Spectral characterization of new classes of multicone graphs

Seyed Morteza Mirafzal and Ali Zeydi Abdian

Abstract

This paper deals with graphs that are known as multicone graphs. A multicone graph is a graph obtained from the join of a clique and a regular graph. Let w, l, m be natural numbers and k is a natural number. It is proved that any connected graph cospectral with multicone graph $K_{w} \nabla m E C P_{l}^{k}$ is determined by its adjacency spectra as well as its Laplacian spectra, where $E C P_{l}^{k}=K_{l_{\text {times }}}^{3^{k}, 3^{k}, \ldots, 3^{k}}$. Also, we show that complements of some of these mul-

ticone graphs are determined by their adjacency spectra. Moreover, we prove that any connected graph cospectral with these multicone graphs must be perfect. Finally, we pose two problems for further researches.
Mathematics Subject Classification (2010): 05C50.
Keywords: Adjacency spectrum, Laplacian spectrum, DS graph.

1. Introduction

All graphs considered here are simple and undirected. All notions on graphs that are not defined here can be found in $[4,5,10,12,19]$. Let Γ be a graph with n vertices, $V(\Gamma)$ and $E(\Gamma)$ be the sets of vertices and edges of Γ, respectively. The complement of a graph Γ, denoted by $\bar{\Gamma}$, is the graph on the vertices set of Γ such that two vertices of $\bar{\Gamma}$, are adjacent if and only if they are not adjacent in Γ. The union of (disjoint) graphs Γ_{1} and Γ_{2} is denoted by $\Gamma \cup \Gamma_{2}$, is the graph whose vertices (respectively, edges) set is the union of vertices (respectively, edges) set of Γ_{1} and Γ_{2}. A graph consisting of k disjoint copies of an arbitrary graph Γ will be denoted by $k \Gamma$. The join of two vertex disjoint graphs Γ_{1} and Γ_{2} is the graph obtained from $\Gamma_{1} \cup \Gamma_{2}$ by joining each vertex in Γ_{1} with every vertex in Γ_{2}. It is denoted by $\Gamma_{1} \nabla \Gamma_{2}$. Let Γ be a graph with adjacency matrix $A(\Gamma)$. The characteristic polynomial of Γ is $\operatorname{det}(\lambda I-A(\Gamma)$), and denoted by $P_{\Gamma}(\lambda)$. The roots of $P_{\Gamma}(\lambda)$ are called the adjaceny eigenvalues of $A(\Gamma)$. The eigenvalues and the spectrum of $A(\Gamma)$ are also called the eigenvalues and the
spectrum of Γ, respectively. If we consider a matrix $L=D-A$ instead of A, where D is the diagonal matrix of degree of vertices (in Γ), we get the Laplacian eigenvalues and the Laplacian spectrum, while in the case of matrix $S L(G)=D(\Gamma)+A(\Gamma)$, we get the signless Laplacian eigenvalues and the signless Laplacian spectrum, respectively. Since both matrices $A(\Gamma)$ and $L(\Gamma)$ are real symmetric matrices, their eigenvalues are all real numbers. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{s}$ be the distinct eigenvalues of Γ with multiplicities $m_{1}, m_{2}, \ldots, m_{s}$, respectively. We denote the adjacency spectrum of Γ by $\operatorname{Spec}(\Gamma)=\left\{\left[\lambda_{1}\right]^{m_{1}},\left[\lambda_{2}\right]^{m_{2}}, \ldots,\left[\lambda_{s}\right]^{m_{s}}\right\}$. Two graphs Γ and Λ are called cospectral, if $\operatorname{Spec}(\Gamma)=S \operatorname{pec}(\Lambda)$. A graph Γ is said to be determined by its spectrum or DS for short, if $\operatorname{Spec}(\Gamma)=\operatorname{Spec}(\Lambda)$, follows that $\Gamma \cong \Lambda$. About the background of the guestion "which graphs are determined by their spectrums?", we refer to [15]. The friendship graph F_{n} consists of n edge-disjoint triangles that all of them meeting in one vertex, where n is a natural number (see Figure 1). The friendship (or Dutch windmill or n-fan) graph F_{n} is the graph that can be constructed by coalesencing n copies of the cycle graph C_{3} of length 3 with a common vertex. By construction, the friendship graph F_{n} is isomorphic to the windmill graph $\mathrm{Wd}(3, \mathrm{n})$ [11]. The friendship theorem of Paul Erdös, Alfred Réyni and Vera T. Sós [12], states that graphs with the property that every two vertices have exactly one neighbour in common are exactly the friendship graphs. In $[17,18]$, it has been proposed that the friendship graph is DS with respect to its adjacency spectrum. This conjecture studied in $[2,8]$. It is claimed in [8] that conjecture is valid. In [7], it is proved that if Γ is any graph cospectral with $F_{n}(n \neq 16)$, then $\Gamma \cong F_{n}$. Abdollahi and Janbaz [3] precented a proof in special case of this topic. They proved that any connected graph cospectral with F_{n} is isomorphic to F_{n}. Abdian and Mirafzal [1] characterized new classes of multicone graphs. In this paper, we present new classes of multicone graphs that friendship graphs are special classes of them and we show these graphs are DS with respect to their spectra. The plan of the present paper is as follows. In Section 2, we review some basic information and preliminaries. In Subsection 3.1, we show that any connected graph cospectral with multicone graph $K_{w} \nabla m E C P_{l}^{k}$ (see Figures 1 and 2, for example) must be regular or bidegreed (Lemma 3.2). In Subsection 3.2, we prove that any connected graphs cospectral with $K_{w} \nabla m E C P_{l}^{k}$ is determined by its adjacency spectra (Theorem 3.4). In Subsection 3.3, we prove that complement of $K_{w} \nabla m E C P_{l}^{k}$ is DS with respect to their adjacency spectra (Theorem 3.7). In Subsection 3.4, we show that graphs $K_{w} \nabla m E C P_{l}^{k}$ are DS with respect to their Laplacian spectra (Theorem 3.8). In Subsection 3.5, we show that any connected graph cospectral with multicone graph $K_{w} \nabla m E C P_{l}^{k}$ must be perfect. We conclude with final remarks and open problems in Section 4.

