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Exponential dichotomy and invariant manifolds
of semi-linear differential equations on the line

Trinh Viet Duoc and Nguyen Ngoc Huy

Abstract. In this paper we investigate the homogeneous linear differential equa-
tion v′(t) = A(t)v(t) and the semi-linear differential equation

v′(t) = A(t)v(t) + g(t, v(t))

in Banach space X, in which A : R → L(X) is a strongly continuous function,
g : R × X → X is continuous and satisfies ϕ-Lipschitz condition. The first we
characterize the exponential dichotomy of the associated evolution family with
the homogeneous linear differential equation by space pair (E , E∞), this is a Per-
ron type result. Applying the achieved results, we establish the robustness of
exponential dichotomy. The next we show the existence of stable and unstable
manifolds for the semi-linear differential equation and prove that each a fiber of
these manifolds is differentiable submanifold of class C1.
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1. Introduction

The exponential dichotomy for the homogeneous linear differential equation
v′(t) = A(t)v(t) was extensively studied by mathematicians, for instance, Perron
[15], Massera and Schäffer [13], Daleckii and Krein [5], Coppel [4], Chicone and La-
tushkin [3]. To characterize the exponential dichotomy for the homogeneous linear
differential equation, Perron’s method has played an underlying role up to now. Some
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efforts improved Perron’s result by following two directions: one is to extend the no-
tion of exponential dichotomy [7, 1], and the other is to change admissible space pair
(input-output spaces) [16, 12, 19, 9, 17, 18].

Huy [9] had characterized the exponential dichotomy of evolution equations on
a half-line by using the notion of admissible Banach function space. Through this
notion, his group got some extended results for the existence of stable and unstable
manifolds of evolution equations [10, 11].

In [1], the authors investigated the exponential dichotomy for the homogeneous
linear differential equation v′(t) = A(t)v(t), in which A : R → L(X) is a strongly
continuous function. The notion of exponential dichotomy in [1] was with respect
to the family of norms ‖ · ‖t on X for t ∈ R. It was characterized by space pair
(Y, Y ), where Y = Cb(R, X) is equipped with the norm ‖v‖∞ = supt∈R ‖v(t)‖t, for
v ∈ Y . So, the paper [1] has inspired us to investigate the exponential dichotomy for
the homogeneous linear differential equation v′(t) = A(t)v(t) in the present paper.
Different from [1], in this paper we consider Banach space X with a fixed norm but
our space pair is wider.

It is the aim of this paper to investigate the homogeneous linear differential
equation v′(t) = A(t)v(t) and the semi-linear differential equation v′(t) = A(t)v(t) +
g(t, v(t)) in Banach space X, in which A : R→ L(X) is a strongly continuous function,
g : R×X → X is continuous and satisfies ϕ-Lipschitz condition. In Section 2 we use
Perron’s method to characterize the exponential dichotomy of the associated evolution
family with the homogeneous linear differential equation by space pair (E , E∞), the
achieved result is a significant improvement compared to previous results for the
homogeneous linear differential equation. As an application of this characterization,
we get the robustness of exponential dichotomy.

The stable manifold theorem is one of the most important results in the local
qualitative theory of autonomous nonlinear differential equations, see [2, 8, 14]. It
was extended for the semi-linear differential equation v′(t) = A(t)v(t) + g(t, v(t)) in
Banach space X, where g satisfies constant Lipschitz condition, i.e, there exists q > 0
such that ‖g(t, x)− g(t, y)‖ ≤ q‖x− y‖ for all t ∈ R and x, y ∈ X, see [5]. In Section 3
we show the existence of stable and unstable manifolds for the semi-linear differential
equation v′(t) = A(t)v(t) + g(t, v(t)), in which g satisfies ϕ-Lipschitz condition, i.e,
‖g(t, x)−g(t, y)‖ ≤ ϕ(t)‖x−y‖ for all t ∈ R and x, y ∈ X. Different from the constant
Lipschitz case, the semi-linear differential equation surely exists solution on positive
semi-axis if initial value lies in a fiber of stable manifold and on negative semi-axis if
initial value lies in a fiber of unstable manifold. The same as autonomous nonlinear
differential equations, each a fiber of these manifolds is differentiable submanifold of
class C1 if the map g(t, ·) is continuously differentiable (in the sense Fréchet derivative)
on X for each fixed t ∈ R.

The remainder in this section, we recall some notions on Banach function spaces
on the line in the paper [6]. Denote by B the Borel algebra and by λ the Lebesgue
measure on R. The space L1,loc(R) of real-valued locally integrable functions on R
becomes a Fréchet space for the seminorms pn(f) :=

∫
Jn
|f(t)|dt, where Jn = [n, n+1]

for each n ∈ Z (see [13, Chapt. 2, §20]).
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Definition 1.1. A vector space E of real-valued Borel-measurable functions on R is
called a Banach function space (over (R,B, λ)) if

1) E is Banach lattice with respect to a norm ‖ · ‖E , i.e., (E, ‖ · ‖E) is a Banach
space, and if ϕ ∈ E and ψ is a real-valued Borel-measurable function such that
|ψ(·)| ≤ |ϕ(·)|, λ-a.e., then ψ ∈ E and ‖ψ‖E ≤ ‖ϕ‖E ,

2) the characteristic functions χA belong to E for all A ∈ B of finite measure, and
supt∈R ‖χ[t,t+1]‖E <∞ and inft∈R ‖χ[t,t+1]‖E > 0,

3) E ↪→ L1,loc(R), i.e., for each seminorm pn of L1,loc(R) there exists a number
βpn > 0 such that pn(f) ≤ βpn‖f‖E for all f ∈ E.

The following lemma is very useful in the later sections.

Lemma 1.2. Let E be a Banach function space. Let ϕ and ψ be real-valued, measurable
functions on R such that they coincide with each other outside a compact interval and
they are essentially bounded on this compact interval. Then ϕ ∈ E if only if ψ ∈ E.

Definition 1.3. Let now E be a Banach function space and X a Banach space. The
set

E := E(R, X) := {f : R→ X : f is strongly measurable and ‖f(·)‖ ∈ E}

is endowed the norm

‖f‖E := ‖‖f(·)‖‖E .
Then, E is a Banach space and is called Banach space corresponding to the Banach
function space E.

Definition 1.4. The Banach function space E is called admissible if

1. there is a constant M ≥ 1 such that for every compact interval [a, b] ⊂ R we
have ∫ b

a

|ϕ(t)|dt ≤ M(b− a)

‖χ[a,b]‖E
‖ϕ‖E for all ϕ ∈ E, (1.1)

2. for ϕ ∈ E the function Λ1ϕ defined by Λ1ϕ(t) :=
∫ t+1

t
ϕ(τ)dτ belongs to E.

3. E is T+
τ -invariant and T−τ -invariant, where T+

τ and T−τ are defined by

T+
τ ϕ(t) := ϕ(t− τ) for t ∈ R,
T−τ ϕ(t) := ϕ(t+ τ) for t ∈ R,

and there exists constants N1, N2 such that ‖T+
τ ‖ ≤ N1, ‖T−τ ‖ ≤ N2 for all

τ ∈ R+.

