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Abstract. The notion of porosity is well known in Optimization and Nonlinear
Analysis. Its importance is brought out by the fact that the complement of a
σ-porous subset of a complete pseudo-metric space is a residual set, while the
existence of the latter is essential in many problems which apply the generic
approach. Thus, under certain circumstances, some refinements of known results
can be achieved by looking for porous sets. In 2001 Gabour, Reich and Zaslavski
developed certain generic methods for solving stochastic feasibility problems. This
topic was further investigated in 2021 by Barshad, Reich and Zaslavski, who
provided more general results in the case of unbounded sets. In the present paper
we introduce and examine new generic methods that deal with the aforesaid
problems, in which, in contrast with previous studies, we consider sigma-porous
sets instead of meager ones.
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1. Introduction and background

We consider (generalized) stochastic feasibility problems from the point of view
of the generic approach (for more applications of this approach, see, for example, [7]).
These are the problems of finding almost common fixed points of measurable (with
respect to a probability measure) families of mappings. Namely, we provide generic
methods for finding almost common fixed points by using the notion of porosity. Our
results are applicable to both the consistent case (that is, the case where the aforesaid
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almost common fixed points exist) and the inconsistent case (that is, the case where
there are no common fixed points at all).

We begin by recalling the definitions of porosity and local convexity.
Given a pseudo-metric space (Y, ρ), we denote by Bρ (y, r), for each y ∈ Y and

r > 0, the open ball in (Y, ρ) of center y and radius r. Recall that a subset E of
a complete pseudo-metric space (Y, ρ) is called a porous subset of Y if there exist
α ∈ (0, 1) and r0 > 0 such that for each r ∈ (0, r0] and each y ∈ Y , there exists a
point z ∈ Y for which

Bρ (z, αr) ⊂ Bρ (y, r) \E.
A subset of Y is called a σ-porous subset of Y if it is a countable union of porous
subsets of Y . Note that since a porous set is nowhere dense, any σ-porous set is of
the first category and hence its complement is residual in (Y, ρ), that is, it contains
a countable intersection of open and dense subsets of (Y, ρ). For this reason, there
is a considerable interest in σ-porous sets while searching for generic solutions to
optimization problems. More information concerning the notion of porosity and its
applications can be found, for example, in [3], [6], [7] and [8].

Recall that a topological vector space V with the topology T is said to be a locally
convex space if there exists a family P of pseudo-norms on V such that the family of
open balls {Bρ (x0, ε) : x0 ∈ V, ε > 0, ρ ∈P} is a subbasis for T and ∩ρ∈PZρ = {0},
where Zρ = {x ∈ V : ρ (x) = 0} for each ρ ∈ P. Clearly, every normed space (as a
topological vector space with respect to its norm) is a locally convex space. In the
sequel we use the following result (see Theorem 3.9 in [2]).

Theorem 1.1. Let V be a real locally convex topological vector space, and let A and B
be two disjoint closed and convex subsets of V . If either A or B is compact, then A
and B are strictly separated, that is, there is α ∈ R and a continuous linear functional
φ : V → R such that φ (a) > α for each a ∈ A and φ (b) < α for each b ∈ B.

Now we introduce the spaces for which we investigate the stochastic feasibility
problem. Other spaces which can be considered regarding this problem, can be found,
for example, in [1] and [5].

Suppose that (X, ‖·‖) is a normed vector space with norm ‖·‖, F is a nonempty,
closed, convex and bounded subset of X, (Ω,A, µ) is a probability measure space
(more information on measure spaces and measurable mappings can be found, for
example, in [3]) and K is a subset of X which contains F . Denote by N the set of
all nonexpansive mappings A : K → F , that is, all mappings A : K → F such that
‖Ax−Ay‖ ≤ ‖x− y‖ for each x, y ∈ K. For the set N , define a metric ρN : N×N →
R by

ρN (A,B) := sup {‖Ax−Bx‖ : x ∈ K} , A,B ∈ N .
Clearly, the metric space (N , ρN ) is complete if (X, ‖·‖) is a Banach space.