2. Preliminaries

In this section, we give some facts that will be used in the proof of the main results.

A walk of length m in a graph $\Gamma(V, E)$ is an alternating sequence:

$$
v_{1} l_{1} v_{2} l_{2} v_{3} v_{n} l_{m} v_{m+1}
$$

of vertices and edges that begins and ends with a vertex and has the added property that l_{j} is incident with both v_{i} and v_{i+1}, where $1 \leq i \leq m+1$ and $1 \leq j \leq m$. In $\operatorname{graph} \Gamma(V, E)$ a walk of length m is closed, if $v_{1}=v_{m+1}$.

Lemma 2.1. ([2,14]) Let Γ be a graph. For the adjacency matrix and Laplacian matrix, the following can be obtained from the spectrum:
(i) The number of vertices,
(ii) The number of edges.

For the adjacency matrix, the following follows from the spectrum:
(iii) The number of closed walks of any length.
(iv) Being regular or not and the degree of regularity.
(v) Being bipartite or not.

For the Laplacian matrix, the following follows from the spectrum:
(vi) The number of spanning trees.
(vii) The number of components.
(viii) The sum of squares of degrees of vertices.

Theorem 2.2. ([5]) If Γ_{1} is r_{1}-regular with n_{1} vertices, and Γ_{2} is r_{2}-regular with n_{2} vertices, then the characteristic polynomial of the join $\Gamma_{1} \nabla \Gamma_{2}$ is given by:

$$
P_{\Gamma_{1} \nabla \Gamma_{2}(\lambda)}=\frac{P_{\Gamma_{1}}(\lambda) P_{\Gamma_{2}}(\lambda)}{\left(\lambda-r_{1}\right)\left(\lambda-r_{2}\right)}\left(\left(\lambda-r_{1}\right)\left(\lambda-r_{2}\right)-n_{1} n_{2}\right) .
$$

Proposition 2.3. ([5]) Let $\Gamma-j$ be the graph obtained from Γ by deleting the vertex j and all edges containing j. Then $P_{\Gamma-j}(\lambda)=P_{\Gamma}(\lambda) \sum_{i=1}^{m} \frac{\alpha_{i j}^{2}}{\lambda-\mu_{i}}$, where $m, \alpha_{i j}^{2}$ and $P_{\Gamma}(\lambda)$ are the number of distinct eigenvalues of graph Γ, the main angle of Γ and the characteristic polynomial of Γ.

