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Abstract. In this paper, we discuss a new splitting algorithm for solving equi-
librium problems arising from Nash-Cournot oligopolistic equilibrium problems
in electricity markets with non-convex cost functions. Under the strong pseu-
domonotonicity of the original bifunction and suitable conditions of the compo-
nent bifunctions, we prove the strong convergence of the proposed algorithm. Our
results improve and develop previously discussed extragradient-like splitting al-
gorithms and general extragradient algorithms. We also present some numerical
experiments and compare our algorithm with the existing ones.
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1. Introduction

In recent years, equilibrium problems (EP) have been investigated by many
researchers. It is well known that various classes of optimization, variational inequality,
Kakutani fixed point, Nash equilibrium in noncooperative game theory and minimax
problems can be formulated as an equilibrium problem [5].

An equilibrium problem can be formulated by means of Ky Fan’s inequality [5]:

find x∗ ∈ C such that f(x∗, y) ≥ 0 for all y ∈ C, EP (f, C)

where C is a nonempty closed convex subset in a Hilbert space H and f : C×C → R
is a bifunction such that f(x, x) = 0 for all x ∈ C. The set of solutions of EP (f, C)
is denoted by Sol(f, C).
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Projection-type methods are very popular for solving equilibrium problems be-
cause the iterations can be performed cheaply. At each iteration of these algorithms,
we have to solve the strongly convex problem

min{λkf(xk, y) +
1

2
‖y − xk‖2 : y ∈ C}, (1.1)

where λk > 0 is the step size and xk is the current approximation of the solution.
Note that, in the variational inequalities case, when f(x, y) := 〈F (x), y − x〉, where
F : C → C is a mapping, problem (1.1) becomes

find PC
(
xk − λkF (xk)

)
, (1.2)

where PC is the projection onto C.
The computational cost of solving problems (1.1) is the main factor influencing

performance of projection-type methods. One effective way to reduce the computa-
tional cost is to decompose f into two or more component bifunctions. Then, instead
of solving (1.1), we have to solve only the simpler subproblems for these component
bifunctions [4, 6, 11, 12]. Since 1950s, operator splitting techniques have been success-
fully used in PDE, large-scale optimization problems and signal processing to reduce
complex problems into a series of simpler subproblems [7]. In the past decade, this
technique has been received much attention due to its vast applications [2, 6, 4, 12].
Recently, in [1], the authors have introduced splitting algorithms for equilibrium prob-
lems when f = f1 +f2. Under the strong pseudomonotonicity of the bifunction f and
suitable conditions of f1 and f2, the algorithm proposed in [1] is strongly convergent.
However, it may happen that the bifunction f is decomposed into three components,
i.e., f = f1 + f2 + f3 (see Example 4.1 in Sect. 4). Then, the two-component splitting
algorithm in [1] is not suitable. In this paper, inspired by work in [1, 9], we propose
a new splitting algorithm for solving this class of equilibrium problems.

The rest of this article is divided into three sections. Section 2 recalls some
mathematical preliminaries needed in the sequel. Section 3 presents a three-component
splitting algorithm for equilibrium problems and provides the convergence analysis of
the proposed algorithm. Some preliminary computational results are presented in the
last section. Also in this section, we introduce a new Nash-Cournot equilibrium model
for electricity markets. In contrast to the existing ones, the new model contains non-
convex cost functions, and hence, the bifunction f of the corresponding equilibrium
problem is decomposed into three components. We then apply the proposed algorithm
to solve this problem.

2. Preliminaries

In this section, we present some basic concepts, properties, and notations
which will be useful in the sequel. Let H be a real Hilbert space, equipped with the
Euclidean inner product 〈., .〉 and the associated norm ‖.‖, C be a nonempty closed
convex subset in H. Let f : C × C → R be a bifunction on C, satisfying f(x, x) = 0
for all x ∈ C.
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Definition 2.1. [15] A bifunction f : C × C → R is said to be

1. γ-strongly monotone on C if there exists a constant γ > 0 such that for all
x, y ∈ C,

f(x, y) + f(y, x) ≤ −γ‖x− y‖2;

2. monotone on C if for all x, y ∈ C,

f(x, y) + f(y, x) ≤ 0;

3. γ-strongly pseudomonotone on C if there exists a constant γ > 0 such that for
all x, y ∈ C,

f(x, y) ≥ 0⇒ f(y, x) ≤ −γ‖x− y‖2;

4. pseudomonotone on C if for all x, y ∈ C,

f(x, y) ≥ 0⇒ f(y, x) ≤ 0.