Denote by NΩ the set of all mappings T : Ω→ N such that for each x ∈ K, the
mapping T ′x : Ω→ F , defined, for each ω ∈ Ω, by T ′x (ω) := T (ω) (x), is measurable.
It is not difficult to see that if T ∈ NΩ, then T ′x is integrable on Ω. For each T ∈ NΩ,

define an operator T̃ : K → F by T̃ x =
∫

Ω
T ′x (ω) dµ (ω) for each x ∈ K. By Theorem

1.1, this is indeed a mapping the image of which is contained in F . Note that the
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mapping defined on NΩ by T 7→ T̃ is onto N . Clearly, for each T ∈ NΩ, we have

T̃ ∈ N . Thus we consider the topology defined by the following pseudo-metric on NΩ:

ρNΩ
(T, S) := ρN

(
T̃ , S̃

)
, T, S ∈ NΩ.

It is not difficult to see that the pseudo-metric space (NΩ, ρNΩ
) is complete if (X, ‖·‖)

is a Banach space.
Denote byMΩ the set of all sequences {Tn}∞n=1 ⊂ NΩ. We define a pseudo-metric

ρMΩ
:MΩ ×MΩ → R on NΩ in the following way:

ρMΩ
({Tn}∞n=1 , {Sn}

∞
n=1) := sup {ρNΩ

(Tn, Sn) : n = 1, 2 . . . } ,

{Tn}∞n=1 , {Sn}
∞
n=1 ∈MΩ.

Obviously, this space is complete if (X, ‖·‖) is a Banach space.
The rest of the paper is organized as follows. In Section 2 we state our main

results. Two auxiliary assertions are presented in Section 3. In Section 4 we provide
the proofs of our main results.

In all our results we also assume that (X, ‖·‖) is a Banach space.

2. Statements of the main results

In this section we state our main results. We establish them in Section 4 below.
Recall that for each T ∈ NΩ, a point x ∈ K is an almost common fixed point

of the family {T (ω)}ω∈Ω if T (ω)x = x for almost all ω ∈ Ω. Similarly, for each

sequence {Tn}∞n=1 ∈ MΩ, a point x ∈ K is an almost common fixed point of the
family {Tn (ω)}ω∈Ω, n=1,2... if Tn (ω)x = x for all n = 1, 2, . . . and almost all ω ∈ Ω.

Theorem 2.1. There exists a set F ⊂MΩ such that MΩ\F is a σ-porous subset of
MΩ and for each {Tn}∞n=1 ∈ F , the following assertion holds true:

For each ε > 0, there is a positive integer N such that for each integer n ≥ N
and each mapping s : {1, 2, . . . } → {1, 2, . . . }, we have∥∥∥T̃s(n) . . . T̃s(1)x− T̃s(n) . . . T̃s(1)y

∥∥∥ < ε

for each x, y ∈ K. Consequently, if there is an almost common fixed point of the
family {Tn (ω)}ω∈Ω, n=1,2..., then it is unique and for each x ∈ K, the sequence{
T̃s(n) . . . T̃s(1)x

}∞
n=1

converges to it as n → ∞, uniformly on K, for each mapping

s : {1, 2, . . . } → {1, 2, . . . }.

Theorem 2.2. There exists a set F ⊂NΩ such that the set G := NΩ\F a σ-porous
subset of NΩ, and for each T ∈ F , the following assertion holds true:

There exists xT ∈ K which is the unique fixed point of the operator T̃ such that

for each x ∈ K, the sequence
{
T̃nx

}∞
n=1

converges to xT as n → ∞, uniformly on

K. Moreover, the set F of all almost common fixed points of the family {T (ω)}ω∈Ω is
contained in {xT }. As a result, if F 6= ∅, then xT is the unique almost common fixed
point of the family {T (ω)}ω∈Ω.
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3. Auxiliary results

In this section we present two lemmata which will be used in the proofs of our
main results. We start by defining three sequences which we use in the proofs of these
lemmata.

