Asymptotic behavior of generalized CR–iteration algorithm and application to common zeros of accretive operators

Aadil Mushtaq, Khaja Moinuddin, Nisha Sharma and Anita Tomar

Abstract. The purpose of this study is to provide a generalized CR–iteration algorithm for finding common fixed points ($CFPs$) for nonself quasi-nonexpansive mappings ($QNEMs$) in a uniformly convex Banach space. The suggested algorithm’s convergence analysis is analyzed in uniformly convex Banach spaces.

Mathematics Subject Classification (2010): 37C25, 47H10.
Keywords: Fixed point, CR–iterative algorithm, nonself $QNEMs$.

1. Introduction

Let B be a Banach space, $\emptyset \neq B_s \subseteq B$ be closed and convex, and $\Upsilon: B_s \to B_s$ be an operator which has at least one fixed point. Then, for the initial value $a_0 \in B_s$:

(i) Picard’s iteration algorithm [16] is defined as:
\[a_{\eta+1} = \Upsilon a_\eta, \quad \forall \, \eta \in \mathbb{N}_0. \]

(ii) Mann’s iteration algorithm [13] is defined as:
\[a_{\eta+1} = (1 - \kappa_\eta) a_\eta + \kappa_\eta \Upsilon a_\eta, \quad \forall \, \eta \in \mathbb{N}_0, \]
where $\{\kappa_\eta\} \in (0, 1)$.

(iii) Ishikawa’s iteration algorithm [8] is defined as:
\[a_{\eta+1} = (1 - \kappa_1^\eta) a_\eta + \kappa_1^\eta \Upsilon [(1 - \kappa_2^\eta) a_\eta + \kappa_2^\eta \Upsilon a_\eta], \quad \forall \, \eta \in \mathbb{N}_0, \]
where $\{\kappa_1^\eta\}$ and $\{\kappa_2^\eta\} \in (0, 1)$.

Received 28 October 2021; Accepted 12 January 2023.
© Studia UBB MATHEMATICA. Published by Babeș-Bolyai University
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
For nonexpansive operators, it is very well established that the Picard iteration algorithm often does not work effectively. As a result, for the estimation of FPs for nonexpansive type mappings in ambient spaces, the Mann and Ishikawa iterative algorithms have been extensively studied (see [1, 3, 6]).

On the other side, Chug et al. [5] introduced the CR-iteration algorithm in a Banach space in 2012. The structure of the CR-iterative algorithm differs significantly from that of the Mann and Ishikawa iterative algorithms, making it absolutely independent of both. Several mathematicians have been intrigued by the CR-iterative algorithm as an alternative iterative algorithm for fixed point analysis in recent years (see [9, 2]), and it has opened up a substantial field of research in various aspects (see [11, 12]).

Let Υ be a self map on \mathfrak{B}. Then the sequence $\{a_\eta\}_{n=0}^\infty$ defined as follows:

$$\begin{align*}
 a_0 &\in \mathfrak{B} \\
 a_{\eta+1} &= (1 - \kappa_1^\eta)b_\eta + \kappa_1^\eta \Upsilon b_\eta, \\
 b_\eta &= (1 - \kappa_2^\eta)\Upsilon a_\eta + \kappa_2^\eta \Upsilon c_\eta, \\
 c_\eta &= (1 - \kappa_3^\eta)a_\eta + \kappa_3^\eta \Upsilon a_\eta,
\end{align*}$$

\[(CR) \]

where $\{\kappa_1^\eta\}, \{\kappa_2^\eta\}$ and $\{\kappa_3^\eta\} \in (0, 1)$ is called CR-iteration. The CR-iteration method is a three-step iteration method. For contraction mappings, CR-iterative algorithms perform better than Picard and Ishikawa iterative algorithms, and behave well for nonexpansive mappings.

We are concerned with two quasi-nonexpansive nonself mappings $M_1, M_2 : \mathfrak{B}_s \to \mathfrak{B}$, where \mathfrak{B}_s is a nonempty subset of the Banach space \mathfrak{B}, the iterative location and weak limits of the proposed iterative algorithm for these types of functions in the context of current research [19]. Our findings are applied to the zeros of accretive operators in some different ways.

2. Tools and notations

In this section, we discuss the notations which we are going to use in the entire manuscript. The framework in which we shall prove our results from now on is a Banach space \mathfrak{B}. Υ is a mapping. \mathbb{N}_0 represents the set of natural numbers including 0, whereas the terminology \mathbb{R} is used to represent the set of real numbers. The notation ‘for all’ is represented by ‘\forall’ and ‘such that’ is represented by ‘\ni’. The symbol \in represents ‘belongs to’. The terminology H_s is used to represent the ‘Hilbert space’ with the inner product $\langle \cdot, \cdot \rangle$ and whereas $Q_{\mathfrak{B}}$ is a retraction of \mathfrak{B} onto \mathfrak{B}_s. $\mathcal{P}_{\mathfrak{B}}$ is used to represent the projection from \mathfrak{B} to \mathfrak{B}_s. $H'_s \subseteq H_s$. $Dom(A)$ represents the domain of A, $Ran(A)$ is used to represent the range set of A, and $Gr(A)$ is the graph of A whereas A^{-1} is the inverse of A. Δ is a non-negative real number. The terminology ‘fixed points’, we denote by ‘FPs’. The Proximal point algorithm is denoted by ‘PPA’. It is important to note that the ‘set of all fixed points’ is denoted by ‘$F(\Upsilon)$’. Furthermore, ∇ is used to represent the ‘vector differential operator’.
3. Preliminaries

In this section, we discuss key definitions and lemmas that are necessary in order to make this article self-contained. Throughout the paper, we denote the closed ball with the center at \(a \) and radius \(r \) by \(CB_r[a] \) and is defined as
\[
CB_r[a] = \{ b \in \mathcal{B} : ||a - b|| \leq r \}.
\]
Also, \(\mathcal{B} \) is said to be uniformly convex if for \(0 < \epsilon \leq 2 \), \(||a|| \leq 1 \), \(||b|| \leq 1 \) and
\[
||a - b|| \geq \epsilon \text{ imply } \exists \mu = \mu(\epsilon) > 0 \quad \frac{1}{2} ||a + b|| \leq 1 - \mu.
\]

Lemma 3.1. [21] Let \(m > 1 \) and \(r_1 > 0 \) be two fixed numbers. Then, \(\mathcal{B}_s \) is uniformly convex iff \(\exists \) a convex and strictly increasing function \(\Upsilon : [0, \infty) \rightarrow [0, \infty) \) with \(\Upsilon(0) = 0 \) \(\exists \)
\[
||ca + (1 - c)b||^m \leq c||a||^m + (1 - c)||b||^m - c(1 - c)\Upsilon(||a - b||),
\]
\(\forall a, b \in \mathcal{B}_m > [0] \) and \(c \in [0, 1] \).