Remark 1.5. It can be easily seen that if E is an admissible Banach function space
then E ↪→M(R), where

M(R) =

{
f ∈ L1,loc(R) : sup

t∈R

∫ t+1

t

|f(τ)|dτ <∞
}
.

We now collect some properties of admissible Banach function space in the fol-
lowing proposition, see [6, Proposition 2.3] for complete proof.
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Proposition 1.6. Let E be an admissible Banach function space. The following asser-
tions hold.

(a) Let ϕ ∈ L1, loc(R) such that ϕ ≥ 0 and Λ1ϕ ∈ E, where Λ1ϕ is defined as in
Definition 1.4(ii). For σ > 0 we define functions Λσϕ and Λ̄σϕ by

Λσϕ(t) =

∫ t

−∞
e−σ(t−s)ϕ(s)ds,

Λ̄σϕ(t) =

∫ ∞
t

e−σ(s−t)ϕ(s)ds.

Then, Λσϕ and Λ̄σϕ belong to E, and

‖Λσϕ‖E ≤
N1

1− e−σ
‖Λ1ϕ‖E , ‖Λ̄σϕ‖E ≤

N2

1− e−σ
‖Λ1ϕ‖E .

In particular, if supt∈R
∫ t+1

t
|ϕ(τ)|dτ < ∞ (this will be satisfied if ϕ ∈ E (see

Remark 1.5)) then Λσϕ and Λ̄σϕ are bounded. Moreover, denoted by ‖ · ‖∞ for
sup-norm, we have

‖Λσϕ‖∞ ≤
N1

1− e−σ
‖Λ1ϕ‖∞ and ‖Λ̄σϕ‖∞ ≤

N2

1− e−σ
‖Λ1ϕ‖∞.

(b) E contains exponentially decaying functions ψ(t) = e−α|t| for t ∈ R and α > 0.
(c) E does not contain exponentially growing functions f(t) = ebt for t ∈ R and

b 6= 0.

The associate space of Banach function space is defined as follows.

Definition 1.7. Let E be an admissible Banach function space and denote by S(E)
the unit sphere in E. Recall that L1(R) = {g : R → R | g is Borel measurable and∫∞
−∞ |g(t)|dt <∞}. The set E′ of all real-valued Borel-measureable functions ψ on R

such that

ϕψ ∈ L1(R),

∫ ∞
−∞
|ϕ(t)ψ(t)|dt ≤ k for all ϕ ∈ S(E),

where k depends only on ψ. Then, E′ is a normed space with the norm given by

‖ψ‖E′ := sup

{∫ ∞
−∞
|ϕ(t)ψ(t)|dt : ϕ ∈ S(E)

}
for ψ ∈ E′.

We call E′ being the associate space of E.

Let E be an admissible Banach function space and E′ be its associate space.
Then, the following “Hölder-type inequality” holds:∫ ∞

−∞
|ϕ(t)ψ(t)|dt ≤ ‖ϕ‖E‖ψ‖E′ for all ϕ ∈ E, ψ ∈ E′. (1.2)

Definition 1.8. Let E be an admissible Banach function space and E′ be its associate
space. A positive function ϕ ∈ E′ is called exponentially E-invariant if for any fixed
ν > 0, the function hν defined by

hν(t) := ‖e−ν|t−·|ϕ(·)‖E′ for t ∈ R
belongs to E.
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2. Exponential dichotomy

Let X = (X, ‖ · ‖) be a Banach space and L(X) be the set of all bounded linear
operators on X. Assume that A : R → L(X) is strongly continuous function (that
means the mapping t 7→ A(t)x is continuous on R for each x ∈ X). Then, the linear
differential equation

v′ = A(t)v, t ∈ R (2.1)

generates an evolution family (T (t, τ))t,τ∈R on the Banach space X. This evolution
family is strongly continuous, exponentially unbounded, differentiable and invertible
(see [5] to more detailed informations), also called the associated evolution family with
Eq. (2.1). In this section we characterize the exponential dichotomy of the associated
evolution family with Eq. (2.1) and show that the exponential dichotomy is invariant
under small perturbations. Firstly, we recall the concept of the exponential dichotomy
of the evolution family (T (t, τ))t,τ∈R on the line.

Definition 2.1. The associated evolution family (T (t, τ))t,τ∈R is said to have an expo-
nential dichotomy on the line if there exist bounded linear projections P (t), t ∈ R on
X and positive constants N, η, ν such that

(a)

T (t, τ)P (τ) = P (t)T (t, τ), t, τ ∈ R; (2.2)

(b) for all x ∈ X and t ≥ τ ,

‖T (t, τ)P (τ)x‖ ≤ Ne−η(t−τ)‖x‖,

‖T (τ, t)Q(t)x‖ ≤ Ne−η(t−τ)‖x‖; (2.3)

(c) for all x ∈ X and t ≤ τ ,

‖T (t, τ)P (τ)x‖ ≤ Ne−ν(t−τ)‖x‖,

‖T (τ, t)Q(t)x‖ ≤ Ne−ν(t−τ)‖x‖; (2.4)

in which Q(t) = I − P (t), t ∈ R.

Note that Definition 2.1 is derived from the concept of the exponential dichotomy
in [1] when the family of norms is a fixed norm for all t ∈ R. This definition is also
equivalent to the concept of the exponential dichotomy of a strongly continuous,
exponentially bounded, and invertible evolution family.

To characterize the exponential dichotomy of the associated evolution family
(T (t, τ))t,τ∈R, we define Banach space E∞ as follows

E∞ = E ∩ Cb(R, X) with the norm ‖f‖E∞ = max{‖f‖E , ‖f‖∞}.

The next part we will characterize the exponential dichotomy of the associated evolu-
tion family with Eq. (2.1) by space pair (E , E∞). From the properties of the admissible
Banach function space, we see that the output solution has better information than
the input function. So the output space is smaller than the input space in our re-
sults. We now give necessary condition for the exponential dichotomy in the following
theorem.
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Theorem 2.2. Assume that the associated evolution family (T (t, τ))t,τ∈R has exponen-
tial dichotomy on the line. Then,

1) for each y ∈ E there exists a unique v ∈ E∞ that is absolutely continuous on each
[a, b] ⊂ R and satisfies

v′(t)−A(t)v(t) = y(t) for a.e. t ∈ R; (2.5)

2) there exist K,α > 0 such that

‖T (t, τ)‖ ≤ Keα|t−τ | for t, τ ∈ R. (2.6)

Remark 2.3. The absolute continuity of v on each [a, b] ⊂ R guarantees that v is
differentiable almost everywhere and furthermore the Newton-Leibniz formula for
Bochner integral holds for v.

Proof. Take y ∈ E , for t ∈ R we define

v(t) =

∫ t

−∞
T (t, τ)P (τ)y(τ)dτ −

∫ ∞
t

T (t, τ)Q(τ)y(τ)dτ. (2.7)

It follows from (2.3) and Proposition 1.6 that

‖v(t)‖ ≤
∫ t

−∞
‖T (t, τ)P (τ)y(τ)‖dτ +

∫ ∞
t

‖T (t, τ)Q(τ)y(τ)‖dτ

≤ N
∫ t

−∞
e−η(t−τ)‖y(τ)‖dτ +N

∫ ∞
t

e−η(τ−t)‖y(τ)‖dτ

= NΛηϕ(t) +N Λ̄ηϕ(t),

where ϕ(t) = ‖y(t)‖. So v(t) is well defined, continuous and bounded. On the other
hand, by Banach lattice property of E we also obtain

‖v‖E ≤
NN1

1− e−η
‖Λ1ϕ‖E +

NN2

1− e−η
‖Λ1ϕ‖E .