Choose z0 ∈ F and set r0 = 1. We first define the sequence {αk}∞k=1 of positive
numbers by

αk = 2−1

(
1 + 2k

(
2 sup
z∈F
‖z‖+ 1

))−1

∈ (0, 1) . (3.1)

Clearly, for each positive integer k,

(1− αk)

(
2 sup
z∈F
‖z‖+ 1

)−1

∈ (0, 1) (3.2)

and

(1− αk)

(
2 sup
z∈F
‖z‖+ 1

)−1

− 2αkk = 2−1

(
2 sup
z∈F
‖z‖+ 1

)−1

> 0. (3.3)

Using (3.3), for each r ∈ (0, r0], we choose sequences {γrk}
∞
k=1 and {Nr

k}
∞
k=1 of positive

numbers such that

γrk ∈

(
2αkkr, (1− αk) r

(
2 sup
z∈F
‖z‖+ 1

)−1
)

(3.4)

and
Nr
k > 2

(
γrkk
−1 − 2αkr

)−1
sup
z∈F
‖z‖+ 1 (3.5)

for each positive integer k. Evidently, by(3.1), (3.2) and (3.4), γrk ∈ (0, 1).

Lemma 3.1. Assume that k is a positive integer and let Fk be the set of all sequences
{Tn}∞n=1 ∈MΩ for which there exists a positive integer N such that for each mapping
s : {1, 2, . . . } → {1, 2, . . . }, we have∥∥∥T̃s(N) . . . T̃s(1)x− T̃s(N) . . . T̃s(1)y

∥∥∥ < k−1

for each x, y ∈ K. Then the set Gk :=MΩ\Fk is a porous subset of MΩ.

Proof. Assume that {Tn}∞n=1 ∈ MΩ and r ∈ (0, r0]. Define a sequence of mappings{
T
γr
k

n

}∞
n=1

, T
γr
k

n : Ω→ N , by

T
γr
k

n (ω)x := (1− γrk)Tn (ω)x+ γrkz0, n = 1, 2, . . .

for each ω ∈ Ω and each x ∈ K. Clearly,
{
T
γr
k

n

}∞
n=1
∈MΩ and for each n = 1, 2, . . . ,

T̃
γr
k

n x =

∫
Ω

((1− γrk)Tn (ω)x+ γrkz0) dµ (ω) = γrkz0 + (1− γrk)

∫
Ω

Tn (ω)xdµ (ω)

= (1− γrk) T̃nx+ γrkz0

for each x ∈ K. We have

ρMΩ

({
T
γr
k

n

}∞
n=1

, {Tn}∞n=1

)
≤ 2γrk sup

z∈F
‖z‖ , (3.6)
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as well as, for each positive integer n,∥∥∥∥T̃ γr
k

n x− T̃ γ
r
k

n y

∥∥∥∥ ≤ (1− γrk) ‖x− y‖ (3.7)

for each x, y ∈ K.
Let {Sn}∞n=1 ∈MΩ satisfy

ρMΩ

({
T
γr
k

n

}∞
n=1

, {Sn}∞n=1

)
< αkr. (3.8)

Assume that s : {1, 2, . . . } → {1, 2, . . . } is an arbitrary mapping. We claim that∥∥∥S̃s(Nr
k) . . . S̃s(1)x− S̃s(Nr

k) . . . S̃s(1)y
∥∥∥ < k−1 (3.9)

for each x, y ∈ K. Suppose to the contrary that this does not hold. Then there exist
points x0, y0 ∈ K such that for each i = 0 . . . Nr

k , we have∥∥∥S̃s(i) . . . S̃s(1)x0 − S̃s(i) . . . S̃s(1)y0

∥∥∥ ≥ k−1. (3.10)

