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Dynamical behavior of q-deformed logistic map
in superior orbit

Renu Badsiwal, Sudesh Kumari and Renu Chugh

Abstract. In this paper, we study the q-deformed logistic map in Mann orbit
(superior orbit) which is a two-step fixed point iterative algorithm. The main
aim of this paper is to investigate the whole dynamical behavior of the proposed
map through various techniques such as fixed point and stability approach, time-
series analysis, bifurcation plot, Lyapunov exponent and cobweb diagram. We
notice that the chaotic behavior of q-deformed logistic map can be controlled
by choosing control parameters carefully. The convergence and stability range of
the map can be increased substantially. Moreover, with the help of bifurcation
diagrams, we prove that the stability performance of this map is larger than
that of existing other one dimensional chaotic maps. This map may have better
applications than that of classical logistic map in various situations as its stability
performance is larger.

Mathematics Subject Classification (2010): 34H10, 37M10, 37B25, 37F45.
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1. Introduction

Dynamical systems, an interesting branch of mathematics is primarily devoted
to the study of procedures in motion. Such procedures take place in various fields
such as the motion of the stars and the galaxies in the heaven [11]. In general, the
dynamical systems are expressed by differential or difference equations based on the
time-varying parameters.

Starting from the work of Lorenz [22] and May [24], more or less, every scientific
field has been filled by the concept of nonlinear differential and discrete difference
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equations. One of the popular discrete difference equation is the standard logistic
map given by the relation

xn+1 = µxn(1− xn), n = 0, 1, 2, .., (1.1)

where xn ∈ [0, 1] denotes the population at time n and µ > 0 represents the population
growth rate.

This population growth model was originally given by P. F. Verhulst in 1845
and 1847 [15]. Nowadays, the logistic map has become a major breakthrough and has
found wider applications in many fields such as image encryption in cryptography
[9, 16], traffic control [2, 21] and secure communication system [29] etc. For more
information about the behavior of dynamical systems one may refer Devaney [11, 10],
Holmgren [15], Alligood et al. [1], Ausloos and Dirickx [3], Elagdi [13], Elhadj and
Sprott [14], Chugh et al. [8], Diamond [12], Robinson [28], Wiggins [30], Kumari et
al. [18, 19, 7, 17, 20] and various other references therein.

Thus the standard logistic map has become most popular nonlinear model which
is used to describe various physical and natural systems. Banerjee and Parthasarathy
[4] proposed a deformation of this standard logistic map. The resulting map is known
as q-deformed logistic map which is given by the following discrete difference equation

[xn+1] = µ[xn](1− [xn]), (1.2)

where

[x] =
1− qx

1− q
. (1.3)

Here, q is real and xn ∈ [0, 1]. This q- deformed logistic map is distinct from the
standard logistic map.

In the recent past, the q-deformed physical systems have been the subject of
enormous research [6]. Along with, the logistic map various other maps such as Henon
map [25] and Gaussian Map [26] have also been analyzed using q-deformations. In
2011, Banerjee and Parthasarathy [4] propsed this q-deformation of logistic map,
studied about its concavity, non-trivial fixed points and discussed its stability through
Lyapunov exponent by changing the parameter q. The stability of this map was also
studied in 2015 by Prasad and Katiyar [27]. In 2019, Canovas and Munoz-Guillermo
[5] analyzed this map in which topological entropy was also computed to examine the
chaos.

In q-deformation, there is some modification in the map in such a way that in
the limiting case q → 1, the modified map (q-deformed logistic map) changes to the
original map (classical logistic map). The inspiration for this work comes from the
recognition that the original logistic map considers only a saturation effect, that is,
an interaction between the population as a whole and a global external constraint.
The q-deformation introduces a real-valued parameter q, which models the interaction
between individuals in the species - supraunitary q means interindividual competition,
while subunitary q leads to cooperation.