Definition 2.2. [1] A bifunction f : C×C → R is said to be Lipschitz-type continuous
if there exists a constant Q > 0 such that for all x, y, z ∈ C,

|f(x, y) + f(y, z)− f(x, z)| ≤ Q‖x− y‖‖y − z‖. (2.1)

Note that, if we choose f(x, y) := 〈Fx, y − x〉, where F : C → C is a Lipschitz
continuous mapping, then the corresponding bifunction f is Lipschitz-type continu-
ous.

Definition 2.3. [1] A bifunction f : C × C → R is said to be partially τ -Hölder
continuous on C if there exist a constant L > 0 and τ ∈ (0, 1] such that for all
x, y, z ∈ C, at least one of the following conditions is satisfied:

(i) |f(x, y)− f(z, y)| ≤ L‖x− z‖τ ;
(ii) |f(x, y)− f(x, z)| ≤ L‖y − z‖τ .

It is easy seen that, if an equilibrium bifunction f is τ -Hölder continuous on C
then

|f(x, y)| ≤ L‖x− y‖τ ∀x, y ∈ C. (2.2)

Definition 2.4. The subdifferential of a function u : H → R at x is the set:

∂u(x) := {w ∈ H : u(y)− u(x) ≥ 〈w, y − x〉 ∀y ∈ H}.

The normal cone of C at x ∈ C is defined by

NC(x) := {q ∈ H : 〈q, y − x〉 ≤ 0 ∀y ∈ C}.

In order to prove our main results, we need the following lemmas.

Lemma 2.5. [16] Let f : C → R be convex and subdifferentiable on C. Then, x∗ is a
solution of the problem

min{f(x) : x ∈ C}
if and only if 0 ∈ ∂f(x∗) +NC(x∗).
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Lemma 2.6. (Lemma 2.5 [18]) Let {αk}, {βk}, {λk} be sequences of nonnegative
numbers satisfying

αk+1 ≤ (1− λk)αk + λkγk + βk ∀k ≥ 1.

If λk ∈ (0, 1) ∀k ≥ 1,

∞∑
k=1

λk =∞, lim sup
k→∞

γk ≤ 0 and

∞∑
k=1

βk <∞ then lim
k→∞

αk = 0.

3. Three-component splitting algorithm

Let C be a nonempty, closed, convex subset in a Hilbert spaceH and f : C×C :→
R be a bifunction on C. We are interested in the equilibrium problem

find x∗ ∈ C such that f(x∗, y) ≥ 0 for all y ∈ C, (3.1)

where f can be decomposed into three components: f = f1 + f2 + f3, fi (i = 1, 2, 3)
are equilibrium bifunctions on C, i.e., fi(x, x) = 0 for all x ∈ C.

Assumption 1. In this paper, we assume that

A.1 For each x ∈ C, the function fi(x, .) (i = 1, 2, 3) is lower semicontinuous, convex
and for each y ∈ C, the function f(., y) is hemicontinuous on C, i.e.

lim
t→0

f(tz + (1− t)x, y) = f(x, y), ∀x, y, z ∈ C.

A.2 The bifunction f is γ-strongly pseudomonotone.

Note that under assumptions A.1 and A.2, problem EP (f, C) has a unique
solution [13]. To find this solution, we propose the following three-component splitting
algorithm.

Algorithm 3.1. (Three-component splitting algorithm - 3-CSA))
Step 0. Choose x0 ∈ C, λk ⊂ (0,+∞). Set k = 0.

Step 1. Given xk, compute xk+1 as

x̄k = argmin
{
λkf1(xk, y) +

1

2
‖y − xk‖2 : y ∈ C

}
,

x̃k = argmin
{
λkf2(x̄k, y) +

1

2
‖y − x̄k‖2 : y ∈ C

}
,

xk+1 = argmin
{
λkf3(x̃k, y) +

1

2
‖y − x̃k‖2 : y ∈ C

}
.

Step 2. Update k := k + 1 and go to Step 1.

Theorem 3.2. Assume that conditions A.1, A.2 hold, f1 is Q-Lipschitz-type continu-
ous, fi is partially τi-Holder continuous, i = 2, 3. Moreover, suppose that

(B.1)
+∞∑
k=1

λk = +∞,

(B.3)
+∞∑
k=1

(λk)
2

2−τ < +∞,

where τ = min{τ2, τ3}. Then, the sequence {xk} generated by Algorithm 3.1 strongly
converges to the unique solution x∗ of EP (f, C).
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Proof. Since x̄k is the unique solution of the problem

min
{
λkf1(xk, y) +

1

2
‖y − xk‖2 : y ∈ C

}
,

there exist ωk ∈ ∂f1(xk, .)(x̄k) and qk ∈ NC(x̄k) such that

0 = λkω
k + x̄k − xk + qk.

