Idempotent and nilpotent elements in octonion rings over \mathbb{Z}_{p}

Michael Aristidou, Philip R. Brown and George Chailos

Abstract

In this paper, we show that the set $\mathbb{O} / \mathbb{Z}_{p}$, where p is a prime number, does not form a skew field and discuss idempotent and nilpotent elements in the (finite) ring $\mathbb{O} / \mathbb{Z}_{p}$. We provide examples and establish conditions for idempotency and nilpotency.

Mathematics Subject Classification (2010): 15A33, 15A30, 20H25, 15A03.
Keywords: Quaternion, octonion, ring, skew field, idempotent, nilpotent.

1. Introduction

Quaternions, denoted by \mathbb{H}, were first discovered by William. R. Hamilton in 1843 as an extension of complex numbers into four dimensions [10]. Namely, a quaternion is of the form

$$
x=a_{0}+a_{1} i+a_{2} j+a_{3} k
$$

where a_{i} are reals and i, j, k are such that $i^{2}=j^{2}=k^{2}=i j k=-1$. Algebraically speaking, \mathbb{H} forms a division algebra (skew field) over \mathbb{R} of dimension 4 ([10], p.195196).About the same time, John T. Graves discovered the octonions, denoted by \mathbb{O}, which are 8-dimensional numbers of the form

$$
x=a_{0}+a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}+a_{4} e_{4}+a_{5} e_{5}+a_{6} e_{6}+a_{7} e_{7}
$$

where a_{i} are reals and e_{i} 's are mutually anti-commuting roots of unity. (i.e. $e_{i}^{2}=-1$ and $e_{i} e_{j}=e_{k}, e_{j} e_{i}=-e_{k}, i \neq j$) [6]. Algebraically speaking, \mathbb{O} forms a normed division algebra (skew field) over \mathbb{R} of dimension 8 [6]. It is the largest of the (only) four normed division algebras and it is nonassociative.

[^0]@๑ఆ囚 This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

A study of the structure and some of its properties of the finite $\operatorname{ring}^{2} \mathbb{H} / \mathbb{Z}_{p}$, where p is a prime number, was done in [2]. A more detailed description of the structure $\mathbb{H} / \mathbb{Z}_{p}$ was given by Miguel and Serodio in [20]. Among others, they found the number of zero-divisors, the number of idempotent elements, and provided an interesting description of the zero-divisor graph. In particularly, they showed that the number of idempotent elements in $\mathbb{H} / \mathbb{Z}_{p}$ is $p^{2}+p+2$, for p odd prime. As discussed in [3], the only scalar idempotents in $\mathbb{H} / \mathbb{Z}_{p}$ are $a_{0}=0,1$. Furthermore, there are no purely imaginary idempotents in $\mathbb{H} / \mathbb{Z}_{p}$. On the other hand, in [4], it was shown that nilpotents x in $\mathbb{H} / \mathbb{Z}_{p}$ are purely imaginary with norm $N(x)=0$ and $x^{2}=0$.

In the sections that follow, we look at the structure of the finite ring $\mathbb{O} / \mathbb{Z}_{p}$. The multiplication of octonions followed the Fano Plane and it was programmed in Maple ${ }^{3}$. We give examples of idempotent and nilpotent elements in $\mathbb{O} / \mathbb{Z}_{p}$ and provide conditions for idempotency and nilpotency in $\mathbb{O} / \mathbb{Z}_{p}$.

2. Is $\mathbb{O} / \mathbb{Z}_{p}$ a finite skew field? A counterexample

In [2] we saw that since $\mathbb{Z}_{\mathbf{p}}$ is a field, then $\mathbb{H} / \mathbb{Z}_{p}$ is a quaternion algebra. The theory of quaternion algebras over a field $\mathbb{K}(\operatorname{char} \mathbb{K} \neq 2)$ tells us that a quaternion algebra Q is either a division ring or $Q=\mathbb{M}_{2 \times 2}(\mathbb{K})\left([16]\right.$, p.16, 19). Since $\mathbb{H} / \mathbb{Z}_{p}$ is not a division ring (see [2]), then $\mathbb{H} / \mathbb{Z}_{p} \cong \mathbb{M}_{2 \times 2}\left(\mathbb{Z}_{p}\right)$ if $p \neq 2$.

The real matrix representation of $\mathbb{H} / \mathbb{Z}_{p}$, where $x=a_{0}+a_{1} i+a_{2} j+a_{3} k \in \mathbb{H} / \mathbb{Z}_{p}$, is achieved by the 4×4 left or right Hamilton Operators as follows:

$$
H_{x}^{L}=\left[\begin{array}{cccc}
a_{0} & -a_{1} & -a_{2} & -a_{3} \\
a_{1} & a_{0} & -a_{3} & a_{2} \\
a_{2} & a_{3} & a_{0} & -a_{1} \\
a_{3} & -a_{2} & -a_{1} & -a_{0}
\end{array}\right] H_{x}^{R}=\left[\begin{array}{cccc}
a_{0} & -a_{1} & -a_{2} & -a_{3} \\
a_{1} & a_{0} & a_{3} & -a_{2} \\
a_{2} & -a_{3} & a_{0} & a_{1} \\
a_{3} & a_{2} & -a_{1} & a_{0}
\end{array}\right]
$$