For \(\mathcal{H}_s \), we have
\[
||ca + (1 - c)b||^2 \leq c||x||^2 + (1 - c)||y||^2 - c(1 - c)||a - b||,
\]
\(\forall a, b \in \mathcal{H}_s \) and \(c \in [0, 1] \).

Definition 3.2. A mapping \(\Upsilon : \mathcal{B}_s \rightarrow \mathcal{B} \) has the demiclosed property at \(b \in \mathcal{B} \) if
\[
\{ a \in \mathcal{B}_s, a_\eta \rightarrow a \text{ and } \Upsilon a_\eta \rightarrow b \implies a \in \mathcal{B}_s \text{ and } \Upsilon a = b \}.
\]

Lemma 3.3. [4] Let \(\mathcal{B}_s \) be a nonempty, closed and convex subset of a uniformly convex Banach space \(\mathcal{B} \). If \(\Upsilon : \mathcal{B}_s \rightarrow \mathcal{B} \) is nonexpansive mappings then \(I - \Upsilon \) has the demiclosed property with respect to 0.

The collection of points of \(\mathcal{B}_s \), unaltered by \(\Upsilon \) is defined as follows:
\[
F(\Upsilon) = \{ a \in \mathcal{B}_s : \Upsilon a = a \}.
\]
For a constant \(L \in [0, \infty) \), the mapping \(\Upsilon \) is called \(L \)-Lipschitz if
\[
||\Upsilon a - \Upsilon b|| \leq L||a - B||,
\]
\(\forall a, b \in \mathcal{B}_s \). Every \(1 \)-Lipschitz is called QNEM.

A retract of \(\mathcal{B} \) is a subset \(\mathcal{B}_s \) of a Banach space \(\mathcal{B} \) that has a continuous mapping \(\mathcal{Q}_{\mathcal{B}_s} \) from \(\mathcal{B} \) to \(\mathcal{B}_s \) such that \(\mathcal{Q}_{\mathcal{B}_s}(a) = a \) for any \(a \in \mathcal{B}_s \). A \(\mathcal{Q}_{\mathcal{B}_s} \), like this is known as \(\mathcal{B} \) onto \(\mathcal{B}_s \) retraction. If \(\mathcal{Q}_{\mathcal{B}_s}(\mathcal{Q}_{\mathcal{B}_s}(a + c(a - \mathcal{Q}_{\mathcal{B}_s}(a)))) = \mathcal{Q}_{\mathcal{B}_s}(a), \forall a \in \mathcal{B} \) and \(c \geq 0 \), a retraction \(\mathcal{Q}_{\mathcal{B}_s} \) is said to be sunny. \(\mathcal{B}_s \) is a sunny nonexpansive retract of \(\mathcal{B} \) if a sunny retraction \(\mathcal{Q}_{\mathcal{B}_s} \) is also nonexpansive. Let \(\mathcal{B} \) be reflexive and strictly convex Banach space. Let \(\mathcal{P}_{\mathcal{B}_s} : \mathcal{B} \rightarrow \mathcal{B}_s \) be a projection. Also, \(\mathcal{P}_{\mathcal{B}_s}(a) \) is in \(\mathcal{B}_s \) with the property
\[
||a - \mathcal{P}_{\mathcal{B}_s}(a)|| = \{ \inf ||a - u|| : u \in \mathcal{B}_s \}.
\]
for \(a \in \mathcal{B} \).
It is also well comprehended that \(\mathcal{P}_{\mathcal{H}_s}(a) \in \mathcal{H}_s \) and
\[
\langle a - \mathcal{P}_{\mathcal{H}_s}(a), \mathcal{P}_{\mathcal{H}_s}(a) - b \rangle \geq 0,
\]
\(\forall a \in \mathcal{H}_s, b \in \mathcal{H}_s \).

Sunny nonexpansive retractions work in the same way in \(\mathcal{B} \) as projections do in \(\mathcal{H}_s \).

If a subset \(\mathcal{H}_s \neq \emptyset \) of \(\mathcal{H} \) is closed and convex, then \(\exists \) a unique sunny nonexpansive retraction from \(\mathcal{B}_s \) to \(\mathcal{H}_s \).

Definition 3.4. [1]Let \(\mathcal{B} \) be a Banach space. For any sequence \(\{a_n\} \to a \in \mathcal{B} \), and \(\forall b \neq a \), we say that \(\mathcal{B} \) satisfies the Opial condition, if the following inequality holds:
\[
\limsup_{n \to \infty} ||a_n - a|| < \limsup_{n \to \infty} ||a_n - b||.
\]

It is to be noted that \(\limsup \) can be substituted by \(\liminf \) in this definition and that every Hilbert space satisfies the Opial condition [1]. Let \(\emptyset \neq \mathcal{B}_s \subset \mathcal{B} \), \(\Upsilon : \mathcal{B}_s \to \mathcal{B} \) a mapping, and \(\{a_n\} \) a sequence in \(\mathcal{B}_s \). If \(\lim_{n \to \infty} ||a_n - \Upsilon a_n|| = 0 \), then \(\{a_n\} \) is referred to as a sequence in \(\Upsilon \).

The following proposition is the generalization of Proposition 2.5 [20].

Proposition 3.5. Let \(\Upsilon : \mathcal{B}_s \to \mathcal{B} \) be uniformly continuous mapping and \(\{a_n\} \subset \mathcal{B}_s \) be a sequence of \(\Upsilon \). Then, \(\{b_n\} \subset \mathcal{B}_s \) is an approximating FP sequence of \(\Upsilon \) whenever \(\{b_n\} \in \mathcal{B}_s \ni \lim_{n \to \infty} ||a_n - b_n|| = 0 \).