From the definition of NC(.), we have〈
xk − x̄k − λkωk, y − x̄k

〉
≤ 0 ∀y ∈ C. (3.2)

Hence,

λk
〈
ωk, y − x̄k

〉
≤ λk(f1(xk, y)− f1(xk, x̄k)) ∀y ∈ C. (3.3)

Combining (3.2) and (3.3), we get〈
xk − x̄k, y − xk

〉
≤ λk(f1(xk, y)− f1(xk, x̄k))− ‖xk − x̄k‖2 ∀y ∈ C. (3.4)

Analogously, since x̃k and xk+1 are the solutions of the problems

min
{
λkf2(x̄k, y) +

1

2
‖y − x̄k‖2 : y ∈ C

}
,

min
{
λkf3(x̃k, y) +

1

2
‖y − x̃k‖2 : y ∈ C

}
,

it follows that〈
x̄k − x̃k, y − x̄k

〉
≤ λk(f2(x̄k, y)− f2(x̄k, x̃k))− ‖x̄k − x̃k‖2 ∀y ∈ C. (3.5)

and〈
x̃k − xk+1, y − x̃k

〉
≤ λk(f3(x̃k, y)− f3(x̃k, xk+1))− ‖x̃k − xk+1‖2 ∀y ∈ C. (3.6)

In (3.6), taking y = x̃k, we get

‖xk+1 − x̃k‖2 ≤ −λkf3(x̃k, xk+1) ≤ λk|f3(x̃k, xk+1)|. (3.7)

Since f3 is partially τ3-Holder continuous and f3(x, x) = 0 for all x ∈ C, there exists
a constant L3 > 0 such that for all k ≥ 1, it holds that

|f3(x̃k, xk+1)| ≤ L3‖xk+1 − x̃k‖τ3 . (3.8)

Combining (3.7) and (3.8), we obtain

‖xk+1 − x̃k‖ ≤ (L3λk)
1

2−τ3 (3.9)

and

λk|f3(x̃k, xk+1)| ≤ (L3λk)
2

2−τ3 . (3.10)

In (3.5), taking y = x̄k and using the partial Holder continuity of f2, we get

‖x̃k − x̄k‖ ≤ (L2λk)
1

2−τ2 (3.11)

and

λk|f2(x̄k, x̃k)| ≤ (L2λk)
2

2−τ2 . (3.12)
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From (3.4) and the Q-Lipschitz continuity of f1, we arrive at

‖x̄k − y‖2 = ‖x̄k − xk‖2 + ‖xk − y‖2 +
〈
x̄k − xk, xk − y

〉
≤ ‖xk − y‖2 − ‖x̄k − xk‖2 + 2λk(f1(xk, y)− f1(xk, x̄k))

≤ ‖xk − y‖2 − ‖x̄k − xk‖2 + 2λk(f1(x̄k, y) +Q‖x̄k − xk‖.‖x̄k − y‖)

≤ ‖xk − y‖2 − ‖x̄k − xk‖2 + 2λkf1(x̄k, y)

+ (Qλk)2‖x̄k − y‖2 + ‖x̄k − xk‖2

= ‖xk − y‖2 + 2λkf1(x̄k, y) + (Qλk)2‖x̄k − y‖2. (3.13)

Analogously to (3.5), (3.6) we get

‖x̃k − y‖2 ≤ ‖x̄k − y‖2 − ‖x̃k − x̄k‖2 + 2λk(f2(x̄k, y)− f2(x̄k, x̃k))

≤ ‖x̄k − y‖2 + 2λk(f2(x̄k, y)− f2(x̄k, x̃k))

≤ ‖x̄k − y‖2 + 2λkf2(x̄k, y) + 2λk|f2(x̄k, x̃k)|. (3.14)

and

‖xk+1 − y‖2 ≤ ‖x̃k − y‖2 − ‖xk+1 − x̃k‖2 + 2λk(f3(x̃k, y)− f3(x̃k, xk+1))

≤ ‖x̃k − y‖2 + 2λk(f3(x̃k, y)− f3(x̃k, xk+1))