But is the finite ring $\mathbb{O} / \mathbb{Z}_{p}$ a skew field? Consider the elements

$$
x_{1}=2 e_{2}-e_{3}, x_{2}=e_{4}+3 e_{5}
$$

in $\mathbb{O} / \mathbb{Z}_{5}$. Multiplying the two, we get:

$$
x_{1} \cdot x_{2}=\left(2 e_{2}-e_{3}\right)\left(e_{4}+3 e_{5}\right)=0(\bmod 5) .
$$

This shows that $\mathbb{O} / \mathbb{Z}_{5}$ has zero-divisors, and hence $\mathbb{O} / \mathbb{Z}_{5}$ is not a skew field. This was also anticipated by some well-known theorem in algebra, by Wedderburn in 1905 ([11], p.361), which says that: "Every finite skew field is a field". Since $\mathbb{O} / \mathbb{Z}_{p}$ is not commutative, then it is not a field, and so it is not a skew-field.

So, what is the structure of $\mathbb{O} / \mathbb{Z}_{p}$? Since \mathbb{Z}_{p} is a field, then $\mathbb{O} / \mathbb{Z}_{p}$ is a nonassociative octonion algebra. As a matter of fact, is it an alternative, flexible and power associative algebra ${ }^{4}$. It is well known that \mathbb{O} is a skew field, yet it has no "proper" matrix representation due to the non-associativity. Nevertheless, as \mathbb{O} is an extension of \mathbb{H}, by the Cayley-Dickson process, some non-proper 8×8 real matrix representations were introduced, by Tian in [26], through the left and right Hamilton

Operators of quaternions analogous to the one above. Namely:

$$
\begin{aligned}
& H_{x}^{L}=\left[\begin{array}{cccccccc}
a_{0} & -a_{1} & -a_{2} & -a_{3} & -a_{4} & -a_{5} & -a_{6} & -a_{7} \\
a_{1} & a_{0} & -a_{3} & a_{2} & -a_{5} & a_{4} & a_{7} & -a_{6} \\
a_{2} & a_{3} & a_{0} & -a_{1} & -a_{6} & -a_{7} & a_{4} & a_{5} \\
a_{3} & -a_{2} & a_{1} & a_{0} & -a_{7} & a_{6} & -a_{5} & a_{4} \\
a_{4} & a_{5} & a_{6} & a_{7} & a_{0} & -a_{1} & -a_{2} & -a_{3} \\
a_{5} & -a_{4} & a_{7} & -a_{6} & a_{1} & a_{0} & a_{3} & a_{2} \\
a_{6} & -a_{7} & -a_{4} & a_{5} & a_{2} & -a_{3} & a_{0} & a_{1} \\
a_{7} & a_{6} & -a_{5} & -a_{4} & a_{3} & a_{2} & -a_{1} & a_{0}
\end{array}\right] \\
& H_{x}^{R}=\left[\begin{array}{cccccccc}
a_{0} & -a_{1} & -a_{2} & -a_{3} & -a_{4} & -a_{5} & -a_{6} & -a_{7} \\
a_{1} & a_{0} & a_{3} & -a_{2} & a_{5} & -a_{4} & -a_{7} & a_{6} \\
a_{2} & -a_{3} & a_{0} & a_{1} & a_{6} & a_{7} & -a_{4} & -a_{5} \\
a_{3} & a_{2} & -a_{1} & a_{0} & a_{7} & -a_{6} & a_{5} & -a_{4} \\
a_{4} & -a_{5} & -a_{6} & -a_{7} & a_{0} & a_{1} & a_{2} & a_{3} \\
a_{5} & a_{4} & -a_{7} & a_{6} & -a_{1} & a_{0} & -a_{3} & a_{2} \\
a_{6} & a_{7} & a_{4} & -a_{5} & -a_{2} & a_{3} & a_{0} & -a_{1} \\
a_{7} & -a_{6} & a_{5} & a_{4} & -a_{3} & -a_{2} & a_{1} & a_{0}
\end{array}\right]
\end{aligned}
$$

Modifying the above over \mathbb{Z}_{p}, one could easily get the left and right 8×8 real representations of $\mathbb{O} / \mathbb{Z}_{p}$ as follows ${ }^{5}$:

$$
\begin{aligned}
& H_{x}^{L}=\left[\begin{array}{cccccccc}
a_{0} & p-a_{1} & p-a_{2} & p-a_{3} & p-a_{4} & p-a_{5} & p-a_{6} & p-a_{7} \\
a_{1} & a_{0} & p-a_{3} & a_{2} & p-a_{5} & a_{4} & a_{7} & p-a_{6} \\
a_{2} & a_{3} & a_{0} & p-a_{1} & p-a_{6} & p-a_{7} & a_{4} & a_{5} \\
a_{3} & p-a_{2} & a_{1} & a_{0} & p-a_{7} & a_{6} & p-a_{5} & a_{4} \\
a_{4} & a_{5} & a_{6} & a_{7} & a_{0} & p-a_{1} & p-a_{2} & p-a_{3} \\
a_{5} & p-a_{4} & a_{7} & -a_{6} & a_{1} & a_{0} & a_{3} & a_{2} \\
a_{6} & p-a_{7} & p-a_{4} & a_{5} & a_{2} & p-a_{3} & a_{0} & a_{1} \\
a_{7} & a_{6} & p-a_{5} & -a_{4} & a_{3} & a_{2} & p-a_{1} & a_{0}
\end{array}\right] \\
& H_{x}^{R}=\left[\begin{array}{cccccccc}
a_{0} & p-a_{1} & p-a_{2} & p-a_{3} & p-a_{4} & p-a_{5} & p-a_{6} & p-a_{7} \\
a_{1} & a_{0} & a_{3} & p-a_{2} & a_{5} & p-a_{4} & p-a_{7} & a_{6} \\
a_{2} & p-a_{3} & a_{0} & a_{1} & a_{6} & a_{7} & p-a_{4} & p-a_{5} \\
a_{3} & a_{2} & p-a_{1} & a_{0} & a_{7} & p-a_{6} & a_{5} & p-a_{4} \\
a_{4} & p-a_{5} & p-a_{6} & p-a_{7} & a_{0} & a_{1} & a_{2} & a_{3} \\
a_{5} & a_{4} & p-a_{7} & a_{6} & p-a_{1} & a_{0} & p-a_{3} & a_{2} \\
a_{6} & a_{7} & a_{4} & p-a_{5} & p-a_{2} & a_{3} & a_{0} & p-a_{1} \\
a_{7} & p-a_{6} & a_{5} & a_{4} & p-a_{3} & p-a_{2} & a_{1} & a_{0}
\end{array}\right]
\end{aligned}
$$

Notice that for the octonionic cases \mathbb{O} and $\mathbb{O} / \mathbb{Z}_{p}$, we have that $H_{x y}^{L} \neq H_{x}^{L} H_{y}^{L}$ because of the non-associativity.

3. Idempotent and nilpotents elements in $\mathbb{O} / \mathbb{Z}_{p}$

Recall that an element x in a ring R is called idempotent if $x^{2}=x$. In the ring $\mathbb{H} / \mathbb{Z}_{p}, p$ prime, in the special case where $x=a_{0}, a_{0} \neq 0$ (i.e., x is a nonzero scalar in $\mathbb{H} / \mathbb{Z}_{p}$) one quickly observes that if x is idempotent then $x=1$, for x in $1,2, \ldots, p-1$, since $(x, p)=1$. Therefore, the only scalar idempotent in $\mathbb{H} / \mathbb{Z}_{p}$ is 1 (we omit the case $x=0$ as trivial). Another simple case is the case where $x=a i, a j$ or $a k, a \neq 0$ (i.e., a non-zero scalar multiple of the imaginary units). Then, $x^{2}=(a i)^{2}=-a^{2} i^{2}=-a^{2} \neq a i=x$, which shows that there are no idempotents of the form $a i, a j$ or $a k$. (Again, we omitted the case $x=0$ as trivial). Examples of proper idempotents ${ }^{6}$ and conditions for idempotency in $\mathbb{H} / \mathbb{Z}_{p}$ were given in [3]. Due to the isomorphism $\mathbb{H} / \mathbb{Z}_{p} \cong \mathbb{O}\left[e_{i}, e_{j}, e_{i} e_{j}\right]$ (where $e_{i} \neq e_{j}$) idempotents in $\mathbb{H} / \mathbb{Z}_{p}$ will transfer in some subalgebras ${ }^{7}$ of $\mathbb{O} / \mathbb{Z}_{p}$. For example, $x=4+i+3 j+4 k$ is idempotent in $\mathbb{H} / \mathbb{Z}_{7}$ and therefore $x=4+e_{1}+3 e_{2}+4 e_{3}$ is idempotent in $\mathbb{O} / \mathbb{Z}_{7}$. Nevertheless, $x=4+e_{1}+3 e_{3}+4 e_{5}$ is a non-"quaternionic" idempotent in $\mathbb{O} / \mathbb{Z}_{7}$. Notice that $x=7 i+4 j$ is nilpotent in $\mathbb{H} / \mathbb{Z}_{13}$ and so $x=7 e_{1}+4 e_{2}$ is also nilpotent in $\mathbb{O} / \mathbb{Z}_{13}$. Nevertheless, $x=4 e_{1}+e_{2}+3 e_{3}+4 e_{5}$ is a non- "quaternionic" nilpotent in $\mathbb{O} / \mathbb{Z}_{7}$. As we will show below, purely imaginary octonions in $\mathbb{O} / \mathbb{Z}_{p}$ cannot be idempotents, just as in $\mathbb{H} / \mathbb{Z}_{p}$ [3]. And nilpotents in $\mathbb{O} / \mathbb{Z}_{p}$ are purely imaginary, just as in $\mathbb{H} / \mathbb{Z}_{p}$ [4].
Theorem 3.1. Let $x \in \mathbb{O} / \mathbb{Z}_{p}$ be an octonion of the form $x=a_{0}+\sum_{i=1}^{7} a_{i} e_{i}$. Then x is idempotent if and only if $a_{0}=\frac{1+p}{2}$ and $\sum_{i=1}^{7} a_{i}^{2}=\frac{p^{2}-1}{4}$.
Proof. We follow the steps given in the proof for the quaternion case in [3]. Since x is idempotent, we have:

$$
\begin{aligned}
x^{2}=x & \Rightarrow\left(a_{0}+\sum_{i=1}^{7} a_{i} e_{i}\right)\left(a_{0}+\sum_{i=1}^{7} a_{i} e_{i}\right)=a_{0}+\sum_{i=1}^{7} a_{i} e_{i} \\
& \Rightarrow a_{0}^{2}+2 a_{0} \sum_{i=1}^{7} a_{i} e_{i}+\left(\sum_{i=1}^{7} a_{i} e_{i}\right)\left(\sum_{i=1}^{7} a_{i} e_{i}\right)=a_{0}+\sum_{i=1}^{7} a_{i} e_{i} \\
& \xrightarrow[\text { Fano }]{\text { distr. }} a_{0}^{2}-\sum_{i=1}^{7} a_{i}^{2}=a_{0} \quad \text { and } \quad 2 a_{0} a_{i}=a_{i}
\end{aligned}
$$