Moreover, the Mann orbit models the “inertia” of the system, or the influence
of the immediate past on the discrete dynamics. It introduces another parameter,
α ∈ [0, 1], the smaller the value, the larger the inertia. Therefore, in the present paper
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we discuss various dynamical properties of the q-deformed logistic map using Mann or-
bit. The complete paper is divided into four sections. In Section 1, a brief introduction
is given. Section 2 includes some basic definitions, results and notations which have
been taken into consideration during our analysis. In Section 3, the whole dynamical
behavior of the map is investigated. This section is further divided into six subsections
which are mainly devoted to the study of this map through fixed point and stability
analysis, time-series representation, bifurcation diagrams, Lyapunov exponent, com-
bined bifurcation and Lyapunov exponent analysis and cobweb plots, respectively. In
Section 4, we prove the superiority of q-deformed logistic map in superior orbit. At
last, the conclusion of the paper is given in Section 5.

2. Preliminaries

In this section, we recollect some basic definitions, results and concepts which
have been used in our study.

Definition 2.1. (Mann iterative algorithm)[23]: Let X be a non-empty set and f : X →
X be an operator. Then for an arbitrary point x0 ∈ X, the sequence {xn} of all
iterates, defined by

xn+1 = (1− αn)xn + αnf(xn), (2.1)

where αn ∈ [0, 1], n ∈ N , is known as Mann iterative algorithm. The sequence {xn}
of iterates is also called Mann orbit. Further, for αn = 1, the Mann orbit reduces to
the Picard orbit.

Definition 2.2. (Fixed point) [10] Let X be a non-empty set and f : X → X be an
operator. Then, an arbitrary point x0 ∈ X is said to be a fixed point for the mapping
f if it satisfies f(x0) = x0.

Definition 2.3. (Periodic point) [10] A point x0 is said to be periodic for a mapping
g if it satisfies gp(x0) = x0, where p is the least positive integer and denotes the pth

iteration. The sequence of pth iterates with initial choice x0 is called periodic orbit of
period-p.

Definition 2.4. (Lyapunov exponent)[1]: Let f be the mapping of reals R. Then, the
Lyapunov exponent (LE) of the mapping f for an orbit {xn} is given by

σ(x1) = lim
n→∞

1

n

n∑
i=1

ln(|f ′(xi)|), (2.2)

provided that the limit on R.H.S. exists. Moreover, for σ < 0, the orbit of the map
represents stable behavior and for σ > 0, the orbit represents unstable behavior.

3. Experimental analysis of q-deformed logistic map via Mann orbit

This entire section deals with an experimental study of the dynamical behavior
of q-deformed logistic map using Mann orbit, which has nowadays become a significant
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method for the study of various nonlinear maps.
Let us consider, the q-deformed logistic map given by

[xn+1] = f(xn) = µ

(
1− qxn

1− q

)(
1−

(
1− qxn

1− q

))
, (3.1)

where xn ∈ [0, 1] and q is real.
By definition of Mann orbit (2.1), we have

xn+1 = (1− αn)xn + αn(f(xn)), (3.2)

where xn ∈ [0, 1] and αn ∈ [0, 1].
Using (3.1) in (3.2), we get

xn+1 = (1− αn)xn + αn

[
µ

(
1− qxn

1− q

)(
1−

(
1− qxn

1− q

))]
, (3.3)

where xn ∈ [0, 1], αn ∈ [0, 1] and q is real.
Further, it is noticed that in case of αn = 1, the system (3.3) reduces to (3.1) and for
αn = 0, the system remains unchanged. For the sake of convenience, we take αn = α
and xn = x throughout this paper. In this way, Eq. (3.3) takes the following form:

Qµ,α(x) = f(x) = (1− α)x+ α

[
µ

(
1− qx

1− q

)(
1−

(
1− qx

1− q

))]
, (3.4)

Here, α, µ and q are the control parameters. Now, we apply various experimental
techniques one by one to describe the complete dynamical behavior of this map by
using the matlab software.