A graph is bidegreed if the set of degrees of its vertices consists of exactly two distinct elements. Also, the spectral radius $\varrho(\Gamma)$ of Γ is the largest eigenvalue of its adjacency matrix $A(\Gamma)$.

Theorem 2.4. ([3]) Let Γ be a simple graph with n vertices and m edges. Let $\delta=\delta(\Gamma)$ be the minimum degree of vertices of Γ and $\varrho(\Gamma)$ be the spectral radius of the adjacency matrix of Γ. Then

$$
\varrho(\Gamma) \leq \frac{\delta-1}{2}+\sqrt{2 m-n \delta+\frac{(\delta+1)^{2}}{4}}
$$

Equality holds if and only if Γ is either a regular graph or a bidegreed graph in which each vertex is of degree either δ or $n-1$.

A t-multipartite graph of order n is $K_{b_{1}, \ldots, b_{t}}$, where $b_{1}+\ldots+b_{t}=n$. D. Cvetković, Doob and S. Simić [6] defined a generalized cocktail-party graph, denoted by $G C P$, as a complete graph with some independent edges removed. A special case of this graph is the well-known cocktail-party graph $C P(t)$ obtained from $K_{2 t}$ by removing t disjoint edges.

Theorem 2.5. ([1]) A graph has exactly one positive eigenvalue if and only if its nonisolated vertices form a complete multipartite graph.

Lemma 2.6. ([1]) Let Γ be a connected non-regular graph with three distinct eigenvalues $\theta_{0}>\theta_{1}>\theta_{2}$. Then the following hold:
(i) Γ has diameter two.
(ii) If θ_{0} is not an integer, then Γ is complete bipartite.
(iii) $\theta_{1} \geq 0$ with equality if and only if Γ is complete bipartite.
(iv) $\theta_{2} \leq-\sqrt{2}$ with equality if and only if Γ is the path of length 2 .

Proposition 2.7. ([12]) For a graph Γ, the following statements are equivalent:
(i) Γ is d-regular.
(ii) $\varrho(\Gamma)=d_{\Gamma}$, the average vertex degree.
(iii) G has $v=(1,1, \ldots, 1)^{t}$ as an eigenvector for $\varrho(\Gamma)$.

Proposition 2.8. ([16]) Let Γ be a disconnected graph that is determined by the Laplacian spectrum. Then the cone over Γ, the graph Λ; that is, obtained from Γ by adding one vertex that is adjacent to all vertices of Γ, is also determined by its Laplacian spectrum.

Lemma 2.9. ([13]) Let Γ be a graph on n vertices. Then n is Laplacian eigenvalue of Γ if and only if Γ is the join of two graphs.

Theorem 2.10. ([13]) Let Γ and Λ be two graphs with Laplacian spectrum $\lambda_{1} \geq \lambda_{2} \geq$ $\ldots \geq \lambda_{n}$ and $\mu_{1} \geq \mu_{2} \geq \ldots \geq \mu_{m}$, respectively. Then the Laplacian spectra of $\overline{\bar{\Gamma}}$ and $\Gamma \nabla \Lambda$ are $n-\lambda_{1}, n-\lambda_{2}, \ldots, n-\lambda_{n-1}, 0$ and $n+m, m+\lambda_{1}, \ldots, m+\lambda_{n-1}, n+\mu_{1}, \ldots, n+$ $\mu_{m-1}, 0$, respectively.

Lemma 2.11. ([12]) Let $G \neq K_{1}$ be connected with $P_{\Gamma}(\lambda)=\sum_{i=0}^{n} a_{i} \lambda^{n-i}$ and $\lambda=\lambda_{1} \leq$ $\lambda_{2} \leq \ldots \leq \lambda_{n}=\varrho(\Gamma)$, where $P_{\Gamma}(\lambda)$ is the characteristic polynomial of graph Γ and λ_{i} $(1 \leq i \leq n)$ is eigenvalue of Γ. The following are equivalent:
(i) G is bipartite.
(ii) $a_{2 i-1}=0$ for all $1 \leq i \leq\left\lceil\frac{n}{2}\right\rceil$.
(iii) $\lambda_{i}=-\lambda_{n+1-i}$ for $1 \leq i \leq n$.
(iv) $\varrho(\Gamma)=-\lambda$.

