomorphism

Φ : Im(Q) −→ Im(T )

such that T = Φ◦Q. Thus T−1(y) = (Φ◦Q)−1(y) = Q−1(Φ−1(y)) for every y ∈ Im(T ),
which implies that

card T−1(y) = card Q−1(Φ−1(y)),∀y ∈ Im(T )

and shows that

Val(T ) = sup{card T−1(y) : y ∈ Im(T )}
= sup{card Q−1(Φ−1(y)) : y ∈ Im(T )}
= sup{card Q−1(z) : z ∈ Im(Q)} = Val(Q).

�

Remark 5.8. In the proof of Corollary 5.7, we only used the quality of Φ to be globally
injective, not its quality to be differentiable with differentiable inverse.

6. Final comments and remarks

Throughout the section we make use of the notation described below (see [18]).
Let D be a nonempty open convex subset of Rn, and let f : D → R be a C2-smooth
convex function. The Hessian matrix of f at an arbitrary point x ∈ D will be denoted
by Hx(f). Recall that Hx(f) is a symmetric matrix and it defines a symmetric bilinear
functional

Hx(f) : Rn × Rn −→ R, Hx(f)(u, v) := u ·Hx(f) · vT .
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The following region

Hess+(f) := {x ∈ D|Hx(f) is positive definite}

associated to some C2-smooth regular function f : D −→ R was described in [17] for
the particular polynomial function

fa : R2 −→ R, fa(x, y) = (x2 + y2)2 − 2a2(x2 − y2).

Denote by hx(f) : Rn −→ Rn the linear transformation defined by the following
equality Hx(f)(u, v) := 〈hx(f)u, v〉 , ∀u, v ∈ Rn. and set

σ
f

:= sup
z∈D
‖hf (z)‖.

Let further A : Rn → Rn be a linear operator, and let T : D → Rn be the vector-
valued function defined by Tx := ∇f(x) + Ax. We shall denote by [A] the matrix
representation of A with respect to the standard basis of Rn. Let Sn−1 denote the
unit sphere (i.e., centered at the origin) in Rn, and let

W (A) := {〈Ax, x〉 | x ∈ Sn−1}

be the numerical range of A. It is well known that W (A) = [λA, µA], where λA and
µA denote the smallest and the greatest eigenvalue, respectively, of the symmetric
operator (A+A∗)/2. Let also λ∗A and µ∗A denote the smallest and the greatest eigen-
value, respectively, of the symmetric positive semidefinite operator A∗A. It is well
known that

‖A‖ := max
x∈Sn−1

‖Ax‖ =
√
µ∗A and min

x∈Sn−1
‖Ax‖ = bA. (6.1)

Sometimes we set, for brevity, aA := ‖A‖ =
√
µ∗A and bA := 1/‖A−1‖ if A is invertible.

Since ‖A−1‖ equals the square root of the greatest eigenvalue of

(A−1)∗A−1 = (AA∗)
−1
,

it follows that bA =
√
λ∗A.

Theorem 6.1. ([18]) Let D ⊆ Rn be a convex open set, let f : D −→ R be a C2-
smooth convex function and let A : Rn −→ Rn be a linear automorphism. If the
following inequalities are satisfied

σ
f
< bA + λA and inf

z∈D
‖hf (z)‖ < −µA,

then −1 < i∇f+A < 0, namely ∇f +A is h-monotone but not monotone.

Theorem 6.2. ([18]) Let D ⊆ Rn be a convex open set, let f : D −→ R be a C2-
smooth convex function and let A : Rn −→ Rn be a linear automorphism. If the
following inequality is satisfied

σ
f
< min {bA + λA, −µA} , (6.2)

then T := ∇f +A is injective.
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Remark 6.3. Let f, g : Rn −→ R be C2-smooth functions such that Hess+(f) 6= ∅
and Hess+(g) = Rn. Then ∇f

∣∣
Hess+(f)

◦ ∇g
∣∣
D

and (∇f
∣∣
Hess+(f)

+ A) ◦ ∇g
∣∣
D

are

∇g
∣∣
D

-increasing for every convex open subset D of Rn such that the range of ∇g
∣∣
D

is

contained in Hess+(f), where A : Rn −→ Rn is a linear automorphism related with f
through the inequality (6.2). Thus ∇f

∣∣
Hess+(f)

◦ ∇g
∣∣
D

and (∇f
∣∣
Hess+(f)

+A) ◦ ∇g
∣∣
D

are one-to-one as ∇g is a Minty-Browder monotone global diffeomorphism.

Example 6.4. Let f : Rn −→ R be a C2-smooth function such that Hess+(f) 6= ∅ and
the smooth function

g : Rn −→ R, g(x) =
1

2
e‖x‖

2

.

Then its gradient (∇g)x = e‖x‖
2 · x is a Minty-Browder monotone global diffeomor-

phism, as the Hessian matrix Hx(g) = e‖x‖
2

(In + 2x · xT ) of g, which is actually
the Jacobian matrix of ∇g, is positive definite. Indeed, the diagonal determinants
∆k = 1+2(x21 + · · ·+x2k) of In+2x ·xT are all positive and the positive definiteness of
In+2x·xT follows via the Sylvester criterion. Therefore ∇f

∣∣
Hess+(f)

◦∇g
∣∣
D

along with

(∇f
∣∣
Hess+(f)

+A) ◦ ∇g
∣∣
D

are ∇g
∣∣
D

-increasing for every convex open subset D of Rn

such that the range of ∇g
∣∣
D

is contained in Hess+(f), where A : Rn −→ Rn is a linear

automorphism related with f through the inequality (6.2). Thus ∇f
∣∣
Hess+(f)

◦ ∇g
∣∣
D

and (∇f
∣∣
Hess+(f)

+ A) ◦ ∇g
∣∣
D

are one-to-one as ∇g is a Minty-Browder monotone

global diffeomorphism.

Remark 6.5. For the global injectivity of ∇g alone, in Example 6.4, we need neither
the Minty-Browder monotonicity of ∇g nor the positive definiteness of H(g), as the
injectivities of its restrictions to the spheres centered at the origin and to the half
lines starting from the origin are rather obvious. For example the injectivity of the
restriction of ∇g to the half line {λx| λ > 0} generated by x 6= 0 reduces to the
injectivity of the function

ϕ : (0,∞) −→ R, ϕ(λ) =
‖(∇g)λx‖
‖x‖2

= λeλ
2‖x‖2 .

Note however that the outcome of the Minty-Browder monotonicity of ∇g along
with the positive definiteness of H(g), in Example 6.4, does not reduce to the global
injectivity of ∇g alone, but also ensure the differentiability of its inverse.

Remark 6.6. Let D ⊆ Rn be a convex open set and f, g : D −→ R be C2-smooth func-
tions such that Hess+(f) 6= ∅. Then (∇f +A) ◦∇f

∣∣
Hess+(f)

is ∇f
∣∣
Hess+(f)

-increasing,

where A : Rn −→ Rn is a linear automorphism related with f through the inequality
(6.2). Indeed, ∇f+A is, according to Theorems 6.1 and 6.2, an h-monotone global in-
jective operator. Therefore, according to Corollary 5.7 and the Remark 5.8 afterwards,
we obtain:

Val (∇f +A) ◦ ∇f
∣∣
Hess+(f)

= Val
(
∇f
∣∣
Hess+(f)

)
.
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1, Kogălniceanu Street, 400084 Cluj-Napoca, Romania
e-mail: cpintea@math.ubbcluj.ro