For dual space \(\mathcal{B}^* \) of \(\mathcal{B} \), the symbol \(||\cdot|| \) denotes the norms of \(\mathcal{B} \) and \(\mathcal{B}^* \). For \(a^* \in \mathcal{B}^* \) and \(a \in \mathcal{B} \), we use \(\langle a, a^* \rangle \) instead of \(a^*(a) \). The set-valued mapping \(J : \mathcal{B} \to 2^{\mathcal{B}^*} \) is defined as
\[
J(a) = \{a^* \in \mathcal{B} : \langle a, a^* \rangle = ||a||||a^*|| \text{ and } ||a^*|| = ||a||\}, \quad a \in \mathcal{B},
\]
and is known as a normalized duality mapping of \(\mathcal{B} \). For a multi-valued operator \(A : \mathcal{B} \to 2^\mathcal{B} \), the following are defined as:
\[
\text{Dom}(A) = \{a \in \mathcal{B} : Aa \neq \emptyset\},
\]
\[
\text{Ran}(A) = \cup\{Au : u \in \text{Dom}(A)\},
\]
and
\[
\text{Gr}(A) = \{(a, b) \in \mathcal{B} \times \mathcal{B} : a \in \text{Dom}(A), b \in Aa\}
\]
respectively. \(A \subseteq \mathcal{B} \times \mathcal{B} \) represents \(A : \mathcal{B} \to 2^\mathcal{B} \) and the inverse \(A^{-1} \) of \(A \) is as follows:
\[
a \in A^{-1}b \iff b \in Aa.
\]

If \(\forall a_i \in \text{Dom}(A) \) and \(b \in \text{Aa} \) for \(i = 1, 2 \), \(\exists j \in J(a_1 - a_2) \ni \langle b_1 - b_2, j \rangle \geq 0 \), then the operator is known as accretive.

An accretive operator is the negation of a dissipative operator. If there is no proper accretive extension of \(A \), it is known as “maximal accretive”, and if \(\text{Ran}(I + A) = \mathcal{B} \), where \(I \) symbolizes the identity operator on \(\mathcal{B} \). If \(A \) is “\(m \)-accretive”, then it is maximally accretive. For accretive \(A \), the single-valued nonexpansive mapping \(\forall \Delta > 0 \) is
\[
J_A^\Delta : \text{Ran}(I + \Delta A) \to \text{Dom}(A), \quad J_A^\Delta = (I + \Delta A)^{-1},
\]
We now present the resolvent of \(\mathcal{A} \). The resolvent for an \(m \)–accretive operator on \(\mathfrak{B} \)

\[J^A_\Delta = (I + \Delta A)^{-1} \]

is a multi-valued nonexpansive mapping whereby the domain is the entire space \(\mathfrak{B} \), \(\forall \ \Delta > 0 \).

Lemma 3.6. [7] Let \(\mathcal{A} : \mathfrak{B} \rightarrow 2^{\mathfrak{B}} \) be an \(m \)–accretive operator. Then \(\mathcal{A} \) is the maximal accretive, where \(\mathfrak{B} \) is a real Banach space.

Lemma 3.7. [1] If \(\mathcal{A} : \mathcal{H}_s \rightarrow 2^{\mathcal{H}_s} \) is a monotone operator, then \(\mathcal{A} \) is the maximal monotone iff \(\text{Ran}(I + \Delta A) = \mathcal{H} \ \forall \ \Delta > 0 \).

As a result, if \(\mathcal{A} : \mathcal{H}_s \rightarrow 2^{\mathcal{H}_s} \) is a maximum monotone operator and \(\Delta > 0 \), we may define the resolvent of \(\mathcal{A} \), \(J^A_\Delta : \mathcal{H}_s \rightarrow \mathcal{H}_s \), using Lemma 3.7. Also, \(J^A_\Delta \) satisfies the following inequality

\[||J^A_\Delta - a J^A_\Delta b||^2 \leq ||a - b||^2 - ||(I - J^A_\Delta) a - (I - J^A_\Delta) b||, \]

\(\forall \ a, \ b \in \mathcal{H}_s \).

For a function \(\varphi : \mathcal{H}_s \rightarrow (\infty, \infty) \), the domain is defined by:

\[\text{dom}(\varphi) = \{ a \in \mathcal{H}_s : \varphi(a) < \infty \}. \]

Lemma 3.8. [3] Let \(\varphi \in \Gamma_0(H) \). Then, \(\varphi \) is maximal monotone.

4. Main results

The \(CR \)–iteration approach allows us to compute the common \(FP \)s of two operators. Our objective is to analyze the asymptotic behaviour of our designed algorithm in Banach spaces. Let \(\Upsilon_1, \ \Upsilon_2 : \mathfrak{B} \rightarrow \mathfrak{B}_s \) be mappings with at least one common \(FP \) between \(\Upsilon_1 \) and \(\Upsilon_2 \). The collection of common \(FP \)s of mappings \(\Upsilon_2 \) and \(\Upsilon_1 \) is denoted by \(F(\Upsilon_2, \Upsilon_1) \).

We now present the \(G – CR \)–iteration algorithm, which is as follows:

\[
\begin{align*}
\{ a_0 &\in \mathfrak{B}_s, \\
a_{\eta+1} &= Q_{\mathfrak{B}_s}[(1 - \kappa_1) b_\eta + \kappa_1 \Upsilon_1 b_\eta], \\
b_\eta &= Q_{\mathfrak{B}_s}[(1 - \kappa_2) \Upsilon_2 a_\eta + \kappa_2 \Upsilon_1 c_\eta] , \\
c_\eta &= Q_{\mathfrak{B}_s}[(1 - \kappa_3) a_\eta + \kappa_3 \Upsilon_2 a_\eta] ,
\end{align*}
\]

\((G – CR) \)

where the sequences \(\{ \kappa_1 \}, \{ \kappa_2 \}, \{ \kappa_3 \} \in (0, 1) \). The sequence \(\{ a_\eta \} \) defined by \(G – CR \) is called the generalized \(CR \)–iteration algorithm for mappings \(\Upsilon_1 \) and \(\Upsilon_2 \). If \(\Upsilon_1 = \Upsilon_2 \), then \(G – CR \) iterative algorithm is defined as follows:

\[
\begin{align*}
\{ a_0 &\in \mathfrak{B}_s, \\
a_{\eta+1} &= Q_{\mathfrak{B}_s}[(1 - \kappa_1) b_\eta + \kappa_1 \Upsilon_1 b_\eta], \\
b_\eta &= Q_{\mathfrak{B}_s}[(1 - \kappa_2) \Upsilon_1 a_\eta + \kappa_2 \Upsilon_1 c_\eta] , \\
c_\eta &= Q_{\mathfrak{B}_s}[(1 - \kappa_3) a_\eta + \kappa_3 \Upsilon_1 a_\eta] ,
\end{align*}
\]