3.1. Fixed point and stability analysis of q-deformed logistic map

The fixed points of this map (3.4) can be computed by using the definition (2.2).
So, in order to get its fixed points, we have

Qµ,α(x) = x,

i.e., (1− α)x+ α

[
µ

(
1− qx

1− q

)(
1−

(
1− qx

1− q

))]
= x, (3.5)

Let qx = X. Then x log q = logX and hence x =
logX

log q
. Using these in above Eq.

(3.5) and after solving it, we obtain

(1− α) logX +
αµ log q(1−X)(X − q)

(1− q)2
= logX, (3.6)

Being a quadratic equation in X, the Eq. (3.6) has two roots. Out of which X = 1 is
obvious or trivial root. This implies that one trivial fixed point of q-deformed logistic
map in Mann orbit i.e., Qµ,α(x) is x = 0. But it is difficult to calculate the second
fixed point because of the nonlinearity of this system. That fixed point depends on
the parameters µ and q. To show this, a graphical representation is given in Fig. 1.

Here, the map Qµ,α(x) is iterated 100 times i.e., we observe 100 numbers of
iterations of this map to compute its fixed points (see Table 1) for all x ∈ [0, 1]. One
parameter q is taken to be fixed as q = 0.5 (some other value can also be taken)
throughout our study. In the table, along with fixed points, the maximum value of
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parameter µ is also given for which the system remains convergent and stable . Here,
the fixed points are computed up to four decimal places by taking the values of µ up
to two decimal places.

From Table 1, we observe that the complete dynmical behavior of this map
depends on the parameter α. As we decrease the value of α, the system remains
stable even for a larger value of µ. Thus, by decreasing the value of parameter α,
the range of convergence and stability of Qµ,α(x) can be increased significantly up to
µ = 20.81.

α
Maximum value of µ

for convergence for stability

0.9 3.05 3.92

0.8 3.40 4.39

0.7 3.85 4.96

0.6 4.45 5.48

0.5 5.35 6.18

0.4 6.68 6.78

0.3 8.91 8.92

0.2 12.36 12.36

0.1 20.81 20.81

Table 1. Range of convergence and stability of the map Qµ,α(x)

Also, the fixed points exist when the diagonal line y = x intersects the map
Qµ,α(x) as shown in Fig. 1 at points a and b. Here, we have shown the fixed points a
and b at µ = 3.05.

Fig.1.Graphical representationoffixedpointsofQµ,α(x).
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3.2. Time series analysis of q-deformed logistic map for α = 0.9, 0.5 and 0.1

In this section, using time series representation of q-deformed logistic map, we
try to support the convergence and stability results given in Table 1 graphically. Here,
for different values of α against some initial choices of x ∈ [0, 1], the optimum value
of µ is attained by using 100 numbers of iterations.

Example 3.1. Describe the complete dynamical behavior of q-deformed logistic map
for α = 0.9 and for all x ∈ [0, 1] by using time series representation of dynamical
systems.
Solution. We examine the complete dynamical behavior of q-deformed logistic map for
α = 0.9 by drawing Figs. 2, 3, 4, 5 and 6. We observe from Fig. 2 that the trajectory
of Qµ,α(x) converges to a fixed point for 0 < µ ≤ 3.05 for all values of x. This system
oscillates between two fixed points for 3.21 < µ ≤ 3.74 as shown in Fig. 3 at µ = 3.5
for x0 = 0.5. 4-stable oscillations exist for 3.80 < µ ≤ 3.88 as shown at µ = 3.85
in Fig. 4. The trajectory oscillates between 8-stable fixed points at µ = 3.92 for all
x ∈ [0, 1] as depicted in Fig. 5 for x0 = 0.5. Further, the system starts to show more
and more irregular vibrations i.e. sensitive dependence on initials when parameter
µ ≥ 3.93. This chaoticity of the system is shown at µ = 4 for x0 = 0.5 by Fig. 6.