Moreover, $m\left(\lambda_{i}\right)=m\left(-\lambda_{i}\right)$, where $m\left(\lambda_{i}\right)$ denote the multiplicities of λ_{i}.

3. Main results

In the following, we show that any connected graph cospectral with multicone graphs $K_{w} \nabla m E C P_{l}^{k}$ are regular or bidegreed.
3.1. Connected bidegreed graph cospectral with multicone graphs $K_{w} \nabla m E C P_{l}^{k}$

Proposition 3.1. Let G be a graph cospectral with multicone graphs $K_{w} \nabla m E C P_{l}^{k}$. Then
$\operatorname{Spec}(G)=\left\{[0]^{\left(3^{k} l-l\right) m},[-1]^{w-1},\left[3^{k} l-3^{k}\right]^{m-1},\left[-3^{k}\right]^{l m-m},\left[\frac{\chi+\sqrt{\chi^{2}-4 \Theta}}{2}\right]^{1},\left[\frac{\chi-\sqrt{\chi^{2}-4 \Theta}}{2}\right]^{1}\right\}$, where $\chi=w-1+3^{k} l-3^{k}$ and $\Theta=(w-1)\left(3^{k} l-3^{k}\right)-3^{k} l w m$.

Proof. By Theorem 2.2 and $\operatorname{Spec}\left(m E C P_{l}^{k}\right)=\left\{\left[3^{k} l-3^{k}\right]^{m},[0]^{3^{k} l m-l m},\left[-3^{k}\right]^{l m-m}\right\}$
the proof is completed.
In the following, we show that any graph cospectral with a multicone graph $K_{w} \nabla m E C P_{l}^{k}$ must be bidegreed.
Lemma 3.2. Let Γ be a connected graph cospectral with multicone graph $K_{w} \nabla m E C P_{l}^{k}$. Then Γ is bidegreed in which any vertex of Γ is of degree $w-1+3^{k} l m$ or $3^{k} l-3^{k}+w$.

Proof. It is obvious that Γ cannot be regular; since regularity of a graph can be determined by its spectrum. By contrary, we suppose that the sequence of degrees of vertices of graph Γ consists of at least three number. Hence the equality in Theorem 2.4 cannot happen for any δ. But, if we put $\delta=3^{k} l-3^{k}+w$, then the equality in Theorem 2.4 holds. So, Γ must be bidegreed. Now, we show that $\Delta=\Delta(\Gamma)=w-1+3^{k} l m$. By contrary, we suppose that $\Delta<w-1+3^{k} l m$. Therefore, the equality in Theorem 2.4 cannot hold for any δ. But, if we put $\delta=3^{k} l-3^{k}+w$, then this equality holds. This is a contradiction and so $\Delta=3^{k} l-3^{k}+w$. Now, $\delta=3^{k} l-3^{k}+w$, since Γ is bidegreed and Γ has $w+3^{k} l m, \Delta=w-1+3^{k} l m$ and

$$
w\left(w-1+3^{k} l m\right)+3^{k} \operatorname{lm}\left(3^{k} l-3^{k}+w\right)=w \Delta+3^{k} \operatorname{lm}\left(3^{k} l-3^{k}+w\right)=\sum_{i=1}^{w+3^{k} l m} \operatorname{deg} v_{i}
$$

This completes the proof.

3.2. Spectral characterization of connected graphs cospectral with multicone graphs

 $K_{1} \nabla m E C P_{l}^{k}$.In this subsection, we show that multicone graphs $K_{1} \nabla m E C P_{l}^{k}$ are DS.
Lemma 3.3. Any connected graph cospectral with multicone graph $K_{1} \nabla m E C P_{l}^{k}$ is isomorphic to $K_{1} \nabla m E C P_{l}^{k}$.