\(G \)–CR
Lemma 4.1. Let \mathcal{Q}_b_s be the sunny nonexpansive retraction and Υ_1, $\Upsilon_2 : \mathcal{B}_s \to \mathcal{B}$ be QNEM $\ni F (\Upsilon_2, \Upsilon_1) \neq \emptyset$. Let $\{\kappa_1^\eta\}$, $\{\kappa_2^\eta\}$, and $\{\kappa_3^\eta\}$ be sequences of real numbers $\ni 0 < \kappa_1^\eta$, κ_2^η, $\kappa_3^\eta < 1$, $\forall \eta \in \mathbb{N} \cup \{0\}$. Let the sequence $\{a_\eta\}$ be generated from $a_0 \in \mathcal{B}_s$ and be defined by G–CR. Then, for each $\sigma \in F (\Upsilon_2, \Upsilon_1)$, $\lim_{\eta \to \infty} ||a_\eta - \sigma||$ exists and
\[
||a_{\eta+1} - \sigma|| = ||\mathcal{Q}_b_s[(1 - \kappa_1^\eta)b_\eta + \kappa_1^\eta \Upsilon_1 b_\eta] - \mathcal{Q}_b_s[\sigma]|| \\
\leq ||(1 - \kappa_1^\eta)(b_\eta - \sigma) + \kappa_1^\eta(\Upsilon_1 b_\eta - \sigma)|| \\
\leq (1 - \kappa_1^\eta)||b_\eta - \sigma|| + \kappa_1^||\Upsilon_1 b_\eta - \sigma|| \\
\leq (1 - \kappa_1^\eta)||b_\eta - \sigma|| + \kappa_1^\|b_\eta - \sigma|| \\
= ||b_\eta - \sigma||.
\]
Also,
\[
||b_\eta - \sigma|| = ||\mathcal{Q}_b_s[(1 - \kappa_2^\eta)\Upsilon_2 a_\eta + \kappa_2^\eta \Upsilon_1 c_\eta] - \mathcal{Q}_b_s[\sigma]|| \\
\leq ||(1 - \kappa_2^\eta)(\Upsilon_2 a_\eta - \sigma) + \kappa_2^\eta(\Upsilon_1 c_\eta - \sigma)|| \\
\leq ||(1 - \kappa_2^\eta)(b_\eta - \sigma) + \kappa_2^\|b_\eta - \sigma|| \\
\leq (1 - \kappa_2^\eta)||a_\eta - \sigma|| + \kappa_2^\|c_\eta - \sigma||.
\]
Similarly,
\[
||c_\eta - \sigma|| = ||\mathcal{Q}_b_s[(1 - \kappa_3^\eta)a_\eta + \kappa_3^\eta \Upsilon_2 a_\eta] - \mathcal{Q}_b_s[\sigma]|| \\
\leq ||(1 - \kappa_3^\eta)(a_\eta - \sigma) + \kappa_3^\eta(\Upsilon_2 a_\eta - \sigma)|| \\
\leq (1 - \kappa_3^\eta)||a_\eta - \sigma|| + \kappa_3^\|a_\eta - \sigma|| \\
= ||a_\eta - \sigma||.
\]
Using inequality (4.4) in (4.3), we have
\[
||b_\eta - \sigma|| \leq ||a_\eta - \sigma||.
\]
Hence, the inequality (4.2) results
\[
||a_{\eta+1} - \sigma|| \leq ||a_\eta - \sigma||.
\]
Considering (4.6) and (4.2), we calculate the following result
\[
||a_{\eta+1} - \sigma|| \leq ||a_\eta - \sigma|| \leq ||a_{\eta-1} - \sigma|| \leq \ldots \leq ||a_0 - \sigma||,
\]
$\forall \eta \in \mathbb{N} \cup \{0\}$. Since $||a_\eta - \sigma||$ is monotonically decreasing, it confirms the convergence of $||a_\eta - \sigma||$. □
Asymptotic behavior of generalized CR–iteration algorithm 405

The convergence behaviour for QNEMs is now studied by the following theorem.

Theorem 4.2. Let $\emptyset \neq \mathcal{B}_s \subseteq \mathcal{B}$, with $Q_{\mathcal{B}_s}$ as the sunny nonexpansive retraction. Let Υ_1, $\Upsilon_2 : \mathcal{B}_s \to \mathcal{B}$ be QNEMs $\ni F(\Upsilon_1,\Upsilon_2) \neq \emptyset$. Let the real sequences $\{\kappa^1_i\}$, $\{\kappa^2_i\}$ and $\{\kappa^3_i\} \ni 0 < a \leq \kappa^1_i \leq \overline{a} < 1$, $0 < b \leq \kappa^2_i \leq \overline{b} < 1$ and $0 < c \leq \kappa^3_i \leq \overline{c} < 1 \forall \eta \in \mathbb{N} \cup \{0\}$. Let $a_0 \in \mathcal{B}_s$, and $P_{f(\Upsilon_1,\Upsilon_2)}(a_0) = a^*$. Let $\{a_{\eta}\}$ be the sequence defined by $(G – CR)$. Then, we have

1. $\{a_{\eta}\}$ is in a closed convex bounded set $CB_r[a^*] \cap \mathcal{B}_s$, where $r \in (0, \infty)$ \ni $||a_0 – a^*|| \leq r$.

2. If Υ be uniformly continuous, then

\[
\lim_{\eta \to \infty} ||a_{\eta} – \Upsilon_1a_{\eta}|| = 0 \text{ and } \lim_{\eta \to \infty} ||a_{\eta} – \Upsilon_2a_{\eta}|| = 0,
\]

then $\varphi_c : [0, \infty) \to [0, \infty)$, $\varphi(0) = 0$, where error bounds are as follows-

\[
a(1 – \overline{a}) \sum_{i=0}^{\eta} \varphi_c(||b_i – \Upsilon_1b_i||) \leq ||a_0 – a^*||^2 – ||a_{\eta+1} – a^*||^2, \tag{4.8}
\]

\[
b(1 – \overline{b}) \sum_{i=0}^{\eta} \varphi_c(||\Upsilon_2a_i – \Upsilon_1c_i||) \leq ||a_0 – a^*||^2 – ||a_{\eta+1} – a^*||^2
\]

\[-\sum_{i=0}^{\eta} \kappa^1_i(1 – \kappa^1_i)\varphi_c(||b_i – \Upsilon_1b_i||), \tag{4.9}
\]

\[
bc(1 – \overline{c}) \sum_{i=0}^{\eta} \varphi_c(||a_i – \Upsilon_2a_i||) \leq ||a_0 – a^*||^2 – ||a_{\eta+1} – a^*||^2
\]

\[-\sum_{i=0}^{\eta} \kappa^2_i(1 – \kappa^2_i)\varphi_c(||\Upsilon_2a_i – \Upsilon_1c_i||)
\]

\[-\sum_{i=0}^{\eta} \kappa^3_i(1 – \kappa^3_i)\varphi_c(||b_i – \Upsilon_1b_i||), \tag{4.10}
\]

\[\forall \eta \in \mathbb{N} \cup \{0\}.
\]

3. If $I – \Upsilon_2$ and $I – \Upsilon_1$ are demiclosed at 0 and \mathcal{B} satisfies the Opial condition, then $\{a_{\eta}\} \to \ell$ where $\ell \in F(\Upsilon_2,\Upsilon_1) \cap CB_r[a^*]$, where the convergence is weak.