Therefore, v ∈ E∞ and ‖v‖E∞ ≤ N(N1 +N2)(1− e−η)−1‖Λ1ϕ‖E∞ .
Moreover, given t0 ∈ R, by directly computing we have

v(t) = T (t, t0)v(t0) +

∫ t

t0

T (t, τ)y(τ)dτ

= T (t, t0)
[
v(t0) +

∫ t

t0

T (t0, τ)y(τ)dτ
]
, (2.8)

for t ∈ R. Since T (t, τ) is the evolution family of Eq. (2.1) and property of Bochner
integral, it follows from (2.8) that the function v : R → X is differentiable almost
everywhere and that identity (2.5) holds for a.e. t ∈ R. Because T (t0, τ)y(τ) is locally
Bochner-integrable function so

v(t0) +

∫ t

t0

T (t0, τ)y(τ)dτ, t ∈ R

is absolutely continuous function on each [a, b] ⊂ R. On the other hand, T (t, t0)
and T (t0, t) are continuously differentiable on R follow uniform topology in L(X).
Therefore, T (t, t0)f(t) and T (t0, t)f(t) are absolutely continuous functions on each
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[a, b] ⊂ R if so is f . This means that v is absolutely continuous on each [a, b] ⊂ R. We
now show that v is the unique function in E∞ satisfying (2.5) for a.e. t ∈ R.

Indeed, let v1 ∈ E∞ be absolutely continuous function on each [a, b] ⊂ R and
satisfy (2.5) for a.e. t ∈ R. So that

v′1(t)−A(t)v1(t) = y(t) for a.e. t ∈ R.

Put z(t) = T (t0, t)v1(t). Then, z is absolutely continuous on each [a, b] ⊂ R, differen-
tiable almost everywhere and

z′(t) = T (t0, t)y(t) for a.e. t ∈ R.

Thus,

z(t)− z(t0) =

∫ t

t0

z′(τ)dτ =

∫ t

t0

T (t0, τ)y(τ)dτ.

This implies that

v1(t) = T (t, t0)z(t) = T (t, t0)v1(t0) +

∫ t

t0

T (t, τ)y(τ)dτ.

Put w(t) = v(t) − v1(t), we have w ∈ E∞ and w(t) = T (t, t0)w(t0) for t, t0 ∈ R. For
τ ≥ 0, using (2.2) and (2.3) we obtain

‖P (t)w(t)‖ = ‖T (t, t− τ)P (t− τ)w(t− τ)‖ ≤ Ne−ητ‖w‖E∞ ,
‖Q(t)w(t)‖ = ‖T (t, t+ τ)Q(t+ τ)w(t+ τ)‖ ≤ Ne−ητ‖w‖E∞ .

Sending τ → ∞ yields that P (t)w(t) = Q(t)w(t) = 0 for t ∈ R. Therefore, w(t) = 0
for t ∈ R. So, v is unique.

In order to prove (2.6), we use (2.3) and (2.4). For t ≥ τ ,

‖T (t, τ)x‖ ≤ ‖T (t, τ)P (τ)x‖+ ‖T (t, τ)Q(τ)x‖

≤ Ne−η(t−τ)‖x‖+Neν(t−τ)‖x‖ ≤ 2Neν(t−τ)‖x‖;

and for t ≤ τ ,

‖T (t, τ)x‖ ≤ ‖T (t, τ)P (τ)x‖+ ‖T (t, τ)Q(τ)x‖

≤ Neν(τ−t)‖x‖+Ne−η(τ−t)‖x‖ ≤ 2Neν(τ−t)‖x‖.

Thus, (2.6) holds with K = 2N and α = ν. �

The next we show that (2.5) and (2.6) are also sufficient condition for the expo-
nential dichotomy of associated evolution family (T (t, τ))t,τ∈R.

Theorem 2.4. Assume that the assertions 1) and 2) in Theorem 2.2 are true. Then,
associated evolution family (T (t, τ))t,τ∈R has exponential dichotomy on the line.

Proof. The proof scheme is the same as [1, Theorem 2.3]. For the sake of completeness,
we still present the complete proof.
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Linear operator H : D(H) ⊂ E∞ → E is defined as follows:

(Hv)(t) = v′(t)−A(t)v(t), t ∈ R,
D(H) = {v ∈ E∞ is absolutely continuous function

on each [a, b] ⊂ R such that Hv ∈ E}. (2.9)

Then, (H,D(H)) is closed operator. Indeed, let {vk}k∈N be a sequence in D(H) such
that vk → v in E∞ and yk := Hvk → y in E . For each fixed τ ∈ R and t ≥ τ , we have

v(t)− v(τ) = lim
k→∞

(vk(t)− vk(τ)) = lim
k→∞

∫ t

τ

v′k(s)ds

= lim
k→∞

∫ t

τ

(yk(s) +A(s)vk(s))ds.

On the other hand, by (1.1)∥∥∥∥∫ t

τ

yk(s)ds−
∫ t

τ

y(s)ds

∥∥∥∥ ≤ ∫ t

τ

‖yk(s)− y(s)‖ds ≤ M(t− τ)

‖χ[τ,t]‖E
‖yk − y‖E .

Therefore,

lim
k→∞

∫ t

τ

yk(s)ds =

∫ t

τ

y(s)ds.

Similarly, ∥∥∥∥∫ t

τ

A(s)vk(s)ds−
∫ t

τ

A(s)v(s)ds

∥∥∥∥ ≤M1

∫ t

τ

‖vk(s)− v(s)‖ds

≤M1(t− τ)‖vk − v‖E∞
with M1 = sup{‖A(s)‖ : s ∈ [τ, t]}. Thus,

lim
k→∞

∫ t

τ

A(s)vk(s)ds =

∫ t

τ

A(s)v(s)ds.

So,

v(t)− v(τ) =

∫ t

τ

(A(s)v(s) + y(s))ds.

This implies that v(t) is absolutely continuous on each [a, b] ⊂ R, differentiable almost
everywhere and v′(t) = A(t)v(t) + y(t) for a.e. t ∈ R. So, Hv = y and v ∈ D(H).
Therefore, (H,D(H)) is closed operator.

By the assumption, H : D(H)→ E is bijective. So the operator H has an inverse
operator G : E → D(H). Because G is closed operator and D(G) = E is Banach space
so G is bounded.

We now construct stable and unstable subspaces, for τ ∈ R

F sτ = {x ∈ X : χ[τ,∞)(·)T (·, τ)x ∈ E and sup
t≥τ
‖T (t, τ)x‖ <∞}, (2.10)

Fuτ = {x ∈ X : χ(−∞,τ ](·)T (·, τ)x ∈ E and sup
t≤τ
‖T (t, τ)x‖ <∞}. (2.11)
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Then, F sτ and Fuτ are subspaces. The next we show that the associated evolution family
(T (t, τ))t,τ∈R has exponential dichotomy corresponding to F sτ and Fuτ subspaces. To
track easily we will split the proof process into lemmas below.