Using the triangle inequality, (3.8), (3.7) and (3.10), we obtain that for each
i = 1 . . . Nr

k , ∥∥∥S̃s(i) . . . S̃s(1)x0 − S̃s(i) . . . S̃s(1)y0

∥∥∥
≤
∥∥∥∥S̃s(i)S̃s(i−1) . . . S̃s(1)x0 − T̃

γr
k

s(i)S̃s(i−1) . . . S̃s(1x0

∥∥∥∥
+

∥∥∥∥T̃ γr
k

s(i)S̃s(i−1) . . . S̃s(1)x0 − T̃
γr
k

s(i)S̃s(i−1) . . . S̃s(1)y0

∥∥∥∥
+

∥∥∥∥T̃ γr
k

s(i)S̃s(i−1) . . . S̃s(1)y0 − S̃s(i) . . . S̃s(1)y0

∥∥∥∥
< 2αkr + (1− γrk)

∥∥∥S̃s(i−1) . . . S̃s(1)x0 − S̃s(i−1) . . . S̃s(1)y0

∥∥∥
≤
∥∥∥S̃s(i−1) . . . S̃s(1)x0 − S̃s(i−1) . . . S̃s(1)y0

∥∥∥+ 2αkr − γrkk−1.

Hence by (3.4), we have∥∥∥S̃s(i−1) . . . S̃s(1)x0 − S̃s(i−1) . . . S̃s(1)y0

∥∥∥− ∥∥∥S̃s(i) . . . S̃s(1)x0 − S̃s(i) . . . S̃s(1)y0

∥∥∥
> γrkk

−1 − 2αkr > 0

for each i = 1 . . . Nr
k . Therefore

2 sup
z∈F
‖z‖ ≥

∥∥∥S̃s(1)x0 − S̃s(1)y0

∥∥∥− ∥∥∥S̃s(Nr
k) . . . S̃s(1)x0 − S̃s(Nr

k) . . . S̃s(1)y0

∥∥∥
= Σ

Nr
k

i=2

(∥∥∥S̃s(i−1) . . . S̃s(1)x0 − S̃s(i−1) . . . S̃s(1)y0

∥∥∥
−
∥∥∥S̃s(i) . . . S̃s(1)x0 − S̃s(i) . . . S̃s(1)y0

∥∥∥) > (Nr
k − 1)

(
γrkk
−1 − 2αkr

)
.

As a result,

Nr
k < 2

(
γrkk
−1 − 2αkr

)−1
sup
z∈F
‖z‖+ 1.
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This, however, contradicts (3.5). Thus (3.9) does hold. Next, using the triangle in-
equality, we see by (3.6), (3.8) and (3.4) that

ρMΩ
({Tn}∞n=1 , {Sn}

∞
n=1) ≤ ρMΩ

(
{Tn}∞n=1 ,

{
T
γr
k

n

}∞
n=1

)
+ρMΩ

({
T
γr
k

n

}∞
n=1

, {Sn}∞n=1

)
< 2γrk sup

z∈F
‖z‖+ αkr < (1− αk) r + αkr = r. (3.11)

From (3.9) and (3.11) it now follows that

BρMΩ

({
T
γr
k

n

}∞
n=1

, αkr
)
⊂ BρMΩ

({Tn}∞n=1 , r) ∩ Fk = BρMΩ
({Tn}∞n=1 , r) \Gk.

Hence Gk is indeed a porous subset of MΩ, as asserted. �

Lemma 3.2. Assume that k is a positive integer and let Fk be the set of all mappings
T ∈ NΩ for which there exists a positive integer N such that∥∥∥T̃Nx− T̃Ny∥∥∥ < k−1

for each x, y ∈ K. Then the set Gk := NΩ\Fk is a porous subset of NΩ.