Proof. (1) Let $a^* \in F(\Upsilon_2,\Upsilon_1)$. From inequality (4.7) the following holds for all $\eta \in \mathbb{N} \cup \{0\}$.

\[||a_{\eta+1} – a^*|| \leq ||a_\eta – a^*|| \leq ||a_{\eta-1} – a^*|| \leq \ldots \leq ||a_0 – a^*||.
\]

Hence, $\{a_{\eta}\} \in CB_r[a^*] \cap \mathcal{B}_s$.

(2) Let Υ_2 be uniformly continuous. By Lemma 4.1, we have that $\{a_{\eta}\}$, $\{b_{\eta}\}$ and $\{c_{\eta}\} \in CB_r[a^*] \cap \mathcal{B}_s$, and hence, from inequality (4.1), we have

\[||\Upsilon_2a_\eta – a^*|| \leq r, \quad ||\Upsilon_1a_\eta – a^*|| \leq r, \quad ||\Upsilon_1b_\eta – a^*|| \leq r \quad \text{and} \quad ||\Upsilon_1c_\eta – a^*|| \leq r,
\]
∀ η ∈ ℕ ∪ {0}.

Let \(\varphi_c \) be the function as defined in Lemma 1 for \(m = 2 \) and \(r_1 = r \). Benefiting from inequality (4.1) as well, we have

\[
\|a_{\eta+1} - a^*\| = \|Q_{\mathbb{B}_c}[(1 - \kappa_\eta^1) b_\eta + \kappa_\eta^1 \Upsilon_1 b_\eta] - Q_{\mathbb{B}_c}[a^*]\| \\
\leq \|(1 - \kappa_\eta^1)(b_\eta - a^*) + \kappa_\eta^1 (\Upsilon_1 b_\eta - a^*)\| \\
\leq (1 - \kappa_\eta^1)\|b_\eta - a^*\|^2 + \kappa_\eta^1 \|\Upsilon_1 b_\eta - a^*\|^2 - \kappa_\eta^1 (1 - \kappa_\eta^1)\varphi_c(\|b_\eta - \Upsilon_1 b_\eta\|) \\
\leq (1 - \kappa_\eta^1)\|b_\eta - a^*\|^2 + \kappa_\eta^1 \|b_\eta - a^*\|^2 - \kappa_\eta^1 (1 - \kappa_\eta^1)\varphi_c(\|b_\eta - \Upsilon_1 b_\eta\|) \\
= \|b_\eta - a^*\|^2 - \kappa_\eta^1 (1 - \kappa_\eta^1)\varphi_c(\|b_\eta - \Upsilon_1 b_\eta\|) \\
\leq \|a_\eta - a^*\|^2 - \kappa_\eta^1 (1 - \kappa_\eta^1)\varphi_c(\|b_\eta - \Upsilon_1 b_\eta\|),
\]

∀ η ∈ ℕ ∪ {0}. By the bounds of sequence \(\{\kappa_\eta^1\} \), we have

\[
\kappa_\eta^1 (1 - \kappa_\eta^1)\varphi_c(\|b_\eta - \Upsilon_1 b_\eta\|) \leq \|a_\eta - a^*\|^2 - \|a_{\eta+1} - a^*\|^2.
\]

Observe that

\[
a(1 - a) \sum_{\eta=0}^{\infty} \varphi_c(\|b_\eta - \Upsilon_1 b_\eta\|) \leq \|a_0 - a^*\| < \infty.
\]

We obtain that \(\lim_{\eta \to \infty} \|b_\eta - \Upsilon_1 b_\eta\| = 0 \). Using \((G - CR)\), we have

\[
\|b_\eta - a^*\|^2 = \|Q_{\mathbb{B}_c}[(1 - \kappa_\eta^2) \Upsilon_2 a_\eta + \kappa_\eta^2 \Upsilon_1 c_\eta] - Q_{\mathbb{B}_c}[a^*]\|^2 \\
\leq \|(1 - \kappa_\eta^2)(\Upsilon_2 a_\eta - a^*) + \kappa_\eta^2 (\Upsilon_1 c_\eta - a^*)\|^2 \\
\leq (1 - \kappa_\eta^2)\|\Upsilon_2 a_\eta - a^*\|^2 + \kappa_\eta^2 \|\Upsilon_1 c_\eta - a^*\|^2 - \kappa_\eta^2 (1 - \kappa_\eta^2)\varphi_c(\|\Upsilon_2 a_\eta - \Upsilon_1 c_\eta\|). \\
\leq (1 - \kappa_\eta^2)\|a_\eta - a^*\|^2 + \kappa_\eta^2 \|\Upsilon_1 c_\eta - a^*\|^2 - \kappa_\eta^2 (1 - \kappa_\eta^2)\varphi_c(\|\Upsilon_2 a_\eta - \Upsilon_1 c_\eta\|) \\
\leq \|a_\eta - a^*\|^2 - \kappa_\eta^2 (1 - \kappa_\eta^2)\varphi_c(\|\Upsilon_2 a_\eta - \Upsilon_1 c_\eta\|).
\]

Using inequality (4.11), we have

\[
\|a_{\eta+1} - a^*\|^2 \\
\leq \left[\|a_\eta - a^*\|^2 - \kappa_\eta^1 (1 - \kappa_\eta^1)\varphi_c(\|\Upsilon_2 a_\eta - \Upsilon_1 c_\eta\|)\right] - \kappa_\eta^1 (1 - \kappa_\eta^1)\varphi_c(\|b_\eta - \Upsilon_1 b_\eta\|) \\
\leq \left[\|a_\eta - a^*\|^2 - \kappa_\eta^1 \kappa_\eta^2 (1 - \kappa_\eta^1)\varphi_c(\|\Upsilon_2 a_\eta - \Upsilon_1 c_\eta\|)\right] - \kappa_\eta^1 (1 - \kappa_\eta^1)\varphi_c(\|b_\eta - \Upsilon_1 b_\eta\|).
\]