Lemma 2.5. X = F sτ ⊕ Fuτ for each τ ∈ R.

Proof. Let φ : R→ R be a smooth function supported on [τ,∞) such that 0 ≤ φ ≤ 1,
φ = 1 on [τ + 1,∞) and supt∈R |φ′(t)| < ∞. Given x ∈ X, put g(t) = φ′(t)T (t, τ)x.
By (2.6) we get

‖g(t)‖ = ‖χ[τ,τ+1](t)φ
′(t)T (t, τ)x‖

≤ χ[τ,τ+1](t) sup
t∈R
|φ′(t)|Keα‖x‖ for all t ∈ R.

By Banach lattice property then ‖g(·)‖ ∈ E. Thus, g ∈ E∞. Because H is bijective
so there exists unique v ∈ D(H) ⊂ E∞ such that Hv = g for all t ∈ R. Denoted
w(t) = (1− φ(t))T (t, τ)x+ v(t) for t ∈ R, we check easily Hw = 0. Therefore, w is a
solution of Eq. (2.1). For t ≥ τ , we get

‖w(t)‖ ≤ χ[τ,τ+1](t)Ke
α‖x‖+ ‖v(t)‖.

This implies χ[τ,∞)(·)‖w(·)‖ ∈ E. Thus, w(τ) ∈ F sτ .

On the other hand, w(t)− T (t, τ)x is also a solution of Eq. (2.1). For t ≤ τ , we have
w(t)− T (t, τ)x = v(t) so thus χ(−∞,τ ](·)(w(·)− T (·, τ)x) ∈ E and

sup
t≤τ
‖w(t)− T (t, τ)x‖ <∞.

Therefore, w(τ)− x ∈ Fuτ . Hence, x ∈ F sτ + Fuτ for all x ∈ X.
If x ∈ F sτ ∩ Fuτ then u(·) := T (·, τ)x ∈ E∞. Furthermore, u is absolutely con-

tinuous function on each compact interval in R. Therefore, u ∈ D(H). Since H is
invertible and Hu = 0 so u = 0 for a.e. t ∈ R. Because u is continuous function so
u = 0 for all t ∈ R. Thus, x = 0. So, F sτ ∩ Fuτ = {0}. �

The decomposition in Lemma 2.5 determines a complementary projection pair
P (τ) : X → F sτ and Q(τ) : X → Fuτ for each τ ∈ R. These projections are uniformly
bounded.

Lemma 2.6. There exists M > 0 such that

‖P (τ)x‖ ≤M‖x‖ (2.12)

for x ∈ X and τ ∈ R.

Proof. Using the same notation as in the proof of Lemma 2.5, we get

‖P (τ)x‖ = ‖w(τ)‖ ≤ ‖x‖+ ‖v(τ)‖ ≤ ‖x‖+ ‖v‖E∞
= ‖x‖+ ‖Gg‖E∞ ≤ ‖x‖+ ‖G‖‖g‖E .

Moreover, we have

‖g‖E ≤ ‖χ[τ,τ+1]‖ELKeα‖x‖ ≤ sup
τ∈R
‖χ[τ,τ+1]‖ELKeα‖x‖,
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where L = supt∈R |φ′(t)| <∞. Therefore,

‖P (τ)x‖ ≤ (1 + ‖G‖LKeα sup
τ∈R
‖χ[τ,τ+1]‖E)‖x‖. �

We prove that property (2.2) holds in the following lemma.

Lemma 2.7.

T (t, τ)P (τ) = P (t)T (t, τ) for t, τ ∈ R.

Proof. Using the same notation as in the proof of Lemma 2.5. We prove this lemma
in several steps.
Step 1. We show that T (t, τ)w(τ) ∈ F st . Indeed,

χ[t,∞)(ξ)T (ξ, t)T (t, τ)w(τ) = χ[t,∞)(ξ)T (ξ, τ)w(τ)

=

{
0 if ξ < t,
w(t) if ξ ≥ t.

Thus, χ[t,∞)(·)T (·, t)T (t, τ)w(τ) ∈ E∞. This implies T (t, τ)w(τ) ∈ F st .
Step 2. We prove that T (t, τ)v(τ) ∈ Fut . Indeed, by Hv = g we have

v(t) = T (t, τ)v(τ) +

∫ t

τ

T (t, ξ)g(ξ)dξ for t, τ ∈ R.

Therefore,

T (t, τ)v(τ) = v(t)−
∫ t

τ

T (t, ξ)g(ξ)dξ

= v(t)−
∫ t

τ

T (t, ξ)φ′(ξ)T (ξ, τ)xdξ

= v(t)−
∫ t

τ

φ′(ξ)T (t, τ)xdξ

=

{
v(t) if t ≤ τ,
v(t)− φ(t)T (t, τ)x if t ≥ τ.

Hence,

χ(−∞,t](ξ)T (ξ, t)T (t, τ)v(τ) =

{
0 if ξ > t,
T (ξ, τ)v(τ) if ξ ≤ t,

=

 0 if ξ > t,
v(ξ)− φ(ξ)T (ξ, τ)x if τ ≤ ξ ≤ t,
v(ξ) if ξ < τ.

Putting

f(ξ) =

{
0 if ξ ≥ τ,
v(ξ) if ξ < τ.

Then, f ∈ E∞. By Lemma 1.2, we have χ(−∞,t](·)T (·, t)T (t, τ)v(τ) ∈ E∞. Therefore,
T (t, τ)v(τ) ∈ Fut .
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Step 3. We also have

T (t, τ)P (τ)x = T (t, τ)w(τ)

= T (t, τ)x+ T (t, τ)v(τ).

Let projection P (t) act on both sides of the above equality, we obtain

T (t, τ)P (τ)x = P (t)T (t, τ)x for all x ∈ X. �

Lemma 2.8. There exists constants N, η > 0 such that

‖T (t, τ)x‖ ≤ Ne−η(t−τ)‖x‖ (2.13)

for x ∈ P (τ)X and t ≥ τ .

Proof. Let ψ : R→ R be a smooth function which has support on [τ,+∞) such that
0 ≤ ψ ≤ 1, ψ = 1 on [τ + 1,+∞) and supt∈R |ψ′(t)| ≤ 2. Given x ∈ F sτ , let u be a
solution of Eq. (2.1) with u(τ) = x, i.e, u(t) = T (t, τ)x for t ∈ R. We have

‖ψ(t)u(t)‖ = ‖ψ(t)T (t, τ)x‖ = ‖χ[τ,+∞)(t)ψ(t)T (t, τ)x‖
≤ ‖χ[τ,+∞)(t)T (t, τ)x‖.

From x ∈ F sτ and using (2.10) we get χ[τ,+∞)(·)T (·, τ)x ∈ E∞. Therefore, by Banach
lattice property then we have ψ(·)u(·) ∈ E∞. Moreover, we have H(ψu) = ψ′u and

‖(ψ′u)(ξ)‖ ≤ 2χ[τ,τ+1](ξ)‖u(ξ)‖ ≤ 2χ[τ,τ+1](ξ)Ke
α‖x‖, ξ ∈ R.