From the $2^{n d}$ equation, we have that either $a_{i}=0$ or $2 a_{0}=1$. That is $a_{0}=\frac{1+p}{2}$, as $p=0(\bmod p)$. Substituting the latter in the $1^{\text {st }}$ equation, we get $\sum_{i=1}^{7} a_{i}^{2}=\frac{p^{2}-1}{4}$.
Corollary 3.2. Let $x \in \mathbb{O} / \mathbb{Z}_{p}$ be a purely imaginary octonion of the form

$$
x=\sum_{i=1}^{7} a_{i} e_{i}
$$

Then x is not idempotent.
Proof. If x is purely imaginary then $a_{0}=0$. Then from Theorem $3.1,0=\frac{1+p}{2}$ which is a contradiction.

Example 3.3. Consider $x=4+e_{1}+3 e_{3}+4 e_{5}$ in $\mathbb{O} / \mathbb{Z}_{7}$. Then x is idempotent. Notice that $4=\frac{1+7}{2}$ and $1^{2}+3^{2}+4^{2}=26=\frac{49-1}{4} \bmod (7)$.
Remark 3.4. To find the number of idempotents in $\mathbb{O} / \mathbb{Z}_{p}$, one could naturally find how many ways $\frac{P^{2}-1}{4}$ can be written as a sum of seven or fewer squares. The equation $\sum_{i=1}^{7} a_{i}^{2}=\frac{p^{2}-1}{4}$ in Theorem 3.1 brings to mind the "sum of seven squares problem", which is to find the different values $r_{7}(n)$ for which $n=\sum_{i=1}^{7} x_{i}^{2}, n \in \mathbb{N}$. A formula for square-free values of n were stated without proof by Eisenstein in 1847, and those were extended to all positive integers n by Smith in 1864, also without a proof. Hardy in 1920 developed a method in deriving the proof for $r_{k}(n)$, where k is odd, but he explicitly showed only the $r_{5}(n)$ case in [13, 12]. More general results for $r_{7}(n)$ were given by Cooper in 2001 [8] and Cooper and Hirschhorn in 2007 [9].

Recall that an element x in a ring R is called nilpotent if $x^{k}=0$ for some $k \in \mathbb{N}$. In [4], it was shown that if x in $\mathbb{H} / \mathbb{Z}_{p}$ is nilpotent then the norm $N(x)=0$ (where $\left.N(x)=x x^{*}=\sum_{i=0}^{3} a_{i}^{2}\right)$ and, furthermore, that x is purely imaginary and $x^{2}=0$. If x $\in \mathbb{O} / \mathbb{Z}_{p}$, we have similar results. First, consider the following Lemmas:
Lemma 3.5. For any $x \in \mathbb{O} / \mathbb{Z}_{p}$, we have that $x^{2}-2 a_{0} x+N(x)=0$.
Proof. Let $x=a_{0}+\sum_{i=1}^{7} a_{i} e_{i}$. Then the left-hand side of the equation becomes:

$$
\begin{aligned}
& x^{2}-2 a_{0} x+N(x)=\left(a_{0}+\sum_{i=1}^{7} a_{i} e_{i}\right)\left(a_{0}+\sum_{i=1}^{7} a_{i} e_{i}\right)-2 a_{0} x+N(x) \\
& =a_{0}^{2}+2 a_{0} \sum_{i=1}^{7} a_{i} e_{i}+\left(\sum_{i=1}^{7} a_{i} e_{i}\right)\left(\sum_{i=1}^{7} a_{i} e_{i}\right)-2 a_{0}\left(a_{0}+\sum_{i=1}^{7} a_{i} e_{i}\right)+\sum_{i=0}^{7} a_{i}^{2} \\
& =a_{0}^{2}+\sum_{i=1}^{7} 2 a_{0} a_{i} e_{i}-\sum_{i=1}^{7} a_{i}^{2}-2 a_{0}\left(a_{0}+\sum_{i=1}^{7} a_{i} e_{i}\right)+\sum_{i=0}^{7} a_{i}^{2} \\
& = \\
& =a_{0}^{2}+2 a_{0} \sum_{i=1}^{7} a_{i} e_{i}-\sum_{i=1}^{7} a_{i}^{2}-2 a_{0}^{2}-2 a_{0} \sum_{i=1}^{7} a_{i} e_{i}+a_{0}^{2}+\sum_{i=1}^{7} a_{i}^{2} \\
& =0
\end{aligned}
$$