Proof. Let Γ be a graph cospectral with multicone graph $K_{1} \nabla m E C P_{l}^{k}$. If $m=1$ there is nothing to prove. Hence we suppose that $m \neq 1$. It is obvious that in this case Γ cannot be regular. First we show that Γ has one vertex of degree $\Delta=3^{k} l m$ and $3^{k} l m$ vertices of degree $\delta=3^{k} l-3^{k}+1$. Let G has t vertex of degree $\Delta=3^{k} l m$. Hence

$$
t 3^{k} l m+\left(3^{k} l m+1-t\right)\left(3^{k} l-3^{k}+1\right)=3^{k} l m+3^{k} l m\left(3^{k} l-3^{k}+1\right)=\sum_{i=1}^{1+3^{k} l m} \operatorname{deg} v_{i}
$$

and so $t=1$. Therefore, Γ has one vertex of degree $\Delta=3^{k} l m$, say j. It follows from Proposition 2.3 that

$$
\begin{aligned}
P_{\Gamma-j}(\lambda) & =\left(\lambda-\mu_{3}\right)^{m-2}\left(\lambda-\mu_{4}\right)^{l m-m-1}\left(\lambda-\mu_{5}\right)^{3^{k} l m-l m-1} \\
& \times\left[\alpha_{1 j}^{2} F+\alpha_{2 j}^{2} G+\alpha_{3 j}^{2} H+\alpha_{4 j}^{2} I+\alpha_{5 j}^{2} J\right],
\end{aligned}
$$

where

$$
\begin{aligned}
& F=\left(\lambda-\mu_{2}\right)\left(\lambda-\mu_{3}\right)\left(\lambda-\mu_{4}\right)\left(\lambda-\mu_{5}\right), \\
& G=\left(\lambda-\mu_{1}\right)\left(\lambda-\mu_{3}\right)\left(\lambda-\mu_{4}\right)\left(\lambda-\mu_{5}\right),
\end{aligned}
$$

$$
\begin{aligned}
H & =\left(\lambda-\mu_{1}\right)\left(\lambda-\mu_{2}\right)\left(\lambda-\mu_{4}\right)\left(\lambda-\mu_{5}\right) \\
I & =\left(\lambda-\mu_{1}\right)\left(\lambda-\mu_{2}\right)\left(\lambda-\mu_{3}\right)\left(\lambda-\mu_{5}\right) \\
J & =\left(\lambda-\mu_{1}\right)\left(\lambda-\mu_{2}\right)\left(\lambda-\mu_{3}\right)\left(\lambda-\mu_{4}\right)
\end{aligned}
$$

where

$$
\begin{gathered}
\mu_{1}=\frac{3^{k} l-3^{k}+\sqrt{\left(3^{k} l-3^{k}\right)^{2}+4\left(2^{k} l m\right)}}{2} \\
\mu_{2}=\frac{3^{k} l-3^{k}-\sqrt{\left(3^{k} l-3^{k}\right)^{2}+4\left(2^{k} l m\right)}}{2} \\
\mu_{3}=3^{k} l-3^{k}, \mu_{4}=-3^{k} \text { and } \mu_{5}=0
\end{gathered}
$$

It is clear that $P_{\Gamma-j}(\lambda)$ has $3^{k} l m$ roots. So, we have:

$$
\begin{gathered}
\alpha+\beta+\gamma+3^{k} l-3^{k}=-\left[(m-2) \mu_{3}+(l m-m-1) \mu_{4}\right], \\
\alpha^{2}+\beta^{2}+\gamma^{2}+\left(3^{k} l-3^{k}\right)^{2}=3^{k} \operatorname{lm}\left(3^{k} l-3^{k}\right)-\left[(m-2) \mu_{3}^{2}+(l m-m-1) \mu_{4}^{2}\right], \\
\alpha^{3}+\beta^{3}+\gamma^{3}+\left(3^{k} l-3^{k}\right)^{3}=6 m\left(3^{3 k}\right)\binom{l}{3}-\left[(m-2) \mu_{3}^{2}+(l m-m-1) \mu_{4}^{2}\right],
\end{gathered}
$$

where α, β and γ are the eigenvalues of graph $\Gamma-j$. If we solve the above equations, then we will have: $\alpha=-3^{k}, \beta=0$ and $\gamma=3^{k} l-3^{k}$. Therefore,

$$
\operatorname{spec}(\Gamma-j)=\left\{\left[3^{k} l-3^{k}\right]^{m},[0]^{3^{k} l m-l m},\left[-3^{k}\right]^{l m-m}\right\} .
$$

Graph $\Gamma-j$ is regular and degree of its regularity is $3^{k} l-3^{k}$. It follows from Theorem 2.4 that $\Gamma-j=m K_{\underbrace{3^{k}, \ldots, 3^{k}}_{l \text { times }}}$ and so $G-j=m E C P_{l}^{k}$. Hence $\Gamma=K_{1} \nabla m E C P_{l}^{k}$. This follows the result.

