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1. Introduction

In some recent papers, we have introduced and studied some interpolation oper-
ators for the functions defined on triangles with curved sides (see, e.g., [8]-[11], [13],
[14], [16], [17]). They permit essential boundary conditions to be satisfied exactly and
they come as an extension of the interpolation operators on triangles with all straight
edges, introduced and studied for example in [1], [3]-[7], [12], [22]-[28].

We consider here a standard triangle, T̃ , having the vertices V1 = (1, 0), V2 =
(0, 1) and V3 = (0, 0), two straight sides Γ1, Γ2, along the coordinate axes, and the
third side Γ3 (opposite to the vertex V3), which is defined by the one-to-one functions
f and g, where g is the inverse of the function f, i.e., y = f(x) and x = g(y), with

f(0) = g(0) = 1. There is no restriction to consider this standard triangle T̃ , since any
triangle with one curved side can be obtained from this standard triangle by an affine
transformation which preserves the form and order of accuracy of the interpolant [4].
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Figure 1: Triangle T̃ .

The bending interpolants interpolate on an infinite set of points (segments,
curves, etc.), so having such element as a boundary of an object, we may gener-
ate surfaces that contain the given boundary (see, e.g., [2], [18]-[21]). The aim of
this paper is to construct some surfaces which satisfy some given conditions on the
boundary of a domain that can be decomposed in triangles with one curved side. We
construct some new surfaces using some Hermite, Nielson and Marshall type interpo-
lation operators introduced in [13] and [14]. These operators come as extensions to

triangle T̃ , of some interpolation operators for triangles, given, for example, in [4], [5],
[25].

2. Surfaces generation by Hermite, Nielson and Marshall type
operators

Suppose that F is a real-valued function defined on T̃ , and that it has all partial
derivatives needed. We consider three types of interpolation operators defined on T̃ :

- the Hermite interpolation operators H1 and H2 defined by [13]:

(H1F )(x, y) = [2x+g(y)][x−g(y)]2

g3(y) F (0, y) + x[x−g(y)]2

g2(y) F (1,0)(0, y) (2.1)

+ x2[−2x+3g(y)]
g3(y) F (g(y), y) + x2[x−g(y)]

g2(y) F (1,0)(g(y), y),

(H2F )(x, y) = [2y+f(x)][y−f(x)]2

f3(x) F (x, 0) + y[y−f(x)]2

f2(x) F (0,1)(x, 0)

+ y2[−2y+3f(x)]
f3(x) F (x, f(x)) + y2[y−f(x)]

f2(x) F (0,1)(x, f(x)),

- the Nielson type interpolation operators given by [14]:

(N1F )(x, y) = yF (x, f(x)) + (1− f(x))F (g(y), y), (2.2)

(N2F )(x, y) = F (0, y) + F (x, 0)− F (0, 0),
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- the Marshall type operators defined by [14]:

(Q1F )(x, y) =yF (0, 1) + g(y)F ( x
g(y) , 0), (2.3)

(Q2F )(x, y) =xF (1, 0) + f(x)F (0, y
f(x) ),

(Q3F )(x, y) =(f(x)− y)F (0, 0) + (1− f(x) + y)F
(

x
1−f(x)+y ,

y
1−f(x)+y

)
.

For obtaining the first class of surfaces, we consider the boolean sum of the Nielson
type operators N1 and N2, given in (2.2), namely,

((N1 ⊕N2)F )(x, y) =y[F (x, f(x))− F (0, f(x))− F (x, 0) + F (0, 0)] (2.4)

+ (1− f(x))[F (g(y), y)− F (0, y)− F (g(y), 0)]

+ F (0, y) + F (x, 0)− f(x)F (0, 0),

and we apply the condition that the roof stays on its support, i.e., F |Γ3
= 0. We get

SN :=− yF (0, f(x)) + (1− y)F (x, 0) + [y − f(x)]F (0, 0) (2.5)

+ f(x)F (0, y) + [f(x)− 1]F (g(y), 0).

Theorem 2.1. If F |Γ3
= 0, then we have the following properties of the operator SN :

(SNF )(x, 0) = F (x, 0).

(SNF )(0, y) = F (0, y).

(SNF )(x, f(x)) = 0.

Proof. The proof follows directly by the expression of SN from (2.5). �

In the second level of approximation we use the Hermite interpolation operators,
given in (2.1), taking into account the condition F |Γ3

= 0, i.e.,

(H1
1F )(x, y) := [2x+g(y)][x−g(y)]2

g3(y) F (0, y) + x[x−g(y)]2

g2(y) F (1,0)(0, y) (2.6)

+ x2[x−g(y)]
g2(y) F (1,0)(g(y), y),

(H1
2F )(x, y) := [2y+f(x)][y−f(x)]2

f3(x) F (x, 0) + y[y−f(x)]2

f2(x) F (0,1)(x, 0)

+ y2[y−f(x)]
f2(x) F (0,1)(x, f(x)).