Fig.2.StableconvergentsolutionofQµ,α(x) forα = 0.9, µ = 3.05

Fig.3.2-StablefixedpointoscillationofQµ,α(x) forα = 0.9, µ = 3.5
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Fig.4.4-StablefixedpointoscillationofQµ,α(x) forα = 0.9, µ = 3.85

Fig.5.8-StablefixedpointoscillationofQµ,α(x) forα = 0.9, µ = 3.92

Fig.6.DivergentbehaviorofQµ,α(x) forα = 0.9, µ = 4

Example 3.2. By using time series analysis, describe the whole dynamical behavior
of q-deformed logistic map Qµ,α(x) for α = 0.5 and for all x ∈ [0, 1] by taking 100
numbers of iterations.

Solution. For this particular value of parameter α, the system has stable fixed point
for 0 < µ ≤ 5.35 for all x ∈ [0, 1], as shown in Fig. 7 at x0 = 0.5. Also, the trajectory
of the system oscillates between two fixed points for 5.63 < µ ≤ 6.18 and for all
x ∈ [0, 1] as represented in Fig. 8 for µ = 6.12 at x0 = 0.5. Also, for µ ≥ 6.19, the
system is undefined (see, Fig. 9 for µ = 6.19).
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Fig.7.StableconvergentsolutionofQµ,α(x) forα = 0.5, µ = 5.35

Fig.8.2-StablefixedpointoscillationofQµ,α(x) forα = 0.5, µ = 6.12

Fig.9.UndefinedQµ,α(x) forα = 0.5, µ = 6.19

Example 3.3. Demonstrate that the stability of the map Qµ,α(x) can be extended
by decreasing the value of parameter α. Explain this fact for all x ∈ [0, 1] by taking
α = 0.1.

Solution. In this case, the q-deformed map Qµ,α(x) converges to a stable fixed point
for 0 < µ ≤ 20.81 and for all x ∈ [0, 1]. This convergent behavior is shown in Fig. 10
for µ = 20. In addition, the map Qµ,α(x) cannot be defined for all µ > 20.81, since
in this range xn+1 > 1 as shown in Fig. 11 for µ = 21 which represents the undefined
behavior of the system.



Dynamical behavior of q-deformed logistic map 157

Fig.10.StableconvergentsolutionofQµ,α(x) forα = 0.1, µ = 20

Fig.11.UndefinedQµ,α(x) forα = 0.1, µ = 21

3.3. Bifurcation analysis of q-deformed logistic map for different choices of µ

In general, bifurcation diagrams are the tools mainly used to classify the dynam-
ical systems in nonlinear regions. Bifurcation diagrams demonstrate an immediate
change that occurs in the asymptotic solutions of a dynamical system.

Under this section, the complete dynamical behavior of Qµ,α(x) is presented by
drawing bifurcation diagrams for α = 0.9, 0.5 and 0.1. A route from periodic region
to chaotic region has been shown in Figs. 12, 13, 14 by letting step size for parameter
µ = 0.001, initial choice x0 = 0.5 and the number of iterations (N) = 800.

In Fig. 12, the entire dynamical system Qµ,α(x) has been divided into different
regions which explain the complexity of the system. For 0 < µ ≤ 3.15, the system
Qµ,α(x) has a stable fixed point and period-doubling bifurcation occurs for 3.15 <
µ ≤ 3.78 as shown by regions of period-1 and period-2. Also, the system shows the
route from 2-periods to more than 2-periods for 3.78 < µ ≤ 3.95. The system becomes
chaotic as parameter µ exceeds from 3.95, i.e., for µ > 3.95, the system shows sensitive
dependence on initials.
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Fig.12.BifurcationplotofQµ,α(x) for3 ≤ µ ≤ 4, α = 0.9, x0 = 0.5

Moreover, period doubling bifurcation for the q-deformed logistic map is repre-
sented at α = 0.5 in Fig. 13. For this, the system has stable solutions for 0 < µ ≤ 6.18.
Also, the system cannot be defined when the parameter µ exceeds from 6.18 as shown
by undefined region.