Up to now, we have shown that the multicone graphs $K_{1} \nabla m E C P_{l}^{k}$ are DS. The natural question is; what happen for multicone graphs $K_{w} \nabla m E C P_{l}^{k}$? we answer to this question in the following theorem.

Theorem 3.4. Any connected graph cospectral with multicone graph $K_{w} \nabla m E C P_{l}^{k}$ is isomorphic to $K_{w} \nabla m E C P_{l}^{k}$.

Proof. We solve the problem by induction on w. If $w=1$, there is nothing to prove. Let the claim be true for w; that is, if $\operatorname{Spec}\left(\Gamma_{1}\right)=\operatorname{Spec}\left(K_{w} \nabla m E C P_{l}^{k}\right)$, then $\Gamma_{1} \cong K_{w} \nabla$ $m E C P_{l}^{k}$, where Γ_{1} is a graph. We show that, if $\operatorname{Spec}(\Gamma)=\operatorname{Spec}\left(K_{w+1} \nabla m E C P_{l}^{k}\right)$, then $\Gamma \cong K_{w+1} \nabla m E C P_{l}^{k}$, where Γ is a graph. By Lemma 3.2, Theorem 2.4, Lemma 2.1 (iii) and in a similar manner of Lemma 3.3 for $\Gamma-j$, where j is a vertex of degree $w+3^{k} l m$ belonging to Γ, we obtain $\operatorname{Spec}(\Gamma-j)=\operatorname{Spec}\left(K_{w} \nabla m E C P_{l}^{k}\right)$. Therefore, the assertion holds.

In the following, we give another proof of the above theorem.

Figure 1. Multicone graph $K_{20} \nabla 2 E C P_{1}^{0}$

Proof. Let Γ be a connected graph cospectral with multicone graph $K_{w} \nabla m E C P_{l}^{k}$. By Lemma 3.2, Γ has subgraph L in which degree of any vertex of L is $w-1+3^{k} l m$. In other words, $\Gamma \cong K_{w} \nabla H$, where H is a subgraph of Γ. Now, we remove the vertices of K_{w} and we consider $3^{k} l m$ another vertices. Consider H consisting of these $3^{k} l m$ vertices. H is regular and degree of its regularity is $3^{k} l-3^{k}$ and multiplicity of $3^{k} l-3^{k}$ is m. By Theorem 2.2, $\operatorname{Spec}(H)=\left\{\left[3^{k} l-3^{k}\right]^{m},[0]^{\left(3^{k} l-l\right) m},\left[-3^{k}\right]^{(l-1) m}\right\}$. Now, it follows from Theorem 2.5 that $\operatorname{Spec}(H)=\operatorname{Spec}\left(m E C P_{l}^{k}\right)$. This implies the result.

Corollary 3.5. Any connected graph cospectral with multicone graph

$$
K_{w} \nabla m E C P_{1}^{k}=K_{w} \nabla m K_{3^{k}}
$$

is $D S$ with respect to their adjacency spectrums.

Figure 2. Multicone graph $K_{10} \nabla 2 E C P_{2}^{1}$
3.3. Some complements of multicone graphs $K_{w} \nabla m E C P_{l}^{k}$ are DS with respect to their spectra.
In this subsection, we show that the complement of multicone graphs $K_{w} \nabla m E C P_{l}^{k}$ are DS with respect to their adjacency spectrum.

Proposition 3.6. Let Γ be cospectral with complement of multicone graphs $K_{w} \nabla$ $m E C P_{l}^{k}$. Then

$$
\operatorname{Spec}(\Gamma)=\left\{\left[3^{k} l m-3^{k} l+3^{k}-1\right]^{m},[-1]^{\left(3^{k}-1\right) l m},\left[3^{k}-1\right]^{(l-1) m},[0]^{w}\right\} .
$$

Proof. Straightforward.
Theorem 3.7. The complement of multicone graph $K_{w} \nabla E C P_{l}^{k}$ are $D S$ with respect to their adjacency spectrum.