Thus,

‖‖ψ′u‖‖E = ‖ψ′u‖E ≤ 2Keα‖χ[τ,τ+1]‖E‖x‖.
• For t ≥ τ + 1,

‖u(t)‖ = ‖ψ(t)u(t)‖ = ‖G(ψ′u)(t)‖ ≤ ‖G(ψ′u)‖E∞
≤ ‖G‖‖ψ′u‖E ≤ 2‖G‖Keα‖χ[τ,τ+1]‖E‖x‖.

• For τ ≤ t ≤ τ + 1,

‖u(t)‖ = ‖T (t, τ)x‖ ≤ Keα‖x‖.

Therefore,

‖u(t)‖ ≤ C‖x‖ for t ≥ τ, (2.14)

where C = Keα max{2‖G‖ supτ∈R ‖χ[τ,τ+1]‖E , 1}.
The next, we show that there exists m ∈ N such that

‖u(t)‖ ≤ 1

2
‖x‖ for t− τ ≥ m, τ ∈ R. (2.15)

In order to prove (2.15), let

y(ξ) = χ[τ,t](ξ)u(ξ) and v(ξ) = u(ξ)

∫ ξ

−∞
χ[τ,t](s)ds.

It can be seen that y ∈ E , v ∈ D(H) ⊂ E∞ and Hv = y. Therefore,

‖v‖E∞ = ‖Gy‖E∞ ≤ ‖G‖‖y‖E .
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On the other hand,

‖y(ξ)‖ ≤
{
χ[τ,τ+1](ξ)Ke

α‖x‖, ξ ∈ [τ, τ + 1],
G(ψ′u)(ξ), ξ ∈ [τ + 1,+∞).

Thus,

‖y‖E ≤ max{Keα sup
τ∈R
‖χ[τ,τ+1]‖E , 2Keα‖G‖ sup

τ∈R
‖χ[τ,τ+1]‖E}‖x‖ =: K1‖x‖.

So,

‖v‖E∞ ≤ ‖G‖K1‖x‖.
We have

(t− τ)‖u(t)‖ = ‖v(t)‖ ≤ ‖v‖E∞ ≤ ‖G‖K1‖x‖.
Therefore,

‖u(t)‖ ≤ ‖G‖K1

t− τ
‖x‖.

Hence, if t−τ ≥ 2K1‖G‖ then ‖u(t)‖ ≤ 1
2‖x‖. Taking m > 2K1‖G‖, we obtain (2.15).

Finally, take t ≥ τ and write t − τ = km + r with k ∈ N and 0 ≤ r < m. By (2.12),
(2.14), (2.15), and Lemma 2.7 we get

‖T (t, τ)P (τ)x‖ = ‖T (τ + km+ r, τ)P (τ)x‖ ≤ C‖T (τ + km, τ)P (τ)x‖

≤ C

2k
‖P (τ)x‖ ≤ 2CMe−(t−τ) ln 2

m ‖x‖ for x ∈ X.

�

Lemma 2.9. There exists constants N, η > 0 such that

‖T (t, τ)x‖ ≤ Ne−η(τ−t)‖x‖ (2.16)

for x ∈ KerP (τ) = Q(τ)X and t ≤ τ .

Proof. Let ψ : R→ R be a smooth function supported on (−∞, τ ] such that 0 ≤ ψ ≤
1, ψ = 1 on (−∞, τ − 1] and supt∈R |ψ′(t)| ≤ 2. Given x ∈ Fuτ , let u be a solution of
Eq. (2.1) with u(τ) = x. We have

‖ψ(t)u(t)‖ = ‖χ(−∞,τ ](t)ψ(t)T (t, τ)x‖ ≤ ‖χ(−∞,τ ](t)T (t, τ)x‖.
From x ∈ Fuτ and using (2.11) we get χ(−∞,τ ](·)T (·, τ)x ∈ E∞. Therefore, ψ(·)u(·) ∈
E∞. Furthermore, we can also easily verify that H(ψu) = ψ′u. We have

|(ψ′u)(ξ)‖ ≤ 2χ[τ−1,τ ](ξ)‖u(ξ)‖ ≤ 2χ[τ−1,τ ](ξ)Ke
α‖x‖, ξ ∈ R.

Thus,

‖‖ψ′u‖‖E = ‖ψ′u‖E ≤ 2Keα‖χ[τ−1,τ ]‖E‖x‖.
• For t ≤ τ − 1,

‖u(t)‖ = ‖ψ(t)u(t)‖ = ‖G(ψ′u)(t)‖ ≤ ‖G(ψ′u)‖E∞
≤ ‖G‖‖ψ′u‖E ≤ 2‖G‖Keα‖χ[τ−1,τ ]‖E‖x‖.

• For τ − 1 ≤ t ≤ τ ,

‖u(t)‖ = ‖T (t, τ)x‖ ≤ Keα‖x‖.
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Therefore,
‖u(t)‖ ≤ C‖x‖ for t ≤ τ, (2.17)

where C = Keα max{2‖G‖ supτ∈R ‖χ[τ−1,τ ]‖E , 1}.
The next, we show that there exists m ∈ N such that

‖u(t)‖ ≤ 1

2
‖x‖ for τ − t ≥ m, τ ∈ R. (2.18)

In order to prove (2.18), let

y(ξ) = −χ[t,τ ](ξ)u(ξ) and v(ξ) = u(ξ)

∫ ∞
ξ

χ[t,τ ](s)ds.

It can be seen that y ∈ E , v ∈ D(H) ⊂ E∞ and Hv = y. Therefore,

‖v‖E∞ = ‖Gy‖E∞ ≤ ‖G‖‖y‖E .
On the other hand,

‖y(ξ)‖ ≤

{
χ[τ−1,τ ](ξ)Ke

α‖x‖, ξ ∈ [τ − 1, τ ],

G(ψ′u)(ξ), ξ ∈ (−∞, τ − 1].

Thus,

‖y‖E ≤ max{Keα sup
τ∈R
‖χ[τ−1,τ ]‖E , 2Keα‖G‖ sup

τ∈R
‖χ[τ−1,τ ]‖E}‖x‖ =: K2‖x‖.

So,
‖v‖E∞ ≤ ‖G‖K2‖x‖.

We have
(τ − t)‖u(t)‖ = ‖v(t)‖ ≤ ‖v‖E∞ ≤ ‖G‖K2‖x‖.

Therefore,

‖u(t)‖ ≤ ‖G‖K2

τ − t
‖x‖.

Hence, if τ−t ≥ 2K2‖G‖ then ‖u(t)‖ ≤ 1
2‖x‖. Taking m > 2K2‖G‖, we obtain (2.18).

In order to complete the proof, take t ≤ τ and write τ − t = km+ r with k ∈ N and
0 ≤ r < m. By (2.12), (2.17), (2.18), and Lemma 2.7 we get

‖T (t, τ)Q(τ)x‖ = ‖T (τ − km− r, τ)Q(τ)x‖ ≤ C‖T (τ − km, τ)Q(τ)x‖

≤ C

2k
‖Q(τ)x‖ ≤ 2C(1 +M)e−(τ−t) ln 2

m ‖x‖ for x ∈ X.

�

So, we get (2.3) from (2.13) and (2.16). For t ≤ τ , using (2.6) and (2.12) we
obtain (2.4) as follows.