Fig.13.BifurcationplotofQµ,α(x) for5 ≤ µ ≤ 7.5, α = 0.5, x0 = 0.5

Further, from Fig. 14, we observe that the system Qµ,α(x) remains stable for
an extended range of parameter µ, i.e., for 0 < µ ≤ 28.52, the orbit is convergent
to a fixed point. Also, this system cannot be defined for µ > 28.52 as in this range
xn > 1. In other words, xn 6∈ [0, 1], which represents that the behavior of the system
is undefined here.



Dynamical behavior of q-deformed logistic map 159

Fig.14.BifurcationplotofQµ,α(x) for20 ≤ µ ≤ 38, α = 0.1, x0 = 0.5

Remark 1. The system Qµ,α(x) gains more and more dynamical properties when the
value of parameter α ∈ [0, 1] increases as shown by the bifurcation diagrams, i.e., for
α = 0.1, 0.5, the system demonstrates fixed point and periodic properties; for α= 0.9,
system exhibits fixed points, periodicity and chaos.

3.4. Mathematical and experimental analysis of q-deformed logistic map by Lyapunov
exponent

An another major characteristic of nonlinear dynamical systems is Lyapunov
exponent, which determines the sensitive dependence of two distinct orbits beginning
from very close initial positions. In case of stable periodic behavior, the rate of on-
vergence to stable point is determined by LE, whereas, in case of chaotic behavior,
LE determines the rate of divergence between the orbits. For the q-deformed logistic
map with Mann iteration (Qµ,α(x)), Lyapunov exponent is defined as follows:

Let us begin the method by taking Mann orbits for two distinct initial choices
x and x + h, where 0 < h < 1. Here, ∆ represents the divergence between these
orbits, which is taken as the exponential growth henσ, where σ denotes the Lyapunov
exponent of the map and n stands for the number of iterations. So, it can be written
as

Qnµ,α(x+ h)−Qnµ,α(x) = ∆

Qnµ,α(x+ h)−Qnµ,α(x) = henσ

∴
Qnµ,α(x+ h)−Qnµ,α(x)

h
= enσ. (3.7)

Taking limit h→ 0, on both sides, we get

lim
h→0

Qnµ,α(x+ h)−Qnµ,α(x)

h
= enσ

i.e., (Qnµ,α)′(x) = enσ. (3.8)
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Applying logarithm on both sides, we obtain

σ =
1

n
log |(Qnµ,α)′(x)|, (3.9)

where (Qnµ,α)′(x) represents the first order derivative for the map Qµ,α(x). For nth
degree polynomial, the derivative can be evaluated by applying the chain rule of
differentiation.
So, for the succession x1, x2 = Qµ,α(x1), x3 = Qµ,α(x2), · · · , xn+1 = Qµ,α(xn), · · · ,
we have

(Qnµ,α)′(x1) = Q′µ,α(xn) ·Q′µ,α(xn−1) · · ·Q′µ,α(x2) ·Q′µ,α(x1). (3.10)

Now, using (3.10) in (3.9), we get

σ =
1

n
log |Q′µ,α(xn) ·Q′µ,α(xn−1) · · ·Q′µ,α(x2) ·Q′µ,α(x1)|,

=
1

n
[log |Q′µ,α(xn)|+ log |Q′µ,α(xn−1)|+ · · ·+ log |Q′µ,α(x2)|+ log |Q′µ,α(x1)|],

σ =
1

n

n∑
j=1

log |Q′µ,α(xj)|,

(3.11)

which is the required Lyapunov exponent of Qµ,α(x).
In addition, if the map has fixed orbit, then (3.11) reduces to

σ = ln(|Q′µ,α(x1)|). (3.12)

Also, for perodic orbit of period- p, we get from (3.11)

σ =
1

p

p∑
j=1

ln(|Q′µ,α(xj)|). (3.13)

Remark 2. In order to evaluate the Lyapunov exponent for aperiodic orbits, it is
almost impossible to utilize the entire length of an orbit. So, only finite length of an
orbit is used frequently to estimate the Lyapunov exponent.
Remark 3. Moreover, the fixed and periodic orbits of the map represent stable behavior
for σ < 0 and unstable behavior for σ > 0. In this way, the Lyapunov exponent
demonstrates the stable and unstable nature of various fixed and periodic orbits.