Proof. Assume that T ∈ NΩ and r ∈ (0, r0]. Define a mapping Tγr
k
, Tγr

k
: Ω→ N , by

Tγr
k

(ω)x := (1− γrk)T (ω)x+ γrkz0

for each ω ∈ Ω and each x ∈ K. Clearly, Tγr
k
∈ NΩ and

T̃γr
k
x =

∫
Ω

((1− γrk)T (ω)x+ γrkz0) dµ (ω) = γrkz0 + (1− γrk)

∫
Ω

T (ω)xdµ (ω)

= (1− γrk) T̃ x+ γrkz0

for each x ∈ K. We have

ρNΩ

(
Tγr

k
, T
)
≤ 2γrk sup

z∈F
‖z‖ , (3.12)

as well as ∥∥∥T̃γr
k
x− T̃γr

k
y
∥∥∥ ≤ (1− γrk) ‖x− y‖ (3.13)

for each x, y ∈ K.
Let S ∈ NΩ satisfy

ρNΩ

(
Tγr

k
, S
)
< αkr. (3.14)

We claim that ∥∥∥S̃Nr
kx− S̃N

r
k y
∥∥∥ < k−1 (3.15)

for each x, y ∈ K. Suppose to the contrary that this does not hold. Then there exist
points x0, y0 ∈ K such that for each i = 0 . . . Nr

k , we have∥∥∥S̃ix0 − S̃iy0

∥∥∥ ≥ k−1. (3.16)
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Using the triangle inequality, (3.14), (3.13) and (3.16), we see that for each
i = 1 . . . Nr

k , ∥∥∥S̃ix0 − S̃iy0

∥∥∥ ≤ ∥∥∥S̃S̃i−1x0 − T̃γr
k
S̃i−1x0

∥∥∥
+
∥∥∥T̃γr

k
S̃i−1x0 − T̃γr

k
S̃i−1y0

∥∥∥+
∥∥∥T̃γr

k
S̃i−1y0 − S̃S̃i−1y0

∥∥∥
< 2αkr + (1− γrk)

∥∥∥S̃i−1x0 − S̃i−1y0

∥∥∥
≤
∥∥∥S̃i−1x0 − S̃i−1y0

∥∥∥+ 2αkr − γrkk−1.

Hence by (3.4),∥∥∥S̃i−1x0 − S̃i−1y0

∥∥∥− ∥∥∥S̃ix0 − S̃iy0

∥∥∥ > γrkk
−1 − 2αkr > 0,

for each i = 1 . . . Nr
k . Therefore

2 sup
z∈F
‖z‖ ≥

∥∥∥S̃x0 − S̃y0

∥∥∥− ∥∥∥S̃Nr
kx0 − S̃N

r
k y0

∥∥∥
= Σ

Nr
k

i=2

(∥∥∥S̃i−1x0 − S̃i−1y0

∥∥∥− ∥∥∥S̃ix0 − S̃iy0

∥∥∥)
> (Nr

k − 1)
(
γrkk
−1 − 2αkr

)
.

As a result,

Nr
k < 2

(
γrkk
−1 − 2αkr

)−1
sup
z∈F
‖z‖+ 1.

This, however, contradicts (3.5). Thus (3.15) does hold. Next, using the triangle in-
equality, we see by (3.12), (3.14) and (3.4) that

ρNΩ (T, S) ≤ ρNΩ

(
T, Tγr

k

)
+ ρNΩ

(
Tγr

k
, S
)

< 2γrk sup
z∈F
‖z‖+ αkr < (1− αk) r + αkr = r. (3.17)

From (3.15) and (3.17) it now follows that

BρNΩ

(
Tγr

k
, αkr

)
⊂ BρNΩ

(T, r) ∩ Fk = BρNΩ
(T, r) \Gk.