Noticeably \(a b (1 - b) \leq \kappa_\eta^1 \kappa_\eta^2 (1 - \kappa_\eta^2) \) η ∈ ℕ ∪ {0}. We obtain that

\[
a b \sum_{i=0}^{\eta} \varphi_c(\|\Upsilon_2 a_i - \Upsilon_1 c_i\|) \leq \|a_0 - a^*\|^2 - \|a_{\eta+1} - a^*\|^2 \\
- \sum_{i=0}^{\eta} \kappa_\eta^1 (1 - \kappa_\eta^1)\varphi_c(\|b_i - \Upsilon_1 b_i\|).
\]
Now, we have
\[\sum_{\eta=0}^{\infty} \varphi_c(||Y_2a_\eta - Y_1c_\eta||) \leq ||a_0 - a^*||^2 < \infty. \]

It results in that
\[\lim_{\eta \to \infty} ||Y_2a_\eta - Y_1c_\eta|| = 0. \]

Using the inequality (4.12), we have
\[
\begin{align*}
||b_\eta - a^*|| &\leq (1 - \kappa_2^2)||a_\eta - a^*||^2 + \kappa_2^2 \left[(1 - \kappa_3^2)(a_\eta - a^*) - \kappa_3^2(Y_2a_\eta - a^*) \right] \\
&= \kappa_3^2(1 - \kappa_3^2)\varphi_c(||Y_2a_\eta - Y_1c_\eta||) \\
&\leq (1 - \kappa_2^2)||a_\eta - a^*||^2 + \kappa_2^2 \left[(1 - \kappa_3^2)||a_\eta - a^*||^2 + \kappa_3^2||Y_2a_\eta - a^*||^2 \\
&= \kappa_2^2(1 - \kappa_2^2)\varphi_c(||a_\eta - Y_2a_\eta||) - \kappa_2^2(1 - \kappa_2^2)\varphi_c(||Y_2a_\eta - Y_1c_\eta||). \\
&\leq \kappa_2^2(1 - \kappa_2^2)\varphi_c(||a_\eta - Y_2a_\eta||) - \kappa_2^2(1 - \kappa_2^2)(||Y_2a_\eta - Y_1c_\eta||),
\end{align*}
\]
\[\forall \eta \in \mathbb{N} \cup \{0\}. \]

On the other hand, from inequality (4.11), we have
\[
||a_{\eta+1} - a^*|| \\
= ||b_\eta - a^*||^2 - \kappa_1^1(1 - \kappa_1^1)\varphi_c(||b_\eta - Y_1b_\eta||) \\
= \left[||a_\eta - a^*|| - \kappa_2^2\kappa_3^3(1 - \kappa_2^2)\varphi_c(||a_\eta - Y_2c_\eta||) - \kappa_2^2(1 - \kappa_2^2)(||Y_2a_\eta - Y_1c_\eta||) \right] \\
- \kappa_1^1(1 - \kappa_1^1)\varphi_c(||b_\eta - Y_1b_\eta||).
\]

Therefore, \(b \in (1 - \sigma) \leq b_\eta c_\eta (1 - c_\eta), \ \forall \eta \in \mathbb{N} \cup \{0\}. \) Noticeably
\[
\begin{align*}
\sum_{i=0}^{\eta} \varphi_c(a_i - Y_2c_i) &\leq ||a_0 - a^*||^2 - ||a_{\eta+1} - a^*||^2 \\
&= \sum_{i=0}^{\eta} \kappa_i^2(1 - \kappa_i^2)\varphi_c(||Y_2a_\eta - Y_1c_\eta||) \\
&= \sum_{i=0}^{\eta} \kappa_i^1(1 - \kappa_i^1)\varphi_c(||b_i - Y_1b_\eta||),
\end{align*}
\]
which follows that \(\lim_{\eta \to \infty} ||a_\eta - Y_2a_\eta|| \to 0. \) Note that
\[
||c_\eta - a_\eta|| = ||Q_{\omega_s}[(1 - \kappa_3^3)a_\eta + \kappa_3^3Y_2a_\eta] - Q_{\omega_s}[a^*]|| \\
= ||Y_2a_\eta - a_\eta|| \to 0 \text{ as } \eta \to \infty.
\]

It is given that \(Y_2 \) is uniformly continuous, so using Proposition (3.5)
\[
\lim_{\eta \to \infty} ||c_\eta - Y_2c_\eta|| = 0.
\]
Therefore, from
\[
\lim_{\eta \to \infty} ||Y_2a_\eta - Y_1c_\eta|| = 0,
\]
we have
\[||a_\eta - \Upsilon_2 a_\eta|| = 0. \]

(3) Let \mathcal{B} satisfies the Opial condition and Υ_1 and Υ_2 with $CFP \omega$, where $\omega \in CB_r[a^*] \cap \mathcal{B}_s$. Lemma 4.1 results that $\lim_{\eta \to \infty} ||a_\eta - \omega||$ exists. Let $\exists \{a_{\eta p}\}$ and $\{a_{\theta q}\}$ convergent to two distinct points ω_1 and ω_2 in $CB_r \cap \mathcal{B}_s$, respectively. Since both $I - \Upsilon_1$ and $I - \Upsilon_2$ are demiclosed at 0, we have
\[\Upsilon_1 \omega_1 = \Upsilon_2 \omega_1 = \omega \]
and
\[\Upsilon_1 \omega_2 = \Upsilon_2 \omega_2 = \omega. \]
Furthermore, the Opial condition results
\[\lim_{\eta \to \infty} ||a_\eta - \omega_1|| = \lim_{p \to \infty} ||a_{\eta p} - \omega_1|| < \lim_{q \to \infty} ||a_{\theta q} - \omega_2|| = \lim_{\eta \to \infty} ||a_\eta - \omega_2||. \]
In similar manner, we have
\[\lim_{\eta \to \infty} ||a_\eta - \omega_2|| < \lim_{\eta \to \infty} ||a_\eta - \omega_1||, \]
which is a contradiction. Hence, $\omega_1 = \omega_2$, which confirms the existence of the convergent sequence $\{a_\eta\}$ which converges weakly to $\omega \in F(\Upsilon_1, \Upsilon_2) \cap CB_r[a^*]$. \hfill \Box

Also, if any nonexpansive mapping is uniformly continuous, we may deduce a convergence theorem for estimating the common FP_s of two nonexpansive mappings from Theorem 4.2 and Lemma 3.3.