Example 3.4. Calculate the Lyapunov exponent of the map Qµ,α(x) for the following
values of parameters α and µ :
(a) α = 0.9, µ = 3
(b) α = 0.9, µ = 3.5.
Also, examine the dynamical behavior of this map by plotting the Lyapunov exponent
for α = 0.9, 1 ≤ µ ≤ 4.4.
Solution. (a) As discussed in Section 3.2, for 0 < µ ≤ 3.05, the map Qµ,α(x) has a
fixed orbit for all x ∈ [0, 1]. Also, the fixed point of the orbit for µ = 3 is given as
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0.6255. So, to compute the Lyapunov exponent of this orbit, it is enough to solve Eq.
(3.12). For that, we have

Qµ,α(x) = (1− α)x+ α

[
µ

(
1− qx

1− q

)(
1−

(
1− qx

1− q

))]
,

Q′µ,α(x) = (1− α) +
αµ

1− q
· qx · ln q

[
2

(
1− qx

1− q

)
− 1

]
. (3.14)

Putting α = 0.9, µ = 3, x = 0.6255 in Eq. (3.14), we get

Q′3,0.9(0.6255) = −0.3292. (3.15)

Now, using (3.15) in (3.12), we obtain

σ = ln(| − 0.3292|) = −0.4825.

So, the Lyapunov exponent at µ = 3 is -0.4825, which is a negative value and thus
from the definition of Lyapunov exponent, this fixed point is a stable attractor.

(b) For 3.21 < µ ≤ 3.74, the map Qµ,α(x) represents periodic orbit of period-2
for all x ∈ [0, 1]. So, for µ = 3.5, the periodic points are x1 = 0.4281 nad x2 = 0.8297.
Thus, we get

Q′µ,α(x1) = 0.0617 (3.16)

Q′µ,α(x2) = −0.6997. (3.17)

Now, using Eqs. (3.16) and (3.17) in (3.13), we get

σ =
1

2

[
ln |Q′µ,α(x1)|+ ln |Q′µ,α(x2)|

]
=

1

2
[ln |0.0617|+ ln | − 0.6997|]

=
1

2
[(−1.2097) + (−0.1551)] .

This gives

σ = −0.6824

So, the Lyapunov exponent is less than zero in this case also. Thus, these periodic
points are stable attractors.
In Fig. 15, we plot Lyapunov exponent (σ) to discover the behavior of dynamical
system Qµ.α(x) for 1 ≤ µ ≤ 4.4 at α = 0.9. To plot this, we consider 10,000 iterations,
i.e., N = 10, 000 and initiator x0 = 0.5. It is clear from the figure that the system
remains stable for 0 < µ ≤ 3.95 since in this range σ <0, i.e., the system preserves
stable orbits, Also, in the zoomed rectangular area, the chaotic behavior of the system
is represented since here, σ > 0, i.e., the orbit shows sensitive dependence on initiators.
Hence, chaos occurs in the system as we increase the parameter µ from µ = 3.95.
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Fig.15.LyapunovexponentplotofQµ,α(x) for1 ≤ µ ≤ 4.4, α = 0.9, x0 = 0.5

Example 3.5. Explain the dynamical behavior of this q-deformed logistic map Qµ,α(x)
by plotting the Lyapunov exponent for the following values of parameters µ and α:
(a) 1 ≤ µ ≤ 7.9, α = 0.5,
(b) 1 ≤ µ ≤ 28.52, α = 0.1.

Solution. (a) We investigate the dynamical behavior of Qµ,α(x) by drawing the Lya-
punov exponent diagram as shown in Fig. 16, for the given values of parameters and
initiator x0 = 0.5. We observe that the Lyapunov exponent is negative, i.e. σ < 0
for 0 < µ ≤ 7.07 , which represents the stable behavior of the system. Also for
7.07 < µ ≤ 7.9 , the spectrum of Lyapunov exponent begins to approach to a positive
value of σ, which indicates that there is chaos in the dynamical system.