= ‖x̃k − y‖2 + 2λkf3(x̄k, y)− 2λkf3(x̃k, xk+1)

+ 2λk(f3(x̃k, y)− f3(x̄k, y))

≤ ‖x̃k − y‖2 + 2λkf3(x̄k, y) + 2λk|f3(x̃k, xk+1)|

+ 2λk|f3(x̃k, y)− f3(x̄k, y)|. (3.15)

From (3.9)-(3.15) and the partial τ3-Holder continuity of f3, we have

‖xk+1 − y‖2 ≤ ‖xk − y‖2 + 2λkf(x̄k, y) + (Qλk)2‖x̄k − y‖2

+ 2λk|f2(x̄k, x̃k)|+ 2λk|f3(x̃k, xk+1)|

+ 2λk|f3(x̃k, y)− f3(x̄k, y)|

≤ ‖xk − y‖2 + 2λkf(x̄k, y) + (Qλk)2‖x̄k − y‖2

+ 2(L2λk)
2

2−τ2 + 2(L3λk)
2

2−τ3 + 2λk(L3λk)
τ3

2−τ2 . (3.16)

In (3.16), taking y = x∗ and using the γ-strong pseudomonotonicity of f , we obtain

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − λk(2γ −Q2λk)‖x̄k − x∗‖2+

+ 2(L2λk)
2

2−τ2 + 2(L3λk)
2

2−τ3 + 2λk(L3λk)
τ3

2−τ2 . (3.17)

Using the inequality ‖a+ b‖ ≥ |‖a‖ − ‖b‖| for all a, b ∈ H, we infer that

λk‖x̄k − x∗‖2 ≥ λk(‖x̄k − xk+1‖ − ‖xk+1 − x∗‖)2

≥ (λk − 1)‖x̄k − xk+1‖2 + λk(1− λk)‖xk+1 − x∗‖2. (3.18)
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Since lim
k→+∞

λk = 0, without loss of generality we can assume that 1 − λk > 0 and

2γ −Q2λk > 0 for all k ≥ 1. Combining (3.17) and (3.18), we arrive at

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + (2γ −Q2λk)(1− λk)‖x̄k − xk+1‖2

+ λk(1− λk)(2γ −Q2λk)‖xk+1 − x∗‖2

+ 2(L2λk)
2

2−τ2 + 2(L3λk)
2

2−τ3 + 2λk(L3λk)
τ3

2−τ2 . (3.19)

On the other hand, it holds that

‖x̄k − xk+1‖2 = ‖x̄k − x̃k‖2 + ‖x̃k − xk+1‖2 + 2
〈
x̃k − xk+1, x̄k − x̃k

〉
≤ (L2λk)

2
2−τ2 + (L3λk)

2
2−τ3 + 2

〈
x̃k − xk+1, x̄k − x̃k

〉
. (3.20)

In (3.6), taking y = x̄k, we get

2
〈
x̃k − xk+1, x̄k − x̃k

〉
≤ 2λk(f3(x̃k, x̄k)− f3(x̃k, xk+1))

≤ 2λk|f3(x̃k, x̄k)|+ 2λk|f3(x̃k, xk+1)|

≤ 2λkL3‖x̃k − x̄k‖τ3 + 2(L3λk)
2

2−τ3

≤ 2λkL3(L2λk)
τ3

2−τ2 + 2(L3λk)
2

2−τ3 . (3.21)

Combining (3.19)-(3.21), we have

[1 + λk(1− λk)(2γ −Q2λk)]‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + 2(γ + 1)(L2λk)
2

2−τ2

+ 2(2γ + 1)(L3λk)
2

2−τ3

+ 2
(
L3L

τ3
2−τ2
2 + L

τ3
2−τ2
3

)
λ

2+τ3−τ2
2−τ2

k ,

or

‖xk+1 − x∗‖2 ≤ (1−Ak)‖xk − x∗‖2 +Bk + Ck +Dk,

where

Ak =
λk(1− λk)(2γ −Q2λk)

1 + λk(1− λk)(2γ −Q2λk)
,

Bk =
2(γ + 1)(L2λk)

2
2−τ2

1 + λk(1− λk)(2γ −Q2λk)
,

Ck =
2(2γ + 1)(L3λk)

2
2−τ3

1 + λk(1− λk)(2γ −Q2λk)
,

Dk =
2
(
L3L

τ3
2−τ2
2 + L

τ3
2−τ2
3

)
λ

2+τ3−τ2
2−τ2

k

1 + λk(1− λk)(2γ −Q2λk)
.