Lemma 3.6. Let $x \in \mathbb{O} / \mathbb{Z}_{p}$. If x is nilpotent, then $N(x)=0$.
Proof. We follow the steps given in the proof for the quaternion case in [4]. If x is nilpotent, then $x^{k}=0$ for some k. From Lemma 3.5 above, we have:

$$
\begin{aligned}
x^{2}-2 a_{0} x+N(x)=0 & \Rightarrow x\left(x-2 a_{0}\right)=-N(x) \\
& \Rightarrow\left(x\left(x-2 a_{0}\right)\right)^{k}=(-N(x))^{k} \\
& \Rightarrow x^{k}\left(x-2 a_{0}\right)^{k}=(-N(x))^{k} \text { (see Remark 3.7 below) } \\
& \Rightarrow 0=(N(x))^{k} \\
& \Rightarrow N(x)=0, \text { because } \mathbb{Z}_{\mathbf{p}} \text { is a field. }
\end{aligned}
$$

Remark 3.7. We discuss the statement $\left(x\left(x-2 a_{0}\right)\right)^{k}=x^{k}\left(x-2 a_{0}\right)^{k}$ in the proof in the Lemma 3.6 above: The statement is taken as obvious, without a proof, in [4] (in Lemma 2.1) for the quaternionic case $\mathbb{H} / \mathbb{Z}_{p}$, but it deserves a bit more explanation in our case here considering the non-commutativity and non-associativity of $\mathbb{O} / \mathbb{Z}_{p}$. As we mentioned in Sec.2, $\mathbb{O} / \mathbb{Z}_{p}$ is an alternative algebra (and flexible). Therefore, it also satisfies the Moufang Identities, in particularly the identity $(x y)(z x)=(x(y z)) x$. Given this, it is not hard to show the following:

Proposition 3.8. If A is an alternative algebra such that $x y=y x, x, y \in A$, then $(x y)^{k}=x^{k} y^{k}$.

Proof. We show this for $k=2$ (the general case follows by iteration). Indeed:

$$
\begin{aligned}
(x y)^{2}=(x y)(x y) \stackrel{c o m m .}{=}(y x)(x y) & \stackrel{\text { Mouf. }}{=}(y(x x)) y \\
& \stackrel{\text { altern. }}{=}((y x) x) y \\
& \text { comm. } \\
= & (x y) x) y \\
& \stackrel{\text { flex. }}{=}(x(y x)) y \\
& \stackrel{\text { comm. }}{=}(x(x y)) y \\
& \stackrel{\text { altern. }}{=}((x x) y) y \\
& \stackrel{\text { Mouf. }}{=}(x x)(y y)
\end{aligned}
$$

Hence, the statement $\left(x\left(x-2 a_{0}\right)\right)^{k}=x^{k}\left(x-2 a_{0}\right)^{k}$ is also true in our particular case here, because $\mathbb{O} / \mathbb{Z}_{p}$ is alternative (and flexible) and $x\left(x-2 a_{0}\right)=\left(x-2 a_{0}\right) x$. It is also clear now why the statement is easy to prove in $\mathbb{H} / \mathbb{Z}_{p}$, considering that $\mathbb{H} / \mathbb{Z}_{p}$ is actually associative. Finally, given the above result, one could also obtain the binomial formula $(x+y)^{k}=\sum_{j=0}^{k}\binom{k}{j} x^{j} y^{k-j}$, which could also be used to prove the statement
in question. That is:

$$
\begin{aligned}
\left(x\left(x-2 a_{0}\right)\right)^{k}=\left(x^{2}-2 a_{0} x\right)^{k} & =\sum_{j=0}^{k}\binom{k}{j}\left(x^{2}\right)^{j}\left(-2 a_{0} x\right)^{k-j} \\
& =x^{k} \sum_{j=0}^{k}\binom{k}{j} x^{j}\left(-2 a_{0}\right)^{k-j} \\
& =x^{k}\left(x-2 a_{0}\right)^{k}
\end{aligned}
$$

Theorem 3.9. Let $x \in \mathbb{O} / \mathbb{Z}_{p}$. Then x is nilpotent if and only if x is purely imaginary and $N(x)=0$. Furthermore, if x is nilpotent, then $x^{2}=0$.

Proof. If x is nilpotent, then $x^{k}=0$ for some $k>1$ (where k is the least such natural number). From Lemma 3.6 above, we have that $N(x)=0$. Combining Lemmas 3.5 and 3.6, we get $x^{2}=2 a_{0} x$. Following the steps given in the proof for the quaternion case in [4], we have:

If k is even : $\quad x^{2}=2 a_{0} x \Rightarrow\left(x^{2}\right)^{k / 2}=\left(2 a_{0}\right)^{k / 2} x^{k / 2}$

$$
\begin{aligned}
& \Rightarrow x^{k}=\left(2 a_{0}\right)^{k / 2} x^{k / 2} \\
& \Rightarrow 0=\left(2 a_{0}\right)^{k / 2} x^{k / 2} \\
& \Rightarrow a_{0}=0
\end{aligned}
$$

$$
\text { If } k \text { is odd : } \quad \begin{aligned}
x^{2}=2 a_{0} x & \Rightarrow\left(x^{2}\right)^{(k+1) / 2}=\left(2 a_{0}\right)^{(k+1) / 2} x^{(k+1) / 2} \\
& \Rightarrow(x)^{(k+1) / 2}=\left(2 a_{0}\right)^{(k+1) / 2} x^{(k+1) / 2} \\
& \Rightarrow 0=\left(2 a_{0}\right)^{(k+1) / 2} x^{k / 2} \\
& \Rightarrow a_{0}=0
\end{aligned}
$$

Hence, $a_{0}=0$ and therefore x is imaginary. Furthermore, since $a_{0}=0$, from $x^{2}=2 a_{0} x$ we have that $x^{2}=0$. For the converse, since $N(x)=0$, Lemma 3.5 gives $x^{2}=2 a_{0} x$. Since also x is imaginary $\left(a_{0}=0\right)$ the equation $x^{2}=2 a_{0} x$ gives $x^{2}=0$. Then for any $k>1$ we have: $x^{k}=x^{k-2} x^{2}=x^{k-2} \cdot 0=0$, so x is nilpotent.