We apply the following approximations:

F (x, 0) ≈ (H1
1F )(x, 0) =(2x + 1)(x− 1)2F (0, 0) + x(x− 1)2F (1,0)(0, 0) (2.7)

+ x2(x− 1)F (1,0)(1, 0),

F (0, y) ≈ (H1
2F )(0, y) =(2y + 1)(y − 1)2F (0, 0) + y(y − 1)2F (0,1)(1, 0) (2.8)

+ y2(y − 1)F (0,1)(0, 1),

and by (2.5), we obtain the following class of surfaces:

(S1F )(x, y) =− y(H1
2F )(0, f(x)) + (1− y)(H1

1F )(x, 0) + [y − f(x)]F (0, 0)

+ f(x)(H1
2F )(0, y) + [f(x)− 1](H1

1F )(g(y), 0),
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i.e.,

(S1F )(x, y) =− y{[2f(x) + 1][f(x)− 1]2F (0, 0) + f(x)[f(x)− 1]2F (0,1)(1, 0) (2.9)

+ f(x)2[f(x)− 1]F (0,1)(0, 1)}+ (1− y)[(2x + 1)(x− 1)2F (0, 0)

+ x(x− 1)2F (1,0)(0, 0) + x2(x− 1)F (1,0)(1, 0)] + [y − f(x)]F (0, 0)

+ f(x)[(2y + 1)(y − 1)2F (0, 0) + y(y − 1)2F (0,1)(1, 0)

+ y2(y − 1)F (0,1)(0, 1)] + [f(x)− 1]{[2g(y) + 1][g(y)− 1]2F (0, 0)

+ g(y)[g(y)− 1]2F (1,0)(0, 0) + g(y)2[g(y)− 1]F (1,0)(1, 0)}.

For obtaining the second class of surfaces, we consider the boolean sum of the
Marshall type operators Q1, Q2 and Q3, given in (2.3):

((Q1 ⊕Q2 ⊕Q3)F )(x, y) = g(y)F ( x
g(y) , 0) + f(x)F (0, y

f(x) ) + (1− f(x) + y)· (2.10)

· F ( x
1−f(x)+y ,

y
1−f(x)+y )− yF (0, 1)− g(y)f( x

g(y) )F (0, 0)

− g(y)
[
1− f( x

g(y) )
]
F
(

x
g(y)

/
(1− f( x

g(y) )), 0
)
,

and supposing that the roof stays on its support we set the condition F |Γ3
= 0, hence

we obtain

SQ :=g(y)F ( x
g(y) , 0) + f(x)F (0, y

f(x) ) (2.11)

− yF (0, 1)− g(y)f( x
g(y) )F (0, 0)

− g(y)
[
1− f( x

g(y) )
]
F
(

x
g(y)

/
(1− f( x

g(y) )), 0
)
.

Theorem 2.2. If F |Γ3
= 0, then we have

(SQF )(x, f(x)) = 0.

Proof. The proof follows directly replacing in (2.11). �

In the second level we use the Hermite interpolation operators, given in (2.6),
and the approximations (2.7) and (2.8), and we obtain the following class of surfaces:

(S2F )(x, y) =g(y)(H1
1F )( x

g(y) , 0) + f(x)(H1
2F )(0, y

f(x) )

− yF (0, 1)− g(y)f( x
g(y) )F (0, 0)

− g(y)
[
1− f( x

g(y) )
]

(H1
1F )

(
x

g(y)

/
(1− f( x

g(y) )), 0
)
,
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given below by

(S2F )(x, y) = [2x+g(y)][x−g(y)]2

g2(y) F (0, 0) + x[x−g(y)]
g2(y)

2
F (1,0)(0, 0) (2.12)

+ x2[x−g(y)]
g2(y) F (1,0)(1, 0)

+ [2y+f(x)][y−f(x)]2

f2(x) F (0, 0) + y[y−f(x)]2

f2(x) F (0,1)(1, 0)

+ y2[y−f(x)]
f2(x) F (0,1)(0, 1)

− yF (0, 1)− g(y)f( x
g(y) )F (0, 0)

− g(y)
[
1− f( x

g(y) )
]
·

· {[2m(x, y) + 1][m(x, y)− 1]2F (0, 0) (2.13)

+ m(x, y)[m(x, y)− 1]2F (1,0)(0, 0)

+ m2(x, y)[m(x, y)− 1]F (1,0)(1, 0)},

where m(x, y) denotes x
g(y)

/
(1− f( x

g(y) )).

Other classes of surfaces may be obtained using the conditions

F |Γ3
= F (0,1)

∣∣∣
Γ3

= F (1,0)
∣∣∣
Γ3

= 0. (2.14)

We consider the boolean sum of the Nielson type operators N1 and N2, given in (2.4),
taking into account the conditions (2.14), and we get the operator SN given in (2.5).

In the second level we use the Hermite interpolation operators, given in (2.1),
taking into account the conditions (2.14), so we have

(H2
1F )(x, y) := [2x+g(y)][x−g(y)]2

g3(y) F (0, y) + x[x−g(y)]2

g2(y) F (1,0)(0, y), (2.15)

(H2
2F )(x, y) := [2y+f(x)][y−f(x)]2

f3(x) F (x, 0) + y[y−f(x)]2

f2(x) F (0,1)(x, 0).