‖T (t, τ)P (τ)x‖ ≤ Keα|t−τ |‖P (τ)x‖ ≤ Keα|t−τ |M‖x‖ = KMe−α(t−τ)‖x‖,

‖T (τ, t)Q(t)x‖ ≤ Keα|t−τ |‖Q(t)x‖ ≤ Keα|t−τ |(1 +M)‖x‖

= K(1 +M)e−α(t−τ)‖x‖.

Thus, the associated evolution family (T (t, τ))t,τ∈R has exponential dichotomy on the
line. �
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In the remainder of this section we establish the robustness of the notion of
exponential dichotomy. It is an application of Theorem 2.2 and Theorem 2.4.

Theorem 2.10. Let A,B : R→ L(X) be strongly continuous functions such that

1. the evolution family (T (t, τ))t,τ∈R of Eq. (2.1) has exponential dichotomy on the
line;

2. there exists ϕ ∈ E such that

‖B(t)−A(t)‖ ≤ ϕ(t) for a.e. t ∈ R. (2.19)

Then, the evolution family (U(t, τ))t,τ∈R of the equation v′ = B(t)v has exponential
dichotomy on the line if ‖ϕ‖E is sufficiently small.

Proof. Let H be the linear operator defined by (2.9) on the domain D(H). We define
a linear operator L : D(L) ⊂ E∞ → E by

(Lv)(t) = v′(t)−B(t)v(t), t ∈ R,

where D(L) = {v ∈ E∞ is absolutely continuous function on each [a, b] ⊂ R such that
Lv ∈ E}.

For v ∈ E∞, denoted (Pv)(t) := (B(t)−A(t))v(t). By (2.19) we get

‖(Pv)(t)‖ ≤ ϕ(t)‖v(t)‖ ≤ ϕ(t)‖v‖E∞ for a.e t ∈ R.

Therefore, Pv ∈ E and ‖Pv‖E ≤ ‖ϕ‖E‖v‖E∞ . So, the mapping P : E∞ → E is bounded
linear operator and ‖P‖ ≤ ‖ϕ‖E . Thus, D(H) = D(L) and L = H + P . By Theorem
2.2 and Theorem 2.4, the operator H is invertible. Hence, if ‖ϕ‖E is sufficiently small
then L is also invertible.

Two evolution families (U(t, τ))t,τ∈R and (T (t, τ))t,τ∈R have the relation as fol-
lows:

U(t, τ)x = T (t, τ)x+

∫ t

τ

T (t, s)(B(s)−A(s))U(s, τ)x ds

for t, τ ∈ R and x ∈ X. Using Gronwall inequality and the relation above, we easily
get

‖U(t, τ)x‖ ≤ Ke
α|t−τ |+K

∣∣∣ ∫ t

τ

ϕ(s)ds
∣∣∣
‖x‖ for x ∈ X and t, τ ∈ R.

On the other hand,∣∣∣ ∫ t

τ

ϕ(s)ds
∣∣∣ ≤ ‖Λ1ϕ‖∞(|t− τ |+ 1) for t, τ ∈ R.

Thus,

‖U(t, τ)x‖ ≤ KeK‖Λ1ϕ‖∞e(α+K‖Λ1ϕ‖∞)|t−τ |‖x‖ for x ∈ X and t, τ ∈ R.

By Theorem 2.4, we deduce that the evolution family (U(t, τ))t,τ∈R of the equation
v′ = B(t)v has exponential dichotomy on the line. �
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3. Stable and unstable manifolds

Let be semi-linear differential equation

v′(t) = A(t)v(t) + g(t, v(t)), t ∈ R (3.1)

in Banach space X, in which A and g satisfy the following assumptions.
Assumption 1: A : R → L(X) is strongly continuous function and generates an evo-
lution family (T (t, τ))t,τ∈R having exponential dichotomy (that means the assertions
1) and 2) in Theorem 2.2 are satisfied).
Assumption 2: g : R×X → X is continuous and satisfies ϕ-Lipschitz condition, i.e,

(i) ‖g(t, 0)‖ ≤ ϕ(t) for t ∈ R,
(ii) ‖g(t, x)− g(t, y)‖ ≤ ϕ(t)‖x− y‖ for t ∈ R and x, y ∈ X.

Assumption 3: E is admissible Banach function space such that its associate space
E′ is also admissible Banach function space and ϕ ∈ E′ is exponentially E-invariant
(see Definition 1.8).

The these underlying assumptions, we show the existence of stable and unstable
manifolds for the Eq. (3.1). Actually, these manifolds include trajectories of continuous
solutions lying in the Banach space E (see Definition 1.3). We easily get the following
result.

Lemma 3.1. A function v : R → X is solution of Eq. (3.1) if only if it is continuous
on R and satisfies the integral equation

v(t) = T (t, t0)v(t0) +

∫ t

t0

T (t, τ)g(τ, v(τ))dτ, t0, t ∈ R.

From now on we shall suppose that Assumption 1, Assumption 2 and Assumption 3
hold. For convenience, we define Green function as follows

G(t, τ) =

{
T (t, τ)P (τ) for t > τ,

−T (t, τ)Q(τ) for t < τ.
(3.2)

By (2.3), we have ‖G(t, τ)‖ ≤ Ne−η|t−τ | for all t, τ ∈ R. Moreover, if a function v has
the domain D(v) then it can be extended on R by the characteristic function χD(v) as
follows (χD(v)v)(t) = v(t) if t ∈ D(v) and (χD(v)v)(t) = 0 if otherwise. To construct
stable and unstable manifolds we now give characteristic formula denoted solutions
of Eq. (3.1) which belong to the Banach space E .

Proposition 3.2. The following assertions hold.

i. The function v ∈ E is a solution of Eq. (3.1) on R if only if it has the form

v(t) =

∫ ∞
−∞
G(t, τ)g(τ, v(τ))dτ, t ∈ R.

ii. For each fixed s, the function χ[s,∞)v ∈ E is a solution of Eq. (3.1) on [s,∞) if
only if there is ν0 ∈ ImP (s) such that

v(t) = T (t, s)ν0 +

∫ ∞
s

G(t, τ)g(τ, v(τ))dτ, t ≥ s. (3.3)
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iii. For each fixed s, the function χ(−∞,s]v ∈ E is a solution of Eq. (3.1) on (−∞, s]
if only if there is µ0 ∈ ImQ(s) such that

v(t) = T (t, s)µ0 +

∫ s

−∞
G(t, τ)g(τ, v(τ))dτ, t ≤ s. (3.4)

Proof. The sufficient condition in the three assertions above is checked easily by simple
computations. So we only prove the necessary condition in the these.

i. Put y(t) =

∫ ∞
−∞
G(t, τ)g(τ, v(τ))dτ, t ∈ R. Using Hölder-type inequality (1.2) and

Assumption 3, we have

‖y(t)‖ ≤ N
∫ ∞
−∞

e−η|t−τ |ϕ(τ)(1 + ‖v(τ)‖)dτ

≤ Nh η
2
(t)‖e−

η
2 |t−·|‖E +Nhη(t)‖v‖E .

By iii) in the Definition 1.4, we get ‖e−
η
2 |t−·|‖E ≤ max{N1, N2}‖e η

2
‖E , in which

e η
2
(τ) = e−

η
2 |τ |. Therefore,

‖y(t)‖ ≤ N max{N1, N2}‖e η
2
‖Eh η

2
(t) +N‖v‖Ehη(t).