Example 3.10. Consider $x=4 e_{1}+e_{2}+3 e_{3}+4 e_{5}$ in $\mathbb{O} / \mathbb{Z}_{7}$. Then x is nilpotent. Notice that $N(x)=0^{2}+4^{2}+1^{2}+3^{2}+0^{2}+4^{2}+0^{2}+0^{2}=0(\bmod 7)$.

4. Connection to general rings and applications

There is a lot in the literature on idempotents, nilpotents and k-potents in general, in more general rings R. It would be interesting to see if and how some of these results relate to the 'special', in a sense, ring $\mathbb{O} / \mathbb{Z}_{p}$.

In [16], Hirano and Tominaga proved that in a ring R the following are equivalent: (i) Every element of R is a sum of two commuting idempotents; (ii) R is commutative and every element of R is a sum of two idempotents; (iii) $x^{3}=x$, for all x in $R .{ }^{8}$

As $\mathbb{O} / \mathbb{Z}_{p}$ is not commutative, the above fails. For example, consider the idempotents $a=3+e_{1}$ and $b=3+e_{2}$ in $\mathbb{O} / \mathbb{Z}_{5}$. Then,

$$
x=a+b=\left(3+e_{1}\right)+\left(3+e_{2}\right)=6+e_{1}+e_{2}=1+e_{1}+e_{2},
$$

but x is not tripotent (indeed, $\left(1+e_{1}+e_{2}\right)^{3}=e_{1}+e_{2} \neq 1+e_{1}+e_{2}$). The above fails even when the idempotents commute. Take, for example, $a=b=3+e_{1}$ in $\mathbb{O} / \mathbb{Z}_{5}$.

Also, Mosic in [21] gives the relation between idempotent and tripotent elements in any associative ring R, generalizing the result on matrices by Trenkler and Baksalary [27]. Namely, for any $x \in R$, where 2,3 are invertible, x is idempotent if and only if x is tripotent and $1-x$ is tripotent or $1+x$ is invertible. Notice that even though $\mathbb{O} / \mathbb{Z}_{p}$ is not associative, the result does hold in some cases. Take for example the tripotent $x=4+3 e_{1}+e_{2}+4 e_{3}$ in $\mathbb{O} / \mathbb{Z}_{7}$, which is also an idempotent. It is not hard to check that directly or using the conditions for idempotency in Theorem 3.1 above. Notice also that $1-x$ is tripotent and $1+x$ is invertible as $N(x)=2 \neq 0$. So, we conjecture that Mosic's result may extend to (some) non-associative rings.

Finally, it is interesting to note any possible applications of rings related to the ring $\mathbb{O} / \mathbb{Z}_{p}$. Malekian and Zakerolhosseini in [19] use octonionic algebras to construct a high speed public key cryptosystem. More specifically, they consider the convolution polynomial rings $R=\mathbb{Z}[x] /\left(x^{N}-1\right), R_{p}=\mathbb{Z}_{p}[x] /\left(x^{N}-1\right)$ and $R_{q}=\mathbb{Z}_{q}[x] /\left(x^{N}-1\right)$, where p, q are primes such as $q \gg p$. From these they construct the octonionic algebras:

$$
\begin{aligned}
\mathbb{A} & =\left\{a_{0}(x)+\sum_{i=1}^{7} a_{i}(x) e_{i} \mid a_{i}(x) \in R\right\} \\
\mathbb{A}_{p} & =\left\{a_{0}(x)+\sum_{i=1}^{7} a_{i}(x) e_{i} \mid a_{i}(x) \in R_{p}\right\}, \\
\mathbb{A}_{q} & =\left\{a_{0}(x)+\sum_{i=1}^{7} a_{i}(x) e_{i} \mid a_{i}(x) \in R_{q}\right\},
\end{aligned}
$$

respectively. Then, the public (and private) key is generated as follows: initially two small octonions $F \in \mathbb{L}_{f}$ and $G \in \mathbb{L}_{g}$, where $\mathbb{L}_{f}, \mathbb{L}_{g}$ are some specifically constructed subspaces of \mathbb{A}, are randomly generated. Namely,

$$
\begin{aligned}
& F=f_{0}+\sum_{i=1}^{7} f_{i} e_{i} \mid f_{i} \in \mathbb{L}_{f} \\
& G=g_{0}+\sum_{i=1}^{7} g_{i} e_{i} \mid g_{i} \in \mathbb{L}_{g}
\end{aligned}
$$

The octonion F must be invertible in \mathbb{A}_{p} and \mathbb{A}_{q}, otherwise a new octionion F is generated. The inverses of F in \mathbb{A}_{p} and \mathbb{A}_{q} are denoted by in F_{p}^{-1} and F_{q}^{-1}, respectively. The public key, which is an octonion, is then given by $H=F_{p}^{-1} o G \in \mathbb{A}_{q}$, where o is a multiplication defined on \mathbb{A}_{q}, in terms of the convolution product. Encryption and decryption are done with similar calculations.