Using the following approximations:

F (x, 0) ≈ (H2
1F )(x, 0) = (2x + 1)(x− 1)2F (0, 0) + x(x− 1)2F (1,0)(0, 0),

F (0, y) ≈ (H2
2F )(0, y) = (2y + 1)(y − 1)2F (0, 0) + y(y − 1)2F (0,1)(1, 0),

by (2.5), we obtain the following class of surfaces:

(S3F )(x, y) =− y(H2
2F )(0, f(x)) + (1− y)(H2

1F )(x, 0) + [y − f(x)]F (0, 0)

+ f(x)(H2
2F )(0, y) + [f(x)− 1](H2

1F )(g(y), 0),
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further given as

(S3F )(x, y) =− y{[2f(x) + 1][f(x)− 1]2F (0, 0) + f(x)[f(x)− 1]2F (0,1)(1, 0)}
(2.16)

+ (1− y)[(2x + 1)(x− 1)2F (0, 0) + x(x− 1)2F (1,0)(0, 0)]

+ [y − f(x)]F (0, 0) + f(x)[(2y + 1)(y − 1)2F (0, 0)

+ y(y − 1)2F (0,1)(1, 0)] + [f(x)− 1]{[2g(y) + 1][g(y)− 1]2F (0, 0)

+ g(y)[g(y)− 1]2F (1,0)(0, 0)}.

Next we consider the boolean sum of the Marshall type operators, given in (2.10),
taking into account the conditions (2.14), and we get SQ given in (2.11).

Further, we apply the Hermite interpolation operators H2
1 and H2

2 , given in
(2.15), and we get the following class of surfaces:

(S4F )(x, y) =g(y)(H2
1F )( x

g(y) , 0) + f(x)(H2
2F )(0, y

f(x) )

− yF (0, 1)− g(y)f( x
g(y) )F (0, 0)

− g(y)
[
1− f( x

g(y) )
]

(H2
1F )

(
x

g(y)

/
(1− f( x

g(y) )), 0
)
,

i.e.,

(S4F )(x, y) = [2x+g(y)][x−g(y)]2

g2(y) F (0, 0) + x[x−g(y)]
g2(y)

2
F (1,0)(0, 0) (2.17)

+ [2y+f(x)][y−f(x)]2

f2(x) F (0, 0) + y[y−f(x)]2

f2(x) F (0,1)(1, 0)

− yF (0, 1)− g(y)f( x
g(y) )F (0, 0)

− g(y)
[
1− f( x

g(y) )
]
·

· {[2m(x, y) + 1][m(x, y)− 1]2F (0, 0)

+ m(x, y)[m(x, y)− 1]2F (1,0)(0, 0)},

where m(x, y) denotes x
g(y)

/(
1− f

(
x

g(y)

))
.

3. Numerical examples

Example 3.1. Consider F : T̃ → R,

F (x, y) =
(x2 + y2 − h2)2

x2 + y2 + 1
and f(x) =

√
1− x2.

In Figure 2 we plot the graphs of the surface S1F, given in (2.9).
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Figure 2: The surface S1.

Example 3.2. Consider the function f(x) =
√

1− x2 and F : T̃ → R.
In Figure 3 we plot the graphs of surface S2F, given in (2.12), assigning to
the data (F (0, 0), F (0, 1), F (1,0)(0, 0), F (1,0)(1, 0), F (0,1)(1, 0), F (0,1)(0, 1)) the values
(−1/4,−1, 1,−1, 1).

Figure 3: The surface S2.

Example 3.3. Consider the data from Example 3.1. In Figure 4 we plot the graphs of
the surface S3F, given in (2.16).
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Figure 4: The surface S3.

Example 3.4. Consider same data as in Example 3.2. In Figure 5 we plot the graphs
of the surface S4F, given in (2.17).

Figure 5: The surface S4.
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[12] Böhmer, K., Coman, Gh., Blending interpolation schemes on triangle with error bounds,
Lecture Notes in Mathematics, no. 571, Springer-Verlag, Berlin, 1977, 14-37.
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Stud. Univ. Babeş-Bolyai Math., 38(1993), no. 3, 39-48.

[22] Gordon, W.J., Distributive lattices and approximation of multivariate functions, Proc.
Symp. Approximation with Special Emphasis on Spline Functions, (Ed. I.J. Schoenberg),
Madison, Wisc., 1969, 223—277.

[23] Gordon, W.J., Wixom, J.A., Pseudo-harmonic interpolation on convex domains, SIAM
J. Numer. Anal., 11(1974), no. 5, 909-933.

[24] Gregory, J.A., A blending function interpolant for triangles, Multivariate Approxima-
tion, D.C. Handscomb (Ed.), Academic Press, London, 1978, 279-287.



314 Teodora Cătinaş
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1, Kogălniceanu Street
RO-400084 Cluj-Napoca, Romania
e-mail: tcatinas@math.ubbcluj.ro