Hence Gk is indeed a porous subset of NΩ, as asserted. �

4. Proofs of the main results

Proof of Theorem 2.1. By Lemma 3.1, there is a sequence of subsets {Fn}∞n=1 ofMΩ

such that for each positive integer n, the set Gn :=MΩ\Fn is a porous subset ofMΩ

and Fn is the set of all sequences {Tn}∞n=1 ∈ MΩ for which there exists a positive
integer N such that for each mapping s : {1, 2, . . . } → {1, 2, . . . }, we have∥∥∥T̃s(N) . . . T̃s(1)x− T̃s(N) . . . T̃s(1)y

∥∥∥ < n−1 (4.1)

for each x, y ∈ K. Set F := ∩∞n=1Fn. Then MΩ\F = ∪∞n=1Gn is a σ-porous subset of
MΩ.
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Let {Tn}∞n=1 ∈ F and let ε > 0. Choose a positive integer n0 such that n−1
0 < ε.

Since {Tn}∞n=1 ∈ Fn0 , we infer from (4.1) that there exists a positive integer N such
that for each integer n ≥ N and each mapping s : {1, 2, . . . } → {1, 2, . . . },∥∥∥T̃s(n) . . . T̃s(1)x− T̃s(n) . . . T̃s(1)y

∥∥∥ ≤ ∥∥∥T̃s(N) . . . T̃s(1)x− T̃s(N) . . . T̃s(1)y
∥∥∥ < n−1

0 < ε

(4.2)
for each x, y ∈ K. This completes the proof. �

Proof of Theorem 2.2. By Lemma 3.2, there is a sequence of subsets {Fn}∞n=1 of NΩ

such that for each positive integer n, the set Gn := NΩ\Fn is a porous subset of NΩ

and Fn is the set of all mappings T ∈ NΩ for which there exists a positive integer N
satisfying ∥∥∥T̃Nx− T̃Ny∥∥∥ < n−1 (4.3)

for each x, y ∈ K. Set F := ∩∞n=1Fn. Then NΩ\F = ∪∞n=1Gn is a σ-porous subset of
NΩ.

Let T ∈ F and let ε > 0 be arbitrary. Choose a positive integer n0 such that
n−1

0 < ε. Since T ∈ Fn0
, we infer from (4.3) that there exists a positive integer N

such that for each integer n ≥ N ,∥∥∥T̃nx− T̃ny∥∥∥ < ∥∥∥T̃Nx− T̃Ny∥∥∥ < n−1
0 < ε (4.4)

for each x, y ∈ K. Clearly, for all integers n,m ≥ N , we have∥∥∥T̃nx− T̃mx∥∥∥ < ε (4.5)

for each x ∈ K. Since ε is an arbitrary positive number, inequality (4.5) and the com-

pleteness of the subspace F of (X, ‖·‖) imply that the sequence
{
T̃n
}∞
n=1

converges

to an operator P : K → F , uniformly on K. By taking the limit in (4.4), we see
that P is constant on K, that is, there exists a point xT ∈ K such that the sequence{
T̃nx

}∞
n=1
→ xT as n→∞, uniformly on K. Pick an arbitrary point x0 ∈ K. Since

the operator T̃ is continuous, it follows that

T̃ xT = T̃ lim
n→∞

T̃ kx0 = lim
k→∞

T̃ k+1x0 = xT .

Hence xT ∈ K is the unique fixed point of the operator T̃ , as asserted. �

Remark 4.1. We take this opportunity to correct two misprints in [1].

• Page 332, second paragraph: The sentence “Note that this mapping is onto K.”
should be replaced by the sentence “Note that the mapping defined on NΩ by

T 7→ T̃ is onto N .”
• Page 347: The formula

R̃nxR = R̃n lim
k→∞

R̃n
k
x = lim

k→∞
R̃n

k+1
xR = xR

should be replaced by the formula

R̃nxR = R̃n lim
k→∞

R̃n
k
x = lim

k→∞
R̃n

k+1
x = xR.
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