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Abstract. Barnsley introduced in [1] the notion of fractal interpolation function
(FIF). He said that a fractal function is a (FIF) if it possess some interpolation
properties. It has the advantage that it can be also combined with the classical
methods or real data interpolation. Hutchinson and Rüschendorf [7] gave the
stochastic version of fractal interpolation function. In order to obtain fractal
interpolation functions with more flexibility, Wang and Yu [9] used instead of a
constant scaling parameter a variable vertical scaling factor. Also the notion of
fractal interpolation can be generalized to the graph-directed case introduced by
Deniz and Özdemir in [5]. In this paper we study the case of a stochastic fractal
interpolation function with graph-directed fractal function.
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1. Introduction

In the construction of a fractal interpolation function Barnsley used the theory
of iterated function system [1], [3],[2]. For this we will consider two separable metric
spaces (X, dX) and (Y, dY ) and a given collection of N bijections Li : X → Xi such
that

{Xi = Li(X)|i ∈ {1, 2, ..N}}
∪Ni=1Xi = X and int(Xi) ∩ int(Xj) = ∅, for i 6= j.

For gi : Xi → Y , i ∈ {1, 2, ..N}, define tigi : X → Y by

(tigi) (x) = gj(x) for x ∈ Xj .

Assume that mappings Fi : X × Y → Y , Fi(x, ·) ∈ Lip<1(Y ), x ∈ X are given,
i ∈ {1, 2, ...N}, where Lip<1(Y ) is the set of all Lipschitz functions with Lipschitz
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constant less that 1.
Let F = {F1, F2, ..., FN}, then {X,F} is a so-called Iterated Function System (IFS).
Denote αi = LipFi.
For f : X → Y, define the operator F : L∞(X,Y )→ Y X by

Ff = tiFi(L−1i , f ◦ L−1i ).

Then f is a selfsimilar fractal function if Ff = f.
Let Γ := {(x0, y0), ..., (xN , yN ) ∈ (X × Y )} be the set of interpolation points.
A fractal function f has the interpolation properties with respect to Γ if

f(xj) = yj for all j = 0, 1, ..., N.

Denote
C∗(X,Y ) := {f ∈ C(X,Y )| f(xj) = yj , j ∈ {1, 2, ..., N}}.

Theorem 1.1 (Barnsley, [2]). Let Γ be a set of interpolation points and let {X,F} be
the IFS. Suppose

Fi(x0, y0) = yi−1, Fi(xN , yN ) = yi

for all i ∈ {1, 2, ..., N} and α∞ := maxαi < 1. Then there exists a selfsimilar fractal
function f∗ ∈ C∗(X,Y ) such that Ff∗ = f∗.

In order to obtain more various (FIF) in many papers the classical interpolation
methods are combined with these fractal interpolation functions, [4],[8].

2. Stochastic fractal interpolation function

Let (Ω,K, P ) be a probability space and Γ := {(xi, yi), i = 0, 1, ..., N} be a set
of interpolation points in X × Y .

Let Li : X → X be contractiv Lipschitz maps such that Li(x0) = xi−1 and
Li−1(xN ) = xi for all i ∈ {1, ..., N}.

The IFS {X,F} is defined by Fi : X × Y → Y such that Fi(x, ·) ∈ Lip<1(Y ) for
all x ∈ X and

Fi(x0, y0) = yi−1 with probability 1 (a.s.)

and
Fi(xN , yN ) = yi with probability 1 (a.s.)

for all i ∈ {1, ..., N}.
Fi(x, y) = αiy + qi(x), i = 1, 2, .., N,

where αi are random variables defined on Ω satisfying

‖αi‖∞ = sup{|αi(ω)| : ω ∈ Ω} < 1, i = 1, 2, ..., N.

The random function F is defined up to probability distribution by

Ff = tiFi(L−1i , f (i) ◦ L−1i ),

where F, f (1), ..., f (N) are independent and f (i)
d
= f , for i = 1, 2, ..., N .