We have

lim
k→+∞

( λk(1− λk)(2γ −Q2λk)

1 + λk(1− λk)(2γ −Q2λk)
.

1

λk

)
= lim
k→+∞

( (1− λk)(2γ −Q2λk)

1 + λk(1− λk)(2γ −Q2λk)

)
= 2γ,
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moreover, since
+∞∑
k=1

λk = +∞, it follows that

+∞∑
k=1

Ak =

+∞∑
k=1

( λk(1− λk)(2γ −Q2λk)

1 + λk(1− λk)(2γ −Q2λk)

)
= +∞.

On the other hand,

lim
k→+∞

(
Bk.

1

λ
2

2−τ
k

)
= 0, lim

k→+∞

(
Ck.

1

λ
2

2−τ
k

)
= 0, lim

k→+∞

(
Dk.

1

λ
2

2−τ
k

)
= 0

it implies that
+∞∑
k=1

(Bk + Ck +Dk) < +∞.

Applying Lemma 2.6, we get lim
k→+∞

‖xk − x∗‖2 = 0 or lim
k→+∞

xk = x∗. �

Remark 3.3. (a) Since τ ∈ (0, 1], 2
2−τ ∈ (1, 2], we can choose a sequence {λk} satis-

fying conditions (B.1)-(B.3), for example, λk = 1
kα , where α ∈ ( 2−τ

2 , 1).
(b) In Algorithm 3.1, we need not to know the Lipschitz constant Q of f1.
(c) Algorithm 3.1 reminds the so-called General Extragradient Algorithm in [9],

in the sense that the both algorithms require three subproblems at each itera-
tion. However, our algorithm has a clear advantage: at each iteration, we have
to solve only subproblems for the component bifunctions fi, instead of solving
subproblems for the whole bifunction f . Hence, our algorithm may have a low
computational cost when the function f has a complicated structure, while the
component bifunctions fi are simpler.

(d) If f3 = 0, i.e. f = f1 + f2, then the new algorithm collapses to the existing one
in [1].

4. Numerical examples

In this section, we provide an application of the proposed algorithm to electricity
markets. We also compare our algorithm with some existing ones. All the program-
mings are implemented in MATLAB R2010b running on a PC with Intel R©Core2TM

Quad Processor Q9400 2.66Ghz 4GB Ram.

Example 4.1. (Nash-Cournot oligopolistic equilibrium model for electricity markets
with non-convex cost functions)
We introduce a Nash-Cournot oligopolistic equilibrium model for electricity markets.
In contrast to the existing ones considered in [14, 1], the new model contains non-
convex cost functions. In this situation, the three-component splitting algorithm seem
to be the most suitable one for solving the corresponding equilibrium problem.

Consider an electricity market with N companies. Suppose that xj is the power
generation level of company j, (j = 1, . . . , N). Then, the total power generation of
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the market is

σ :=

N∑
k=1

xk.

Obviously, the more electricity companies produce, the lower electricity price is.
Hence, we assume that the electricity price p is inversely proportional to σ and is
defined by

p(x) = 200− 2

N∑
k=1

xk.

To produce electricity, companies have to pay two costs: production cost and environ-
mental cost. The cost of production per unit of electricity decreases as the production

level increases. Hence, we assume that the production cost hprodj of company j is a
concave function of xj :

hprodj (xj) = aj
√
xj + bj .

Meanwhile, the environmental charge per unit of electricity increases as the product
level increases. Hence, the environmental cost henvj of company j is a convex function
of xj :

henvj (xj) = cjxj
2 + dj .

And so, the total cost hj of company j is:

hj(xj) = hprodj (xj) + henvj (xj) = aj
√
xj + bj + cjxj

2 + dj .

Let N = 6. The parameters aj , bj , cj , dj are given in Table 1.

j aj bj cj dj

1 1.0 2.0 0.05 2.2
2 0.7 2.1 0.06 2.1
3 0.8 1.9 0.03 1.9
4 0.9 1.8 0.02 1.8
5 0.8 2.2 0.01 2.3
6 0.6 2.3 0.04 1.8

Table 1. The parameters of the cost function

The profit ξj of a company j is

ξj(x) := p(x)xj − hj(xj) =

(
200− 2

N∑
k=1

xk

)
xj − hj(xj),

where x = (x1, . . . , xN )T ∈ C :=
{
x ∈ RN : αj ≤ xj ≤ βj

}
, αj , βj are given in

Table 2.
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j 1 2 3 4 5 6

αj 10 10 10 10 10 10
βj 90 70 100 60 110 50

Table 2. The lower and upper bounds for power generation levels xj

We are interested in a such point x∗ = (x∗1, . . . , x
∗
N ) ∈ C satisfying

ξj(x
∗
1, . . . , x

∗
j−1, yj , x

∗
j+1, . . . , x

∗
N ) ≤ ξj(x∗1, . . . , x∗N ).