Theorem 4.3. Let $\emptyset \neq \mathcal{B}_s \subseteq \mathcal{B}$ with $Q_{\mathcal{B}_s}$ as the sunny nonexpansive retraction. Let $\Upsilon_1, \Upsilon_2 : \mathcal{B}_s \to \mathcal{B}$ be nonexpansive mappings such that $F(\Upsilon_1, \Upsilon_2) \neq \emptyset$. Let the real sequences $\{\kappa^1_\eta\}, \{\kappa^2_\eta\}$ and $\{\kappa^3_\eta\} \ni 0 < a \leq \kappa^1_\eta \leq \bar{a} < 1, 0 < b \leq \kappa^2_\eta \leq \bar{b} < 1$ and $0 < c \leq \kappa^3_\eta \leq \bar{c} < 1 \forall \eta \in \mathbb{N} \cup \{0\}$. Let $a_0 \in \mathcal{B}_s$ and $P_{F(\Upsilon_1, \Upsilon_2)}(a_0) = a^*$. Let $\{a_\eta\}$ be the sequence defined by $(G - CR)$. Then, we have

1. $\{a_\eta\}$ is in a closed convex bounded set $CB_r[a^*] \cap \mathcal{B}_s$, where
 \[r \in (0, \infty) \ni ||a_0 - a^*|| = r. \]
2. $\lim_{\eta \to \infty} ||a_\eta - \Upsilon_1 a_\eta|| = 0$ and $\lim_{\eta \to \infty} ||a_\eta - \Upsilon_2 a_\eta|| = 0$ with the same error bounds (2) defined in Theorem 4.2.
3. If $I - \Upsilon_2$ and $I - \Upsilon_1$ are demiclosed at 0 and \mathcal{B} satisfies the Opial condition, then $\{a_\eta\}$ is convergent to an element of $F(\Upsilon_1, \Upsilon_2) \cap CB_r[a^*]$, where the convergence is weak convergence.

We may restate condition (3) of Theorem 4.3 as if \mathcal{B} meets the Opial condition, $\{a_\eta\}$ weakly converges to an element of $F(\Upsilon_1, \Upsilon_2)$, if $P_{F(\Upsilon_1, \Upsilon_2)}$ cannot be determined. Therefore we can define the following:

Corollary 4.4. Let $\Upsilon_1, \ Upsilon_2 : \mathcal{H}_s \to \mathcal{H}_s$ be nonexpansive mappings such that $F(\Upsilon_1, \Upsilon_2) \neq \emptyset$. Let the real sequences $\{\kappa^1_\eta\}, \{\kappa^2_\eta\}$ and $\{\kappa^3_\eta\} \ni 0 < a \leq \kappa^1_\eta \leq \bar{a} < 1,$
Asymptotic behavior of generalized CR–iteration algorithm 409

Let the sequence \(\{ a_\eta \} \) be defined as follows

\[
\begin{aligned}
a_0 & \in \mathcal{B}_s, \\
a_{\eta + 1} & = (1 - \kappa^1_\eta) b_\eta + \kappa^1_\eta \Upsilon_1 b_\eta, \\
b_\eta & = (1 - \kappa^2_\eta) \Upsilon_2 a_\eta + \kappa^2_\eta \Upsilon_1 c_\eta, \\
c_\eta & = (1 - \kappa^3_\eta) a_\eta + \kappa^3_\eta \Upsilon_2 a_\eta, \quad \eta \in \mathbb{N} \cup \{0\}.
\end{aligned}
\]

Then the sequence \(\{ a_\eta \} \) is convergent weakly to an element of \(\Upsilon (\Upsilon_1, \Upsilon_2) \).

5. Application

It is important to note that various problems based on signal processing and machine learning can be expressed in accordance with the following manner.

Problem 1. For an \(m \)-accretive operator \(A : \mathcal{B} \to 2^{\mathcal{B}} \), find an element that satisfies

\[
a \in \mathcal{B} \text{ such that } 0 \in A a.
\]

PPA, introduced by Martinet (see [15], [14]) and generalized by Rockafellar ([17], [18]) is one of the popular methods to solve this problem. Also, Rockafellar [17] studied the weak convergence of the PPA, namely:

\[
a_{\eta + 1} = J_{A_\Delta} a_\eta, \quad \text{for all } \eta \in \mathbb{N} \cup \{0\},
\]

for the solution to Problem 5.1 and \(a_0 \in \mathcal{B} \). The weak and strong convergences of the sequence \(\{ x_\eta \} \) defined by equation (5.2) have been extensively studied in various ambient spaces e.g. Hilbert and Banach spaces (see [23], [22], [24], [25] and the references therein). The general form of Problem 1 is as follows:

Problem 2. Let the mappings \(A, A_1 : \mathcal{B} \to 2^{\mathcal{B}} \) be \(m \)-accretive operators. Find an element

\[
a \in \mathcal{B} \ni 0 \in A a \cap A_1 a,
\]

when \(A \) and \(A_1 \) are two maximal monotone operators in a \(\mathcal{H}_s \).

We are now eligible to utilize our observations, which are primarily focused on accretive operators’ common zeros. We name \((G - CR)\) an iteration - based proximal point algorithm when \(\Upsilon_1 = J_{A_\Delta} A \) and \(\Upsilon_2 = J_{A_\Delta} A_1 \). In a more generalized context, we now analyze its convergence to solve Problem 2.

Theorem 5.1. Let \(\emptyset \neq \mathcal{B}_s \) be Opial condition. Let \(A : \text{Dom}(A) \subseteq \mathcal{B}_s \to 2^{\mathcal{B}} \) and \(A_1 : \text{Dom}(A_1) \subseteq \mathcal{B}_s \to 2^{\mathcal{B}} \) be accretive operators \(\ni \text{Dom}(A) \subseteq \mathcal{B}_s \subseteq \cap_{\lambda > 0} \text{Ran}(I + \lambda A), \text{Dom}(A_1) \subseteq \mathcal{B}_s \subseteq \cap_{\lambda > 0} \text{Ran}(I + \lambda A_1) \) and \(A^{-1}(0) \cap A_1^{-1}(0) \neq \emptyset \). Let \(\{ \kappa^1_\eta \}, \{ \kappa^2_\eta \}, \text{ and } \{ \kappa^3_\eta \} \) be sequences of real numbers \(\ni 0 < a \leq \kappa^1_\eta < \overline{a} < 1, \ b \leq \kappa^2_\eta < \overline{b} \), where \(b, \overline{b} \in (0, 1) \) and \(c \leq \kappa^3_\eta < \overline{c} \), \(\overline{c} \in (0, 1) \forall \eta \in \mathbb{N} \cup \{0\} \). Let \(\Delta > 0 \),
\(a_0 \in B_s \) and \(P_{A^{-1}(0) \cap A_1^{-1}(0)}(a_0) = a^* \). Let the sequence \(\{a_\eta\} \) be defined as follows:

\[
\begin{align*}
 a_0 &\in B_s, \\
 a_{\eta+1} &= (1 - \kappa_1) b_\eta + \kappa_1 J_{A^1} b_\eta, \\
 b_\eta &= (1 - \kappa_2) J_{A}^1 a_\eta + \kappa_2 J_{A^1} c_\eta, \\
 c_\eta &= (1 - \kappa_3) J_{A}^1 a_\eta + \kappa_3 J_{A^1} c_\eta,
\end{align*}
\]