Proof. The proof of this theorem is the similar of Theorm 5.2 of [1]. Let

$$
\operatorname{Spec}(\Gamma)=\operatorname{Spec}\left(\overline{K_{w} \nabla E C P_{l}^{k}}\right)=\left\{[-1]^{\left(3^{k}-1\right) l},\left[3^{k}-1\right]^{l},[0]^{w}\right\}
$$

If $l=1$, by Lemma 2.1 ((i), (ii) and (iii)) the proof is clear (Also, by Theorem 2.5 the proof follows). Hence we suppose that $l \neq 1$. It is easy to see that Γ cannot be regular, since regularity of a graph can be determined by its spectrum. By contrary, we suppose that Γ is connected. So, we from Lemma 2.6 and Lemma 2.11 conclude that $k=l=1$. This is a contradiction. Hence $\Gamma=\Gamma_{1} \cup \Gamma_{2} \cup \ldots \cup \Gamma_{h}$, where Γ_{s} is a connected component of Γ and $1 \leq s \leq h$. Now, we show that Γ_{s} cannot have three distinct eigenvalues. By contrary, we suppose that Γ_{i} has three distinct eigenvalues. In this case, if we also suppose Γ_{s} is non-regular, then it follows from Lemma 2.6 that Γ_{s} is a complete bipartite graph. Hence $l=k=1$. This is a contradiction. Therefore, if Γ_{s} has three distinct eigenvalues, then it must be regular. Now, it follows from Theorem 2.5 that $\Gamma_{s} \cong K_{3^{k} \text { times }}^{\mathcal{1 , 1 , \ldots , 1}^{1, \ldots}} \cong K_{3^{k}}$. This is a contradiction. So, Γ_{s} cannot have three distinct eigenvalues. Therefore, it has one or two eigenvalue(s). Hence, any connected component of Γ is either isolated vertex or a complete graph. Hence $\Gamma \cong w K_{1} \cup l K_{3^{k}}$. This follows the result.

3.4. The multicone graphs $K_{w} \nabla m E C P_{l}^{k}$ are determined by their Laplacian spectra

In this subsection, we show that any graph cospectral with multicone graph $K_{w} \nabla m E C P_{l}^{k}$ is DS with respect to its Laplacian spectrum.

Theorem 3.8. Multicone graphs $K_{w} \nabla m E C P_{l}^{k}$ are $D S$ with respect to their Laplacian spectrum.

Proof. We solve the problem by induction on w. If $w=1$, there is nothing to prove. Let the claim be true for w; that is,

$$
\begin{gathered}
\operatorname{Spec}(L(H))=\operatorname{Spec}\left(L\left(K_{w} \nabla m E C P_{l}^{k}\right)\right. \\
=\left\{\left[3^{k} l m+w\right]^{w},[w]^{m-1},\left[3^{k} l-3^{k}+w\right]^{3^{k} l m-l m},\left[3^{k} l+w\right]^{l m-m},[0]^{1}\right\}
\end{gathered}
$$

follows that $H \cong K_{w} \nabla m E C P_{l}^{k}$. We show that the problem is true for $w+1$; that is, we show that

$$
\begin{gathered}
\operatorname{Spec}(L(G))=\operatorname{Spec}\left(L\left(K_{w+1} \nabla m E C P_{l}^{k}\right)\right) \\
=\left\{\left[3^{k} l m+w+1\right]^{w+1},[w+1]^{m-1},\left[3^{k} l-3^{k}+w+1\right]^{3^{k} l m-l m},\left[3^{k} l+w+1\right]^{l m-m},[0]^{1}\right\}
\end{gathered}
$$

follows that $G \cong K_{w+1} \nabla m E C P_{l}^{k}$. It follows from Lemma 2.9 that H and G are the join of two graphs. On the other hand,

$$
\operatorname{Spec}\left(L\left(K_{1} \nabla H\right)\right)=\operatorname{Spec}(L(G))=\operatorname{spec}\left(L\left(K_{w+1} \nabla m E C P_{l}^{k}\right)\right) .
$$

Therefore, we must have $G \cong K_{1} \nabla H$. Because, G is the join of two graphs and also according to spectrum of G, must K_{1} be joined to H and this is only available state. This completes the proof.

Corollary 3.9. Multicone graphs $K_{w} \nabla m E C P_{1}^{k}=K_{w} \nabla m K_{3^{k}}$ are $D S$ with respect to their Laplacian spectrums.