for all y = (y1, . . . , yN ) ∈ C, j = 1, . . . , N. The point x∗ is called the Nash equilibrium.
Let

ζ(x, y) := ϕ(x, x)− ϕ(x, y),

where

ϕ(x, y) =

N∑
j=1

ξj(x1, . . . , xj−1, yj , xj+1, . . . , xN )

=

N∑
j=1

200− 2

∑
k 6=j

xk + yj

 yj − N∑
j=1

hj(yj).

Then x∗ a Nash equilibrium point of this model if and only if it is a solution of the
equilibrium problem (see [10]):

find x∗ ∈ C such that ζ(x∗, y) ≥ 0 ∀y ∈ C. (4.1)

We have

ζ(x, y) = 〈(A+B)x+By + q, y − x〉+ h(y)− h(x), (4.2)

where

A :=


0 2 2 2 2 2
2 0 2 2 2 2
2 2 0 2 2 2
2 2 2 0 2 2
2 2 2 2 0 2
2 2 2 2 2 0

 , B :=


2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2

 ,

and q = −(100, 100, 100, 100, 100, 100)T . However, the bifunction ζ given by (4.2) is
not strongly pseudomonotone (even not pseudomonotone). This bifunction can be
rewritten as

ζ(x, y) = f(x, y) + 0.6〈B(y − x), y − x〉,
where f(x, y) = 〈(A+ 1.6B)x+ 0.4By + q, y − x〉+ h(y)− h(x). It is easy seen that
the matrix B is positive definite, hence x∗ is a solution of the equilibrium problem
(4.1) if and only if it is a solution of the problem (see [14]):

find x∗ ∈ C such that f(x∗, y) ≥ 0 ∀y ∈ C. (4.3)
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Let us prove the bifunction f is strongly pseudomonotone. Indeed, for all x, y ∈ C,
we have

f(x, y) + f(y, x) = −〈(A+ 1.2B) (x− y), (x− y)〉 .
Since A+1.2B is a positive definite matrix, it implies that the bifunction f is strongly
monotone, and hence, is strongly pseudomonotone. Let

f1(x, y) = 〈(A+ 1.6B)x+ 0.4By + q, y − x〉,

f2(x, y) =

N∑
j=0

(
henvj (yj)− henvj (xj)

)
.

and

f3(x, y) =

N∑
j=0

(
hprodj (yj)− hprodj (xj)

)
,

It is easy seen that f1, f2 and f3 satisfy all conditions of the proposed algorithm.
Now we will apply this algorithms to solve problem (4.3). Note that in this example,
subproblems of f1 and f2 have quadratic forms and are much easier to solve than

general convex problems. Moreover, although the cost functions hprodj are concave,

the subproblems of f3 is convex if λk ≤ 1
6 .

We implement the algorithm with the starting point x0 = (0, 0, 0, 0, 0, 0)T , λk = 1
k+6

and the stopping criteria ‖xk+1−xk‖ ≤ 10−4. The test results are reported in Table 3.
The algorithm finds the approximation of the solution after 105 iterations.

Iter(k) x1k x2k x3k x4k x5k x6k ‖xk−1 − xk‖
0 0 0 0 0 0 0
1 22.9133 22.8534 23.0463 23.1103 23.1777 22.9841 31.4327
2 10.0597 10.0000 10.2182 10.2922 10.3731 10.1480 12.9558
3 15.3184 15.2412 15.5167 15.6095 15.7111 15.4289 3.7680
4 13.7630 13.6767 13.9837 14.0868 14.2002 13.8865 0.7174
5 14.0422 13.9487 14.2802 14.3913 14.5139 14.1756 0.0755
6 14.0034 13.9046 14.2542 14.3713 14.5007 14.1441 0.0200
7 13.9975 13.8947 14.2579 14.3796 14.5143 14.1437 0.0152
· · · · · · · · · · · · · · · · · · · · · · · ·
105 13.9815 13.8658 14.2731 14.4099 14.5630 14.1455 9.903810−5

Table 3. Iterations of the proposed algorithm with starting point
x0 = (0, 0, 0, 0, 0, 0)T