Because E is the Banach lattice and h η
2
, hη ∈ E so ‖y(·)‖ ∈ E. Thus, y ∈ E . On the

other hand, y also satisfies the integral equation

y(t) = T (t, t0)y(t0) +

∫ t

t0

T (t, τ)g(τ, v(τ))dτ, t0, t ∈ R.

Thus,

v(t)− y(t) = T (t, t0)(v(t0)− y(t0)).

Because of v − y ∈ E so we obtain v(t0) = y(t0). This deduces v = y on R.

ii. Put y2(t) =

∫ ∞
s

G(t, τ)g(τ, v(τ))dτ, t ≥ s. The similar argumentation as above,

we have

‖y2(t)‖ ≤ N
∫ ∞
s

e−η|t−τ |ϕ(τ)(1 + ‖v(τ)‖)dτ

≤ N
∫ ∞
−∞

e−η|t−τ |ϕ(τ)(1 + ‖(χ[s,∞)v)(τ)‖)dτ

≤ N max{N1, N2}‖e η
2
‖Eh η

2
(t) +Nhη(t)‖χ[s,∞)v‖E .

Thus, χ[s,∞)y2 ∈ E . On the other hand, y2 also satisfies the integral equation

y2(t) = T (t, s)y2(s) +

∫ t

s

T (t, τ)g(τ, v(τ))dτ, t ≥ s.

Therefore, v(t) − y2(t) = T (t, s)(v(s) − y2(s)). Because of χ[s,∞)v − χ[s,∞)y2 ∈ E
so we obtain v(s) − y2(s) ∈ ImP (s). So, there exists ν0 ∈ ImP (s) such that v(t) =
T (t, s)ν0 + y2(t) with t ≥ s. The last assertion is proved similarly. �

Using Proposition 3.2 and Banach fixed-point theorem we get the existence of
solutions of Eq. (3.1) in the Banach space E . The proof is basic, so we omit here.
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Theorem 3.3. Assume that N‖hη‖E < 1. Then:

a) The Eq. (3.1) has a unique solution in the Banach space E and this solution
takes the form

v∗(t) =

∫ ∞
−∞
G(t, τ)g(τ, v∗(τ))dτ, t ∈ R.

b) For each fixed s and ν0 ∈ ImP (s), the Eq. (3.1) has a unique solution v on [s,∞)
such that χ[s,∞)v ∈ E and this solution is represented by the formula (3.3).

c) For each fixed s and µ0 ∈ ImQ(s), the Eq. (3.1) has a unique solution v on
(−∞, s] such that χ(−∞,s]v ∈ E and this solution is represented by the formula
(3.4).

The next, we show the existence of stable and unstable manifolds for the Eq.
(3.1). These manifolds like bundles in R×X space, each a fiber of these manifolds is
a submanifold in X space. In precisely, it is graph of a Lipschitz map.

Theorem 3.4. Assume that N2 max{N1, N2}‖eη‖E‖ϕ‖E′ + N‖hη‖E < 1, in which

eη(τ) = e−η|τ |. Then, there exist an invariant stable manifold S =
⊔
s∈R Ss and an

invariant unstable manifold U =
⊔
s∈R Us of Eq. (3.1). Moreover, the stable manifold

has the following properties

(i) Ss = {ν0 + gsts (ν0) : ν0 ∈ ImP (s)}, where gsts : ImP (s)→ ImQ(s) is a Lipschitz
map having Lipschitz coefficient

Lip(gsts ) ≤ N2 max{N1, N2}‖eη‖E‖ϕ‖E′

1−N‖hη‖E
< 1

for all s ∈ R;
(ii) Ss is homeomorphic to ImP (s) for all s ∈ R;

(iii) to each x0 ∈ Ss, the Eq. (3.1) has a unique solution v on [s,∞) such that
χ[s,∞)v ∈ E, and v(t) ∈ St for all t ≥ s;

(iv) if N(N1 +N2)‖Λ1ϕ‖∞ < 1 then the solution v∗ attracts other solutions on S in
the sense there exist µ,Cµ > 0 such that

‖v(t)− v∗(t)‖ ≤ Cµe−µ(t−s)‖P (s)v(s)− P (s)v∗(s)‖ for all t ≥ s, v(s) ∈ Ss;
and the unstable manifold has the following properties

(i) Us = {µ0+guns (µ0) : µ0 ∈ ImQ(s)}, where guns : ImQ(s)→ ImP (s) is a Lipschitz
map having Lipschitz coefficient

Lip(guns ) ≤ N2 max{N1, N2}‖eη‖E‖ϕ‖E′

1−N‖hη‖E
< 1

for all s ∈ R;
(ii) Us is homeomorphic to ImQ(s) for all s ∈ R;

(iii) to each x0 ∈ Us, the Eq. (3.1) has a unique solution v on (−∞, s] such that
χ(−∞,s]v ∈ E, and v(t) ∈ Ut for all t ≤ s;

(iv) if N(N1 +N2)‖Λ1ϕ‖∞ < 1 then the solution v∗ attracts other solutions on U in
the sense there exist µ,Cµ > 0 such that

‖v(t)− v∗(t)‖ ≤ Cµeµ(t−s)‖Q(s)v(s)−Q(s)v∗(s)‖ for all t ≤ s, v(s) ∈ Us.
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Proof. We shall prove the existence of stable manifold and its properties, the unstable
manifold is done similarly.

By Theorem 3.3, for each ν0 ∈ ImP (s) then the Eq. (3.1) has a unique solution
v on [s,∞) such that χ[s,∞)v ∈ E . So we define the map gsts : ImP (s) → ImQ(s) as
follows

gsts (ν0) =

∫ ∞
s

G(s, τ)g(τ, v(τ))dτ, (3.5)

where G(s, τ) is the Green function defined by (3.2). For ν1, ν2 ∈ ImP (s) we have

‖gsts (ν1)− gsts (ν2)‖ ≤ N
∫ ∞
s

e−η|s−τ |ϕ(τ)‖v1(τ)− v2(τ)‖dτ

≤ N
∫ ∞
−∞

e−η|s−τ |ϕ(τ)‖(χ[s,∞)v1)(τ)− (χ[s,∞)v2)(τ)‖dτ

≤ N
∫ ∞
−∞

ϕ(τ)‖(χ[s,∞)v1)(τ)− (χ[s,∞)v2)(τ)‖dτ

≤ N‖ϕ‖E′‖χ[s,∞)v1 − χ[s,∞)v2‖E ( by (1.2)).

On the other hand,

‖v1(t)− v2(t)‖ ≤ Ne−η(t−s)‖ν1 − ν2‖

+N

∫ ∞
s

e−η|t−τ |ϕ(τ)‖v1(τ)− v2(τ)‖dτ

≤ Ne−η|t−s|‖ν1 − ν2‖+Nhη(t)‖χ[s,∞)v1 − χ[s,∞)v2‖E

for t ≥ s, and ‖e−η|·−s|‖E ≤ max{N1, N2}‖eη‖E . Therefore, by the Banach lattice
property of E we get

‖χ[s,∞)v1 − χ[s,∞)v2‖E ≤ N max{N1, N2}‖eη‖E‖ν1 − ν2‖
+N‖hη‖E‖χ[s,∞)v1 − χ[s,∞)v2‖E .