Notes

1. $\mathbb{R}, \mathbb{C}, \mathbb{H}$ and \mathbb{O} are the only normed division algebras. This was proved by Hurwitz in 1898 [17].
2. "+" and "." on \mathbb{H} are defined in $[14, \mathrm{p} .124]$. As $p=0(\bmod p)$ on $\mathbb{H} / \mathbb{Z}_{p}$ they are defined as follows:

$$
\begin{aligned}
x+y= & \left(a_{0}+a_{1} i+a_{2} j+a_{3} k\right)+\left(b_{0}+b_{1} i+b_{2} j+b_{3} k\right) \\
= & \left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) i+\left(a_{2}+b_{2}\right) j+\left(a_{3}+b_{3}\right) k \\
x \cdot y= & \left(a_{0}+a_{1} i+a_{2} j+a_{3} k\right) \cdot\left(b_{0}+b_{1} i+b_{2} j+b_{3} k\right) \\
= & a_{0} b_{0}+(p-1) a_{1} b_{1}+(p-1) a_{2} b_{2}+(p-1) a_{3} b_{3}+ \\
& \left(a_{0} b_{0}+a_{1} b_{0}+a_{2} b_{3}+(p-1) a_{3} b_{2}\right) j+ \\
& \left(a_{0} b_{2}+(p-1) a_{1} b_{3}+a_{2} b_{0}+a_{3} b_{1}\right) j+ \\
& \left(a_{0} b_{3}+a_{1} b_{2}+(p-1) a_{2} b_{1}+a_{3} b_{0}\right) k
\end{aligned}
$$

3. Fano Plane (Figure 1); Multiplication table (Figure 2); Program in Maple (Figure 3):

Figure 1. Fano Plane

$e_{i} e_{j}$	e_{0}	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}
e_{0}	e_{0}	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}
e_{1}	e_{1}	$-e_{0}$	e_{3}	$-e_{2}$	e_{5}	$-e_{4}$	$-e_{7}$	e_{6}
e_{2}	e_{2}	$-e_{3}$	$-e_{0}$	e_{1}	e_{6}	e_{7}	$-e_{4}$	$-e_{5}$
e_{3}	e_{3}	e_{2}	$-e_{1}$	$-e_{0}$	e_{7}	$-e_{6}$	e_{5}	$-e_{4}$
e_{4}	e_{4}	$-e_{5}$	$-e_{6}$	$-e_{7}$	$-e_{0}$	e_{1}	e_{2}	e_{3}
e_{5}	e_{5}	e_{4}	$-e_{7}$	e_{6}	$-e_{1}$	$-e_{0}$	$-e_{3}$	e_{2}
e_{6}	e_{6}	e_{7}	e_{4}	$-e_{5}$	$-e_{2}$	e_{3}	$-e_{0}$	$-e_{1}$
e_{7}	e_{7}	$-e_{6}$	e_{5}	e_{4}	$-e_{3}$	$-e_{2}$	e_{1}	$-e_{0}$

Figure 2. Multiplication table

```
「> HypercomplexLib :=`C:\\Hypercomplex\\Hypercomplex.mla`;
> libname:=HypercomplexLib,libname; \#\#\# now Maple will find the lib
        HypercomplexLib :=C:\Hypercomplex\Hypercomplex.mla
    libname : = "C:\Hypercomplex\Hypercomplex.mla", "C:\Program Files\Maple 18\lib", "."
\(>\) with(Hypercomplex) :
\(>\) setHypercomplex(octonion):
\(>i 2 \cdot i 7\)
    \(-i 5\)
    \((2 i 2-i 3) \cdot(i 4+3 i 5) \bmod 5 ;\)
    0
\[
\begin{array}{r}
(4+i 1+3 i 3+4 i 5) \cdot(4+i 1+3 i 3+4 i 5) \bmod 7  \tag{3}\\
4+i 1+3 i 3+4 i 5
\end{array}
\]
\[
\begin{equation*}
>(4 i 1+i 2+3 i 3+4 i 5) \cdot(4 i 1+i 2+3 i 3+4 i 5) \bmod 7 \tag{4}
\end{equation*}
\]
```