We say f is a random fractal function, if

Ff d
= f,
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and it has the interpolation properties with respect to Γ if f(xi) = yi a. s. for all
i ∈ {0, 1, ..., N}.
We will consider

Cω(X,Y ) := {f : Ω×X → Y, f continuous a.s.}
and

C∗ω(X,Y ) := {g ∈ Cω(X,Y )|g(xi) = yi a.s., i ∈ {1, ..., N}}.
L∞ := {g : Ω×X → Y |ess sup

ω
ess sup

x
dY (gω(x), a) <∞}

for some a ∈ X.
For f, g ∈ L∞ we define

d∗∞(f, g) := ess sup
ω
d∞(fω, gω),

where

d∞(f, g) = ess sup
x
dY (f(x), g(x)).

Theorem 2.1. Let Γ be a set of interpolation points in X × Y and let {X,F} be the
IFS defined above. If λ∞ := ess supω maxi α

ω
i < 1 and

ess sup
ω

max
i
dY (Fi(a, f(a)), a) <∞ (2.1)

for some a ∈ X, then there exists f∗ ∈ C∗ω(X,Y ) such that Ff∗ = f∗. Moreover, f∗

is unique up to probability distribution.

Example 2.2. X = [0, 1], Y = R, N > 0.

Γ := {(xi, yi) ∈ [0, 1]× R|0 = x0 < x1 < ... < xN = 1}.

Li : X → Xi, Li(x) := aix+ di, ai, di ∈ R, i ∈ {1, 2, ..., N}.
Fi : X × Y → Y, i = {1, 2, .., N},

Fi(x, y) := αiy + qi(x), qi(x) = cix+ ei,

αi is a random variable, λ∞ := ess supω maxi αi < 1.

We can compute ai, ci, di, ei by the conditions Li(x0) = xi−1, Li(xN ) = xi

Fi(x0, y0) = yi−1, Fi(xN , yN ) = yi a.s.

for all i ∈ {1, ..., N}.
Wi : X × Y → X × Y Wi(x, y) = (Li(x), Fi(x, y)), i ∈ {1, 2, , ..., N}.
Using W := (W1, ...,WN ), IFS {X,W}

Wi : X × Y → L× Y, Wi(x, y) = (Li(x), Fi(x, y)) i = 1, , ..., N,

for any K0 ⊂ X × U
Kn = WKn−1 = ∪Ni=0W

ω
i Kn−1 = Wn(K0).

Then

ess sup
ω
dH(Wn(K0), graphf∗)→ 1

as n→∞, dH denotes the Hausdorff distance.
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Figure 1. Fractal interpolation function with variable parameter,
{(0,0.2),(0.2,0.7),(0.3,0.1),(0.5,0.3),(0.7,0.5),(0.8,0.2),(1,0.5)}

3. Graph directed fractal interpolation function

Let G = (V,E) be a graph, V is the set of vertices and E is the set of edges.
For α, β ∈ V , let Eα,β be the set of edges from α to β, and Kα,β is the number
of elements of Eα,β . Also let {Xα | α ∈ V } be a set of complete metric spaces and

φαβi : Xβ → Xβ are contraction mappings, for i = 1, 2, ...,Kαβ . Then from [6] it
follows that there exists a unique family of nonempty compact sets Aα ⊂ Xα such

that Aα = ∪β∈V ∪ki=1 φ
αβ
i (Aβ). Then {Xα, φαβi } is a graph-directed iterated function

system. Let

Γp = {(xp0, y
p
0), (xp1, y

p
1), ..., (xpNp

, ypNp
)} (3.1)

be the data sets in R2, where Np ≥ 2, for all p = 1, 2, ..., n. These data points satisfy
the following condition in order that the maps from the iterated function system to
be contractions:

xli − xli−1
xpNp
− xp0

< 1, (3.2)

for all p 6= l, p, l = 1, 2, ..., n, i = 1, 2, ..., Nl. In [5] we can find the proof regarding
the existence of a graph-directed fractal function:

Theorem 3.1. If we condsider the data set Γp in R2 for p = 1, 2, ..., n satisfying (3.2),
then there exists a graph-directed iterated function system, with attractors Ap, p =
1, 2, ..., n, such that Ap is the graph of a function which interpolates the data set Γp

for each p.