This implies

‖χ[s,∞)v1 − χ[s,∞)v2‖E ≤
N max{N1, N2}‖eη‖E

1−N‖hη‖E
‖ν1 − ν2‖.

So that

‖gsts (ν1)− gsts (ν2)‖ ≤ N2 max{N1, N2}‖eη‖E‖ϕ‖E′

1−N‖hη‖E
‖ν1 − ν2‖.

Thus, gsts is a Lipschitz map with Lipschitz coefficient

Lip(gsts ) ≤ N2 max{N1, N2}‖eη‖E‖ϕ‖E′

1−N‖hη‖E
< 1

for all s ∈ R. This also leads to that Ss is homeomorphic to ImP (s) for all s ∈ R.
From the definition of Ss and Theorem 3.3, the solution v∗ lies in the stable

manifold S and the Eq. (3.1) has a unique solution v on [s,∞) such that χ[s,∞)v ∈ E
for each x0 ∈ Ss. By the composition property of solution flows, we get v(t) ∈ St for
all t ≥ s.
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For v(s) ∈ Ss, the Eq. (3.1) has a unique solution v on [s,∞) such that χ[s,∞)v ∈ E
and this solution takes the form

v(t) = T (t, s)P (s)v(s) +

∫ ∞
s

G(t, τ)g(τ, v(τ))dτ, t ≥ s.

Therefore,

‖v(t)− v∗(t)‖ ≤ Ne−η(t−s)‖P (s)v(s)− P (s)v∗(s)‖

+N

∫ ∞
s

e−η|t−τ |ϕ(τ)‖v(τ)− v∗(τ)‖dτ, t ≥ s.

Put w(t) = eµ(t−s)‖v(t)−v∗(t)‖ for t ≥ s and µ ∈ (0, η). Then, w satisfies the integral
equation

w(t) ≤ Ne−(η−µ)(t−s)‖P (s)v(s)− P (s)v∗(s)‖

+N

∫ ∞
s

e−η|t−τ |+µ(t−τ)ϕ(τ)w(τ)dτ, t ≥ s.

We shall find w in Cb([s,∞)), consider the linear operator A on Cb([s,∞)) as follows

(Aφ)(t) = N

∫ ∞
s

e−η|t−τ |+µ(t−τ)ϕ(τ)φ(τ)dτ, t ≥ s.

Then, Aφ ∈ Cb([s,∞)) and ‖Aφ‖∞ ≤ N(N1 + N2)(1 − e−(η−µ))−1‖Λ1ϕ‖∞‖φ‖∞ by
the property (a) in Proposition 1.6. So, we have

w(t) ≤ z(t) + (Aw)(t), t ≥ s and z(t) = Ne−(η−µ)(t−s)‖P (s)v(s)− P (s)v∗(s)‖.

Take µ < η + ln(1−N(N1 +N2)‖Λ1ϕ‖∞), we get

‖A‖ ≤ N(N1 +N2)(1− e−(η−µ))−1‖Λ1ϕ‖∞ < 1.

Therefore, by cone inequality theorem in Banach space (see [5, Chap. I, Theorem
9.3]) there exists φ ∈ Cb([s,∞)) such that w(t) ≤ φ(t) for all t ≥ s and φ is a unique
solution of the equation φ = z +Aφ in Cb([s,∞)). Thus,

‖φ‖∞ = ‖(I −A)−1z‖∞ ≤
1

1− ‖A‖
‖z‖∞

≤ N‖P (s)v(s)− P (s)v∗(s)‖
1−N(N1 +N2)(1− e−(η−µ))−1‖Λ1ϕ‖∞

.

So, there exist µ,Cµ > 0 such that

‖v(t)− v∗(t)‖ ≤ Cµe−µ(t−s)‖P (s)v(s)− P (s)v∗(s)‖ for all t ≥ s, v(s) ∈ Ss. �

Remark 3.5. By the properties of stable and unstable manifolds, we get Ss ∩ Us =
{v∗(s)} for all s ∈ R. Moreover, in Theorem 3.4 if we assume g(t, 0) = 0 for all t ∈ R
then v∗ ≡ 0. Therefore, lim

t→∞
v(t) = 0 for all v(s) ∈ Ss and lim

t→−∞
v(t) = 0 for all

v(s) ∈ Us.
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When the map g(t, ·) is smooth on X for each fixed t then each a fiber of stable
and unstable manifolds is also smooth in the sense the map determining this fiber is
smooth.

Theorem 3.6. Assume that

max{N2 max{N1, N2}‖eη‖E‖ϕ‖E′ +N‖hη‖E , N(N1 +N2)‖Λ1ϕ‖∞} < 1

and the map g(t, ·) is continuously differentiable on X for each fixed t ∈ R such that
Dxg(t, v∗(t)) = 0 for all t ∈ R. Then, Ss and Us are differentiable submanifolds of
class C1 and tangent to v∗(s) + ImP (s) and v∗(s) + ImQ(s) respectively at v∗(s) for
all s ∈ R.

Proof. We need prove that the map gsts (see (3.5)) is continuously differentiable on
closed subspace ImP(s). Because g satisfies ϕ-Lipschitz condition and g(t, ·) is contin-
uously differentiable on X so

‖Dxg(t, a)‖ ≤ ϕ(t) for all t ∈ R and a ∈ X. (3.6)

For ν0, h ∈ ImP(s), we have

gsts (ν0 + h)− gsts (ν0)

‖h‖
− 1

‖h‖

∫ ∞
s

G(s, τ)Dxg(τ, v(τ))hdτ

=

∫ ∞
s

G(s, τ)
(g(τ, v1(τ))− g(τ, v(τ))−Dxg(τ, v(τ))h

‖h‖

)
dτ,

in which v1 and v are solutions of Eq. (3.1) on [s,∞) corresponding to ν0 + h and

ν0, and by (3.6) then

∫ ∞
s

G(s, τ)Dxg(τ, v(τ))dτ is absolutely convergent in L(X). By

the attractive property of stable manifold S, we have

‖v1(τ)− v(τ)‖ ≤ 2Cµ‖h‖

for all τ ≥ s. Therefore,

lim
h→0
G(s, τ)

(g(τ, v1(τ))− g(τ, v(τ))−Dxg(τ, v(τ))h

‖h‖

)
= 0

for all τ ≥ s. On the other hand,∥∥∥G(s, τ)
(g(τ, v1(τ))− g(τ, v(τ))−Dxg(τ, v(τ))h

‖h‖

)∥∥∥
≤ N(2Cµ + 1)e−η|s−τ |ϕ(τ), τ ≥ s.

According to Lebesgue’s dominated convergence theorem, gsts is differentiable at ν0

and

Dgsts (ν0) =

∫ ∞
s

G(s, τ)Dxg(τ, v(τ))dτ.

From here deduces Dgsts (P (s)v∗(s)) = 0. By (3.6) and Lebesgue’s dominated con-
vergence theorem, Dgsts is continuous on ImP (s). So, Ss is differentiable submanifold
of class C1 and tangent to v∗(s) + ImP (s) at v∗(s). Similarly, Us is differentiable
submanifold of class C1 and tangent to v∗(s) + ImQ(s) at v∗(s). �
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