Figure 3. Maple program
4. Accordingly, the following hold: $(x x) y=x(x y)$ (alternative), $x(y x)=(x y) x$ (flexible), $\langle x\rangle$ is power associative for all x.
5. These representations are given in [11] without a proof. The proof for $\mathbb{O} / \mathbb{Z}_{p}$ is actually straightforward, following the exact steps in the proofs of Theorems 2.1 and 2.3 in [26] for the case of \mathbb{O}.
6. In Herstein [14, p. 130], we have as an exercise that: In a ring R, if $x^{2}=x$, for all x in R, then R is commutative. It is not hard to show that the converse is not true. (e.g. $\mathbb{F}=\mathbb{Z}_{3}, 2$ is not idempotent). Actually, a field \mathbb{F} has only trivial idempotents. Hence, in $\mathbb{H} / \mathbb{Z}_{p}$ some elements are non-trivial idempotents and they were described in [3].
7. Namely, the seven quaternionic subalgebras of $\mathbb{(1)}$ each generated by the seven "line" (including the circle) in the Fano Plane.
8. A ring R is called a tripotent ring if $x^{3}=x$, for all x in R. The fact that a tripotent ring is commutative is found as an exercise in Hernstein [14, p. 136]. Several proofs of this fact have been given since the 60's [5]. In Bourbaki, we find it also as an exercise with guided steps/hints for the proof [7, p. 176]. See also [23]. Interestingly, a more general result by Jacobson was already known in the 40's [18]. Namely, if in a ring R there exists an integer $n>1$ such that $x^{n}=x$, for every x in R, then R is commutative. For a proof of Jacobson's Theorem see [5], [15].

References

[1] Ankeny, N.C., Sum of three squares, Proc. Amer. Math. Soc., 8(2)(1957), 316-319.
[2] Aristidou, M., Demetre, A., A note on quaternion rings over \mathbb{Z}_{p}, Int. J. Alg., 3(15)(2009), 725-728.
[3] Aristidou, M., Demetre, A., Idempotent elements in quaternion rings over \mathbb{Z}_{p}, Int. J. Alg., 6(5)(2012), 249-254.
[4] Aristidou, M., Demetre, A., Nilpotent elements in quaternion rings over \mathbb{Z}_{p}, Int. J. Alg., 6(14)(2012), 663-666.
[5] Ayoub, R., Ayoub, C., On the commutativity of rings, Am. Math. Mon., 71(3)(1964), 267-271.
[6] Baez, J.C., The octonions, Bull. Amer. Math. Soc., 39(2002), 145-205.
[7] Bourbaki, N., Elements of Mathematics - Algebra I, Hermann, 1974.
[8] Cooper, S., Sums of five, seven and nine squares, Ramanujan J., 6(2002), 469-490.
[9] Cooper, S., Hirschhorn, M., On the number of primitive representations of integers as sums of squares, Ramanujan J., 13(2007), 7-25.
[10] Ebbinghaus, H.D., Hermes, H., Hirzebruch, F., Koecher, M., Mainzer, K., Neukirch, J., Prestel, A., Remmert, R., Numbers, Springer, NY, 1991.
[11] Halici, S., Karatas, A., $\mathbb{O} / \mathbb{Z}_{p}$ Octonion algebra and its matrix representations, Palest. J. Math., 6(1)(2017), 307-313.
[12] Hardy, G.H., On the representations of a number as the sum of any number of squares, and in particular of five or seven, Proc. Nat. Acad. Sci., U.S.A., 4(1918), 189-193.
[13] Hardy, G.H., On the representation of a number as the sum of any number of squares, and in particular of five, Trans. Amer. Math. Soc., 21(1920), 255-284.
[14] Herstein, I.N., Topics in Algebra, 2nd ed., Wiley, 1975.
[15] Herstein, I.N., Wedderburn's theorem and a theorem of Jacobson, Am. Math. Mon., 68(3)(1961), 249-251.
[16] Hirano, Y., Tominaga, H., Rings in which every element is the sum of two idempotents, Bull. Austral. Math. Soc., 37(2)(1988), 161-164.
[17] Hurwitz, A., Über die Composition der quadratischen Formen von Beliebig Vielen Variabeln, Nachr. Ges. Wiss. Göttingen, (1898), 309-316.
[18] Jacobson, N., Structure theory for algebraic algebras of bounded degree, Ann. of Math., 46(1945), 695-707.
[19] Malekian, E., Zakerolhosseini, A., OTRU: A non-associative and high speed public key cryptosystem, 15 th CSI International Symposium on Computer Architecture and Digital Systems, Iran, 2010, 83-90.
[20] Miguel, C.J., Serodio, R., On the structure of quaternion rings over \mathbb{Z}_{p}, Int. J. Alg., 5(27)(2011), 1313-1325.
[21] Mosic, D., Characterizations of k-potent elements in rings, Ann. Mat. Pura Appl., 194(4)(2015), 1157-1168.
[22] Pierce, R.S., Associative Algebras, Springer, 1982.
[23] van der Poorten, A., Concerning commuting, Austral. Math. Soc. Gazette, 194(1994), 68.
[24] Schafer, R., An Introduction to Nonassociative Algebras, Academic Press, 1996.
[25] Serre, J.P., A Course in Arithmetic, Springer, 1973.
[26] Tian, Y., Matrix representations of octonions and their applications, Adv. Appl. Clifford Algebr., 10(1)(2000), 61-90.
[27] Trenkler, G., Baksalary, O.M., On k-potent matrices, Electron. J. Linear Algebra, 26(2013), 446-470.

Michael Aristidou
Texas A\&M University at Galveston, Galveston, TX, USA
e-mail: maristidou@tamu.edu
Philip R. Brown
Texas A\&M University at Galveston, Galveston, TX, USA
e-mail: brownp@tamug.edu
George Chailos
University of Nicosia,
Nicosia, Cyprus
e-mail: chailos.g@unic.ac.cy

[^0]: Received 27 July 2021; Accepted 14 December 2021.
 (C) Studia UBB MATHEMATICA. Published by Babeş-Bolyai University