In the case n = 2 the construction of these iterated function systems can be
done using the method given in [5].

4. Graph directed random fractal interpolation function

Let (Ω,K, P ) be a probability space and {Xα | α ∈ V } a set of complete separable

metric spaces and Φαβi : Ω × Xβ → Xα are random variables. Then there exists



Graph-directed random fractal interpolation function 251

Aα ⊆ Ω×Xα defined up to probability distribution by

Aα
d
= ∪β∈V ∪ki=1 Φαβi (Aβ).

The system {Ω × Xα,Φαβi } is the graph directed random iterated function system
and Aα is the attractor of the system.

Theorem 4.1. Let Γp = {(xp0, y
p
0), (xp1, y

p
1), ..., (xpNp

, ypNp
)} be the data sets in R2 which

satisfies (3.2), then there exists a graph directed random iterated function system with
attractor Aα such that Aα is the graph of a random function which interpolates Γα

for each α.

Proof. We will construct a graph directed random iterated function system for which
Theorem 2 holds. Let n = 2 and

Γ1 = {(x10, y10), ..., (x1N , y
1
N )},

Γ2 = {(x20, y20), ..., (x2M , y
2
M )},

where N,M ≥ 2. Suppose

x1i − x1i−1
x2M − x20

< 1 and
x2j − x2j−1
x1N − x10

< 1

∀i = 1, ..., N, j = 1, ...,M .
Let G = (V,E) such that V = {1, 2} and K11 + K12 = N , K21 + K22 = M and

Φαβi : Ω× R2 → R2, i = 1, ...,Kαβ , α, β ∈ {1, 2}

Φαβi (x, y) =

(
aαβi 0

cαβi dαβi

)(
x
y

)
+

(
eαβi
fαβi

)
.

Suppose {
Φ11
i (x10y

1
0) = (x1i−1, y

1
i−1) a.s.

Φ11
i (x1Ny

1
N ) = (x1i , y

1
i ) for i = 1, 2, ...,K11{

Φ12
i−k11(x20y

2
0) = (x1i−1, y

1
i−1) a.s.

Φ12
i−K11(x2My

2
M ) = (x1i , y

1
i ) for i = K11 + 1, ..., N{

Φ21
i (x10y

1
0) = (x2i−1, y

2
i−1) a.s.

Φ21
i (x1Ny

1
N ) = (x2i , y

2
i ) for i = 1, 2, ...,K21{

Φ22
i−K21(x20y

2
0) = (x2i−1, y

2
i−1) a.s.

Φ22
i−K21(x2My

2
M ) = (x2i , y

2
i ) for i = K21, ...,M.

∀i = 1, ...,K11.
From these conditions we have the following equations:

x1i−1 = a11i x
1
0 + e11i

y1i−1 = c11i x
1
0 + d11i y

1
0 + f11i

x1i = a11i x
1
N + e11i

y1i = c11i x
1
N + d11i y

1
N + f11i
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∀i = K11 + 1, ..., N 
x1i−1 = a12i−K11x20 + e12i−K11

y1i−1 = c12i−K11x20 + d12i−K11y20 + f12i−K11

x1i = a12i−K11x2M + e12i−K11

y1i = c12i−K11x2M + d12i−K11y2M + f12i−K11

∀i = 1, ...,K21. 
x2i−1 = a21i x

1
0 + e21i

y2i−1 = c21i x
1
0 + d21i y

1
0 + f21i

x2i = a21i x
1
N + e21i

y2i = c21i x
1
N + d21i y

1
N + f21i

∀i = K21 + 1, ...,M
x2i−1 = a22i−K21x20 + e22i−K21

y2i−1 = c22i−K21x20 + d22i−K21y20 + f22i−K21

x2i = a22i−K21x2M + e22i−K21

y2i = c22i−K21x2M + d22i−K21y2M + f22i−K21

where dαβi is a random variable.