Example 4.2. We compare our algorithm with the Armijo Line Search Algorithm
(ALS ) (Algorithm 1 in [8]), the General Extragradient Algorithm (GEA) in [9], the
Splitting Sequential Algorithm (SAL) (Algorithm 1 in [1]) and the Subgradient Algo-
rithm (SGA) given by Santos in [17]. Consider the equilibrium problem

find x ∈ C such that 〈Ax+ P (x), y − x〉+ ϕ(y)− ϕ(x) ≥ 0 ∀y ∈ C,
where the feasible set C ⊂ R5 is given by

C := {x ∈ R5 : −5 ≤ xi ≤ 5 ∀i = 1, . . . , 5},
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ϕ : R5 → R, ϕ(x) = ‖x‖2,

F : R5 → R5, F (x) = Ax+ P (x),

with

A :=


3 1 0 1 2
1 5 −1 0 1
0 −1 4 2 −2
1 0 2 6 −1
2 1 −2 −1 5

 ,

and P : R5 → R5 is the proximal mapping of the function

h(x) :=
‖x‖4

4
,

i.e.,

P (x) := argmin

{
‖y‖4

4
+

1

2
‖y − x‖2 : y ∈ R5

}
.

Note that, since we do not have a closed form of P (x), to compute the value of this
mapping, we have to solve a strongly convex problem. In our algorithm, let

f1(x, y) := 〈Ax, y − x〉,
f2(x, y) := 〈P (x), y − x〉,
f3(x, y) := ϕ(y)− ϕ(x)

and f := f1 + f2 + f3.
In Algorithm SAL, let

f1(x, y) := 〈Ax+ P (x), y − x〉,
f2(x, y) := ϕ(y)− ϕ(x)

and f := f1 + f2. It is easy seen that all the conditions of the four algorithms are
satisfied. Moreover, the mapping P is nonexpansive and the Lipschitz constants of f
(defined in [8]) are

c1 = c2 =
1

2
(‖A‖+ 1).

We apply the four algorithms for solving EP (f, C) with the parameters:

• In Algorithm GEA: αk = βk = 1
7c1

.

• In Algorithm ALS : G(x) := ‖x‖2, η = 0.5; ρ = 1.
• In Algorithm SAL λk = 1

k .

• In Algorithm SGA βk = 1
k , ρk = 1, εk = 0, ξk = 0.

• In our algorithm: λk = 1
k .

All the algorithms use the same starting points and the same stopping rule:

‖xk − x∗‖ ≤ 3.10−4,

where x∗ = (0, 0, 0, 0, 0)T is the unique solution of the EP (f, C). The results are
presented in Table 4.
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x0 = (5, 5, 5, 5, 5)T x0 = (1, 1, 1, 1, 1)T x0 = (1, 2, 3, 4, 5)T x0 = (−3,−5, 2,−4, 4)T

CPU times Iter. CPU times Iter. CPU times Iter. CPU times Iter.

Alg. GEA - - - - - - - -
Alg. SGA - - 0.6004 14 - - - -
Alg. ALS 11.1323 27 8.6821 21 11.3570 29 11.3248 26
Alg. SAL 0.4357 11 0.4470 10 0.5019 12 0.3509 10
Alg. 3-CSA 0.4604 12 0.3839 9 0.4860 11 0.5082 13

Table 4. Comparision of the algorithms. (-) means the algorithm
does not obtain the required accuracy after 100s.

From this table we can see that, if the initial approximation x0 is close enough
to the exact solution x∗, say, ||x0 − x∗|| ≤ 7.4, then the performance of 3-CSA is the
best among four above mentioned algorithms.

Example 4.3. Consider problem EP (f, C) with

C :=
{
x = (x1, x2, . . . , xm) ∈ Rm : 2x21 + x22 + . . .+ x2m ≤ 1

}
and f : C × C → R, defined by

f(x, y) := 〈Ax, y − x〉+ y2 − x2 + 〈y, y − x〉 ∀x, y ∈ C,
where A = (aij) is a m×m matrix and

aij =

{
0 if i 6= j,

1.1 if i = j.