Fig.16.LyapunovexponentplotofQµ,α(x) for1 ≤ µ ≤ 7.9, α = 0.5, x0 = 0.5

(b) The stabilty of dynamical system can be increased by controlling the parameters.
This fact is analyzed here by estimating the value of LE (σ) at a decreased value of
parameter α, i.e., at α = 0.1. For this particular value of α, the system shows stable
behavior for an increased value of parameter µ, i.e., for 0 < µ ≤ 28.52. We have
explained this fact experimentally in Fig. 17. We observe that for 0 < µ ≤ 28.52,
the value of Lyapunov exponent (σ) is negative. Thus the system shows fixed stable
behavior for this extended range of µ.
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Fig.17.LyapunovexponentplotofQµ,α(x) for1 ≤ µ ≤ 28.52, α = 0.1, x0 = 0.5

3.5. A new experimental analysis of q-deformed logistic map via combined study of
bifurcation and Lyapunov exponent

Under this section, we try to investigate the complex dynamical behavior of this
system Qµ,α(x) with the help of combined bifurcation and Lyapunov exponent plots.
This experimental technique enables us to investigate the exact value of parameter µ
obtained in previous subsections at which the system changes its behavior. In these
figures, the entire region of the dynamical system Qµ,α(x) is divided into distinct
regions separated by a magenta dotted line.

Fig. 18 exhibits the combined representation of bifurcation and Lyapunov expo-
nent for 1 ≤ µ ≤ 4.4 at α = 0.9. Here, the system has two regions, stable periodic
region and chaotic region, separated by a magenta dotted line at µ = 3.95, which is
the highest value of µ for which the system remains stable, afterwards chaos occurs.

Fig.18.Bifurcationplotv/sLyapunovexponentplotofQµ,α(x) for1 ≤ µ ≤ 4.4atα = 0.9

The entire region of Qµ,α(x) is divided into three regions (stable, undefined and
chaotic region) at particular values of parameter µ as shown in Figs. 19 and 20 for
α = 0.5 and α = 0.1 respectively. Also, it can be noticed from the figures that the
system preserves its stability for a larger value of parameter µ as we decrease the
value of parameter α. Moreover, when σ > 0, the system represents chaotic behavior.
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Fig.19.Bifurcationplotv/sLyapunovexponentplotofQµ,α(x) for1 ≤ µ ≤ 7.9atα = 0.5

Fig.20.Bifurcationplotv/sLyapunovexponentplotofQµ,α(x) for20 ≤ µ ≤ 38atα = 0.1

3.6. Experimental analysis of q-deformed logistic map through cobweb plot

A cobweb diagram is generally a visual method which is used to examine the
qualitative nature of the map in the field of dynamical systems. With the help of
cobweb plot, we can predict the long term behavior of an initial condition under
repeated application of a map.
Fig. 21 depicts the attracting behavior of the fixed point 0.6304 of the map Qµ,α(x)
for the parameters α = 0.9, µ = 3.05 and for initiator x0 = 0.5. Also, the periodic
behavior of Qµ,α(x) for α = 0.9, µ = 3.5 and x0 = 0.5 is shown in Fig. 22. In addition,
Fig. 23 represents the unstable behavior of this map for α = 0.9, µ = 4, x0 = 0.5.

Fig.21.AttractingbehavioroffixedpointofQµ,α(x) forα = 0.9, µ = 3.05
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Fig.22.PeriodicbehaviorofQµ,α(x) forα = 0.9, µ = 3.5

Fig.23.UnstablebehaviorofQµ,α(x) forα = 0.9, µ = 4

Further, the attracting nature of fixed point 0.7686 for α = 0.5, µ = 5.35 and
periodic nature for α = 0.5, µ = 5.65 of the q-deformed map Qµ,α(x) with initiator
x0 = 0.5 are represented in Figs. 24 and 25 respectively.