In this way we obtain aα,βi , cα,βi , eα,βi , fα,βi , α, β ∈ {1, 2}, i = 1, ...,Kαβ

a11i =
x1
i−x

1
i−1

x1
N−x1

0

e11i =
x1
Nx

1
i−1−x

1
0x

1
i

x1
N−x1

0

c11i =
y1i−y

1
i−1

x1
N−x1

0
− d11i

y1N−y
1
0

x1
N−x1

0

f11i =
x1
Ny

1
i−1−x

1
0y

1
i

x1
N−x1

0
− d11i

x1
Ny

1
0−x

1
0y

1
N

x1
N−x1

0

a12i =
x1
i−x

1
i−1

x2
M−x2

0

e12i =
x2
Mx1

i−1−x
2
0x

1
i

x2
M−x2

0

c12i =
y1i−y

1
i−1

x2
M−x2

0
− d12i

y2M−y
2
0

x2
M−x2

0

f12i =
x2
My1i−1−x

2
0y

1
i

x2
M−x2

0
− d12i

x2
My20−x

2
0y

2
M

x2
M−x2

0

a21i =
x2
i−x

2
i−1

x1
N−x1

0

e21i =
x1
Nx

2
i−1−x

1
0x

2
i

x1
N−x1

0

c11i =
y2i−y

2
i−1

x1
N−x1

0
− d21i

y1N−y
1
0

x1
N−x1

0

f21i =
x1
Ny

2
i−1−x

1
0y

2
i

x1
N−x1

0
− d21i

x1
Ny

1
0−x

1
0y

1
N

x1
N−x1

0
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

a22i =
x2
i−x

2
i−1

x2
M−x2

0

e22i =
x2
Mx2

i−1−x
2
0x

2
i

x2
M−x2

0

c22i =
y2i−y

2
i−1

x2
M−x2

0
− d22i

y2M−y
2
0

x2
M−x2

0

f12i =
x2
My2i−1−x

2
0y

2
i

x2
M−x2

0
− d22i

x2
My20−x

2
0y

2
M

x2
M−x2

0

Suppose ess sup
ω

max
i
dαβi < 1, for all α, β ∈ {1, 2} and i = 1, ...,Kα,β .

Then Φαβi is a contraction and {Ω × R2,Φαβi } is a graph directed random iterated
function system. We will prove that this graph directed random iterated function
system satisfies the theorem.
Let

Cω1 = {f | f : Ω× [x10, x
1
N ]→ R, fω(x10) = y10 , f

ω(x1N ) = y1N , cont. a.s.}

Cω2 = {g | g : ω × [x20, x
2
M ]→ R, gω(x20) = y20 , g

ω(x2M ) = y2M , cont. a.s.}
For f1, f2 ∈ Cω1 we define

d∗∞(f1, f2) = ess sup
ω
d∞(fω1 , f

ω
2 )