It is easy seen that f(x, y) + f(y, x) = −0.1‖x − y‖2 for all x, y ∈ C, and hence f is
strongly monotone on C. All conditions of the three-component splitting algorithm
(3-CSA) and the splitting sequential algorithm (SAL) (Algorithm 1 in[1]) are satisfied.
We will use this problem to compare them. For 3-CSA, let

f1(x, y) := 〈Ax, y − x〉 , f2(x, y) := y2 − x2, f3(x, y) := 〈y, y − x〉 ∀x, y ∈ C.
For SAL, define

f̃1(x, y) := 〈Ax, y − x〉 , f̃2(x, y) := y2 − x2 + 〈y, y − x〉 ∀x, y ∈ C.
Note that the problem has a unique solution x∗ = (0, 0, . . . , 0)T . In the both algo-
rithms, we use the same step-size λk = 1

k for all k ≥ 1, the same stopping criteria

‖xk − x∗‖ ≤ ε and the same starting point x0, which is randomly generated. 3-CSA
now becomes

x0 ∈ C,
x̄k = argmin

{
λk
〈
Axk, y − x

〉
+ 1

2‖y − x
k‖2 : y ∈ C

}
,

x̃k = argmin
{
λk(‖y‖2 − ‖x̄k‖2) + 1

2‖y − x̄
k‖2 : y ∈ C

}
,

xk+1 = argmin
{
λk
〈
y, y − x̃k

〉
+ 1

2‖y − x̃
k‖2 : y ∈ C

}
.

From the definition of x̄k, it implies that

λkAx
k + x̄k − xk + q = 0,
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where q is a normal vector of C at x̄k. Hence,〈
xk − λkAxk − x̄k, z − x̄k

〉
≤ 0 ∀z ∈ C.

It follows that x̄k = PC(xk − λkAxk). Similarly, we have

x̃k = PC

(
1

1 + 2λk
x̄k
)
.

Since 0 and x̄k belong to C, it implies that 1
1+2λk

x̄k ∈ C, and hence, x̃k = 1
1+2λk

x̄k.

Analogously, we have xk+1 = 1+λk
1+2λk

x̃k, and hence, 3-CSA has the following closed
form: {

x0 ∈ C,
xk+1 = 1+λk

(1+2λk)2
PC(xk − λkAxk).

Similarly, in this problem, SAL can be rewritten as{
y0 ∈ C,
yk+1 = 1+λk

1+4λk
PC(yk − λkAyk).

We have 1+λk
(1+2λk)2

< 1+λk
1+4λk

. Hence, by induction, it is easy seen that ‖xk − x∗‖ <
‖yk−y∗‖ for all k ≥ 1. This means that in this problem, 3-CSA requires less iterations
than SAL does. For more specific comparisons, we test these two algorithms in the
problem with different m and ε. The results are presented in Table 5. From this table,
we can see that the results of 3-CSA are better than those of SAL in terms of iterations
and computational time.

3-CSA SAL

m ε CPU times Iter. CPU times Iter.

50 10−3 0.0012 5 0.0024 8
10−4 0.0018 10 0.0032 15
10−5 0.0021 18 0.0041 27

100 10−3 0.0018 6 0.0027 9
10−4 0.0022 11 0.0039 16
10−5 0.0036 20 0.0057 30

500 10−3 0.3019 7 0.4019 10
10−4 0.5169 12 0.7019 19
10−5 0.9674 22 1.3214 34

2000 10−3 0.5436 7 0.7503 11
10−4 0.9746 13 1.3976 20
10−5 1.8324 24 2.5864 36

Table 5. Comparision of 3-CSA and SAL

Next, we compare 3-CSA with the Subgradient Algorithm (SGA), the Armijo
Line Search Algorithm (ALS), the Ergodic Algorithm (EDA) [3]. In EDA, we choose
λk = 1

k for all k ≥ 1. The parameters for the remaining algorithms are selected as
in Example 4.2. The comparisons results are presented in Figure 1. As we can see,
3-CSA shows a better behavior in terms of the computational time.
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Figure 1. Comparisions of 3-SCA with some existing algorithms in
Example 4.3

5. Conclusion

In this paper, we have proposed a three-component splitting algorithm for solv-
ing equilibrium problems in Hilbert spaces. Under the assumptions that the involving
bifunction is strongly pseudomonotone and the component bifunctions satisfy suit-
able conditions, we have proved that the proposed algorithm strongly converges to
the unique solution of the problem. Our algorithm is particularly effective when ap-
plied to equilibrium problems with complicated bifunctions, given as the sum of three
components. The effectiveness of the proposed algorithm has been tested by some
numerical experiments and comparisons. Also, the new algorithm has been applied
to the Nash-Cournot oligopolistic equilibrium model for electricity markets with a
non-convex cost function.

Acknowledgements. The authors would like to thank the anonymous referees for their
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