Then, we have

1. \(\{a_\eta\} \) is in a closed convex bounded set \(\text{CB}_r[a^*] \cap B_s \), where \(r \in (0, \infty) \not\equiv ||a_0 - a^*|| \leq r \).

2. \(\lim_{\eta \to \infty} ||a_\eta - J_{A^1} a_\eta|| = 0 \) and \(\lim_{\eta \to \infty} ||a_\eta - J_{A^1} a_\eta|| = 0 \) with the same error bounds (2) defined in Theorem 4.2 where \(\Upsilon_1 = J_{A^1}^1 \) and \(\Upsilon_2 = J_{A^1}^1 \).

3. \(\{a_\eta\} \) is convergent to an element of \(A^{-1}(0) \cap A_1^{-1}(0) \cap \text{CB}[a^*] \) and the convergence is weak convergence.

Proof. As \(\text{Dom}(A) \subseteq B_s \subseteq \cap_{\lambda > 0} \text{Ran}(I + \lambda A) \), it is to note that \(J_{A^1}^1 : B_s \to B_s \) is nonexpansive. Also, \(J_{A^1}^1 : B_s \to B_s \) is nonexpansive. Also, \(\text{Dom}(A) \cap \text{Dom}(B) \subseteq B_s \), hence we have

\[
\begin{align*}
 a &\in A^{-1}(0)A_1^{-1}(0) \implies a \in \text{Dom}(A) \cap \text{Dom}(A_1) \text{ with } 0 \in Aa \text{ and } 0 \in A_1 a \\
 \implies a &\in B_s \text{ with } J_{A^1}^1 a = a \text{ and } J_{A^1}^1 a = a \\
 \implies a &\in \text{F}(J_{A^1}^1, J_{A^1}^1).
\end{align*}
\]

Substitute \(\Upsilon_1 = J_{A^1}^1 \) and \(\Upsilon_2 = J_{A^1}^1 \). As a result, Theorem 5.1 refers to the proof from Theorem 4.3.

Example 5.2. For the problem given below, find the element which satisfies

\[
\alpha \in \partial A^{-1}(0) \cap \partial A_1^{-1}(0),
\]

where \(A, A_1 : \mathbb{R} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R} \) are defined as follows:

\[
A(a) = \frac{1}{2} \langle \nabla f(a), a \rangle + \langle a, \beta \rangle.
\]

Also

\[
A_1(a) = \frac{1}{2} \langle \nabla g(a), a \rangle + \langle a, \gamma \rangle.
\]

\[\forall \ a \in \mathbb{R} \times \mathbb{R} \times \mathbb{R} \text{ and} \]

\[
\nabla f = \begin{pmatrix} 1 & 2 & -3 \\ 1 & 2 & -3 \\ -1 & -1 & 3 \end{pmatrix}
\]

and

\[
\nabla g = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix},
\]
$\beta = (2, 6, 8)$ and $\gamma = (2, 6, 0)$. Here, it easy to conclude that the functions ∇f and ∇g are convex and continuous as well on $\mathbb{R} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ with $\text{del} \nabla f(\cdot) = \mathcal{A}(\cdot) + \beta$, $\text{del} \nabla g(\cdot) = \mathcal{A}_1(\cdot) + \gamma$ and
\[
\mathcal{J} = \{a, b, c : a + b = 8, c = 0\}.
\]
Let us define a sequence $\{a_n, b_n, c_n\}$ with initial value $\{a_0, b_0, c_0\}$ as follows:
\[
\begin{align*}
\{a_0 \in \mathcal{B}_s, \\
(a_{n+1}, b_{n+1}, c_{n+1}) &= (1 - \kappa_n)(a_n, b_n, c_n) + \kappa_n \Upsilon_1(a_n, b_n, c_n), \\
(b_n, b_n, b_n) &= (1 - \kappa_n)(b_n, b_n, b_n) + \kappa_n \Upsilon_2(b_n, b_n, b_n), \\
(c_n, c_n, c_n) &= (1 - \kappa_n)(c_n, c_n, c_n) + \kappa_n \Upsilon_2(c_n, c_n, c_n),
\end{align*}
\]
where $\Upsilon_1 = (I + \text{del} \nabla_f)^{-1}$ and $\Upsilon_2 = (I + \text{del} \nabla_g)^{-1}$, $0 < \kappa_n, \kappa_n, \kappa_n < 1$. Using initial value as (a_0, b_0, c_0), $\forall a_0, b_0, c_0 \in \mathbb{R}$ in Theorem 4.2, we can find the solution for distinct values of (a_0, b_0, c_0).

Conclusion. Inspired by two well-known concepts, CR–iterative algorithm by Chug et al. [5] and common zero of two accretive operators by Kim & Tuyen [10], in this analysis we have introduced the Generalized $G-\text{CR}$ iteration algorithm and analyzed its convergence behaviour to find CFP for nonself QNMs in convex Banach spaces. In order to understand the work, application of the the same is also analyzed.

References

Aadil Mushtaq
Maulana Azad National Urdu University,
Department of Mathematics,
Gachibowlli, 500032 Hyderabad, India
e-mail: aadilmuhtaq456@gmail.com

Khaja Moinuddin
Maulana Azad National Urdu University,
Department of Mathematics,
Gachibowlli, 500032 Hyderabad, India
e-mail: kmoiinuddin71@gmail.com
Nisha Sharma
Pt. J.L.N. Govt. College,
Department of Higher Education,
Harayana, India
e-mail: nnisha.bhardwaj@gmail.com

Anita Tomar
Pt.L.M.S. Campus, Sridev Suman Uttarakhand University,
Rishikesh, Uttarakhand, India
e-mail: anitatmr@yahoo.com