where

d∞(f1, f2) = max
x
{|fω1 (x)− fω2 (x)|, x ∈ [x10, x

1
N ]}.

(Cω1 , d
∗
ω) and (Cω2 , d

∗
ω) are complete metric spaces, hence Cω1 ×Cω2 is also a complete

metric space with

f̃(ω, x) =


C11
i I
−1
i (x) + d11i f(ω, I−1i (x) + f11i ) if x ∈ [x1i−1, x

1
i ],

i = 1, ...,K11

C12
i−K11I

−1
i (x) + d12i−K11g(ω, I−1i (x)) + f12i−K11) if x ∈ [x1i−1, x

1
i ],

i = K11 + 1, ..., N,

g̃(ω, y) =


C21
j J
−1
j (y) + d21j f(ω, J−1j (y) + f21j ) if y ∈ [x2j−1, x

2
j ],

j = 1, ...,K21

C22
j−K21J

−1
j (y) + d22j−K21g(ω, J−1j (y)) + f22j−K21) if y ∈ [x2ij−1, x

2
j ],

j = K21 + 1, ...,M,

where

Ii : [x10, x
1
N ]→ [x1i−1, x

1
i ], Ii(x) = a11i x+ e11i , for i = 1, ...,K11

Ii : [x20, x
2
M ]→ [x1i−1, x

1
i ], Ii(x) = a12i−K11x+ e12i−K11 , for i = K11 + 1, ..., N

Ji : [x10, x
1
N ]→ [x1i−1, x

1
i ], Ji(x) = a21i x+ e21i , for i = 1, ...,K21

Ji : [x20, x
2
M ]→ [x2i−1, x

2
i ], Ji(x) = a22i−K21x+ e22i−K21 , for i = K21 + 1, ...,M.

We have

f̃(ω, x10) = y10 a. s., f̃(ω, x1N ) = y1N a. s.

g̃(ω, x20) = y20 a. s., g̃(ω, x2M ) = y2M a. s.
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One can show that f̃ and g̃ are continuous functions a.s.. We have to show that T is
a contraction.

d∗∞(f1, f2) = ess sup
ω

max
x
{|f1(ω, x)− f2(ω, x)|}

max
x∈[x1

0,x
1
K11 ]
{|f1(ω, x)− f2(ω, x)|} = max

i=1,...,K11

{
|d11i ||f1(ω, I−1i (x))−

− f2(ω, I−1i (x))| , x ∈ [x1i−1, x
1
i ]}
}
≤ ess sup

ω
{d11i , i = 1, ...,K11} · d∞(f1, f2)

max
x∈[x1

K11 ,x
1
M ]
{|f1(ω, x)− f2(ω, x)|} = max

i=K11+1,...,N

{
|d12i−K11 ||g1(ω, I−1i (x))−

− g2(ω, I−1i (x))| , x ∈ [x1i−1, x
1
i ]}
}
≤ ess sup

ω
{d12i , i = 1, ...,K12} · d∞(f1, f2)

d∗∞(f1, f2) ≤ max{ess sup
ω
{d12i , i = 1, ...,K12}, ess sup

ω
{d11i , i = 1, ...,K11}} ·

· max{d∗∞(f1, f2), d∗∞(g1, g2)}
similarly

d∗∞(g1, g2) ≤ max{ess sup
ω
{d21i , i = 1, ...,K21}, ess sup

ω
{d22i , i = 1, ...,K22}} ·

· max{d∗∞(f1, f2), d∗∞(g1, g2)}.
So

d(T (f1, g1), T (f2, g2)) = max{d∗∞(f̃1, f̃2), d∗∞(g̃1, g̃2)} ≤
≤ r ·max{d∗∞(f1.f2), d∗∞(g1, g2)},

where

r = max

{
ess sup

ω
{d21i , i = 1, ...,K21}, ess sup

ω
{d22i , i = 1, ...,K22} ,

ess sup
ω
{d12i , i = 1, ...,K12}, ess sup

ω
{d11i , i = 1, ...,K11}

}
< 1.

Using Banach fixed point theorem, T has a unique fixed point (f0, g0):

T (f0, g0) = (f0, g0).

Let F and G be the graph of f0 and g0:

f0(ω, a11i x+ e11i ) = c11i x+ d11i f0(ω, x) + f11i for i = 1, ...,K11

f0(ω, a12i y + e12i ) = c12i y + d12i g0(ω, y) + f12i for i = 1, ...,K12,

which imply:

F =

K11⋃
i=1

Φ11
i (F ) ∪

K12⋃
i=1

Φ12
i (G)

similarly

G =

K21⋃
i=1

Φ21
i (F ) ∪

K22⋃
i=1

Φ22
i (G).
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According to the uniqueness of the solution, the graph of f0 and g0 are the attractor
of the fractal interpolation function. �

In the last few years the method of fractal interpolation was widely used in signal
processing, computer geometry, image compression and of course in approximation
theory. The stochastic type fractal interpolation method and the graph-directed ran-
dom fractal interpolation function present more flexibility and therefore it can be
applied much better in the case of real data interpolation.
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