Fig.24.AttractingbehavioroffixedpointofQµ,α(x) forα = 0.5, µ = 5.35

Moreover, Fig. 26 depicts the attracting behavior of the fixed point 0.9310 of this
map Qµ,α(x) for the parameters α = 0.1, µ = 20 and x0 = 0.5. Also, it is clear from
the Fig. 27 that this q-deformed logistic map Qµ,α(x) is not defined for α = 0.1, µ = 21
and x0 = 0.5, since xn+1 > 1 here.
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Fig.25.PeriodicbehaviorofQµ,α(x) forα = 0.5, µ = 5.65

Fig.26.AttractingbehavioroffixedpointofQµ,α(x) forα = 0.1, µ = 20

Fig.27.UndefinedbehaviorofQµ,α(x) forα = 0.1, µ = 21

4. Superiority of q-deformed map in superior orbit

To prove the superiority of q-deformed map in superior orbit (3.3), we compare
its stability performance with existing one dimensional maps using bifurcation plots.

4.1. Stability performance of q-deformed logistic map in superior orbit

In order to facilitate comparison, we compare the stability performance of the
map (3.3) with existing one dimensional maps including classical logistic map, logistic
map in superior orbit, sine map and q-deformed logistic map (3.1).

From Fig. 28, we observe that q-deformed logistic map considered in superior or-
bit (3.3) remains stable for 0 < µ ≤ 28.51 which we have already shown in Subsection
3.3. In Subfigures 28a - 28d, we draw the bifurcation diagrams to study the stability
performance of existing one dimensional chaotic maps. We notice that the classical
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logistic map is stable for 0 < λ ≤ 3.57 while logistic map in superior orbit remains
stable for 0 < µ ≤ 21.2. Also, the sine map shows its stable behavior for 0 < µ ≤ 0.86
and the one dimensional q-deformed logistic map attains its stability performance for
0 < µ ≤ 3.58. This proves that q-deformed logistic map in superior orbit has largest
range of stability which is very higher than the existing other one dimensional chaotic
maps.

(a) (b)

(c) (d)

(e)

Fig. 28. Bifurcation plots (a) logistic map (b) logistic map in superior orbit (c)
sine map (d) q-deformed logistic map and (e) q-deformed logistic map in superior
orbit.

5. Conclusion

Here, a novel study of dynamical behavior of the q-deformed logistic map using
Mann iterative algorithm is given. In this system, there are three control parameters
denoted by α, µ and q. And it is quite interesting to notice that the entire dynamical
behavior of this map depends on these three parameters. The q-deformed logistic map
is studied via fixed point and stability analysis, time series representation, bifurcation
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analysis, Lyapunov exponent method, combined bifurcation and Lyapunov exponent
analysis and cobweb plot. The following concluding remarks are drawn from our study:

1. The fixed point analysis approach has been used to compute the fixed points
of the system (3.4). Also, the stability performance of the unrestricted system
has been checked. The convergence and stability range of the q-deformed logistic
map can be increased by choosing the parameters (µ, α) carefully (see, Table 1).

2. The complex dynamical behavior of this q-deformed logistic map has been further
examined graphically by using time series representation for α = 0.9, 0.5 and 0.1
to confirm the stability results obtained by fixed point analysis.

3. The bifurcation analysis is also used to investigate the various dynamical prop-
erties of the map such as fixed point, periodicity and chaos for different choices
of µ.

4. The irregular behavior of dynamical system has also been analyzed numerically
and experimentally by adopting Lyapunov exponent approach. Furthermore,
combined bifurcation and Lyapunov exponent plots are shown to demonstrate
various regions of this system. Also, cobweb plots have been used for further
investigation.

5. It is strongly highlighted that the q-deformed logistic map has more stability
performance than that of existing other one dimensional dynamical systems (see,
Fig. 28).

6. For future research, an exhaustive search of the (µ, α) plane, followed by a graph-
ical depiction of the Qµ,α(x), demarcating the areas of convergence, stability and
sensitive dependence might be very interesting.
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