3.5. Some results about multicone graphs $K_{w} \nabla m E C P_{l}^{k}$

In this subsection, we show that any graph cospectral with multicone graph $K_{w} \nabla$ $m E C P_{l}^{k}$ must be perfect. Also, we prove that any graph cospectral with multicone graph $K_{w} \nabla m E C P_{l}^{k}$ with respect to Laplacian spectrum is perfect. In addition, we show that any graph cospectral with complement of multicone graph $K_{w} \nabla m E C P_{l}^{k}$ is perfect.

Suppose $\chi(\Gamma)$ and $\omega(\Gamma)$ are chromatic number and clique number of graph G, respectively. A graph is perfect if $\chi(H)=\omega(H)$ for every induced subgraph H of Γ. It is proved that a graph G is perfect if and only if Γ is Berge; that is, it contains no odd hole or antihole as induced subgraph, where odd hole and antihole are odd cycle, C_{m} for $m \geq 5$, and its complement, respectively. Also, in 1972 Lovász proved that, a graph is perfect if and only if its complement is perfect (see [22] of [2]). Now, by Theorem 3.4, Theorem 3.7, Theorem 3.8 and by what was said in the previous sections we can conclude the following results.
Theorem 3.10. Let graph Γ be cospectral with multicone graph $K_{w} \nabla m E C P_{l}^{k}$. Then Γ and $\bar{\Gamma}$ are perfect.
Proof. By what was said in the beginning of this section and Theorem 3.4 the proof is completed.

Theorem 3.11. Let Γ be a graph and $\operatorname{Spec}(L(\Gamma))=\operatorname{Spec}\left(L\left(K_{w} \nabla m E C P_{l}^{k}\right)\right)$. Then Γ and $\bar{\Gamma}$ are perfect.

Proof. The proof is straightforwad.
Theorem 3.12. Let Γ be a graph and $\operatorname{Spec}(\Gamma)=\operatorname{Spec}\left(\overline{K_{w} \nabla m E C P_{l}^{k}}\right)$. Then Γ and $\bar{\Gamma}$ are perfect.

Proof. It is obvious.
In the following, we pose two conjectures.

4. Final remarks and open problems

In this paper, we have shown any connected graph cospectral with multicone graph $K_{w} \nabla m E C P_{l}^{k}$ is DS with respect to its spectra. Also, we have shown in special cases complement of these graphs are DS. In addition, we have proved any connected graph cospectral with these graph is perfect. On the other hand, It is obvious that, F_{n} are special classes of multicone graphs $K_{w} \nabla m E C P_{l}^{k}$ (one can also consider $k=0$). In addition, F_{n} are DS with respect to:
(i) Their adjaccency spectrum (if $n \neq 16$).
(ii) Their Laplacian spectrum.
(iii) Their signless Laplacian spectrum. Also, $\overline{F_{n}}$ are DS with respect to their adjacency spectrum, where $n \neq 2$.

Hence we pose the following conjectures.
Conjecture 4.1. Multicone graphs $K_{w} \nabla m E C P_{l}^{k}$ are $D S$ with respect to their signless Laplacian spectrum.

Conjecture 4.2. The complement of multicone graphs $K_{w} \nabla m E C P_{l}^{k}$ are DS with respect to their adjacency spectrum.

References

[1] Abdian, A.Z., Mirafzal S.M., On new classes of multicone graphs determined by their spectrums, Alg. Struc. Appl., 2(1)(2015), 21-32.
[2] Abdollahi, A., Janbaz, S., Oubodi, M., Graphs Cospectral with A Friendship Graph Or its Complement, Trans. Comb., 2(4)(2013), 37-52.
[3] Abdollahi, A., Janbaz, S., Connected graphs cospectral with a friendship graph, Trans. Comb., 3(2)(2014), 17-20.
[4] Biggs, N.L., Algebraic Graph Theory, Second ed., Cambridge University Press, Cambridge, 1933.
[5] Cvetković, D., Rowlinson, P., Simić, S., An Introduction to the Theory of graph Spectra, London Mathematical Society Student Texts, 75, Cambridge University Press, Cambridge, 2010.
[6] Cvetković, D., Doob, M., Simić, S.K., Generalized line graphs, J. Graph Theory, 5(4)(1981), 385-399.
[7] Cioaba, S.M., Haemers, W.H., Vermette, J.R., Wong, W., The graphs with all but two eigenvalues equal to ± 1, Journal of Algebraic Combinatorics, 44(3)(2013), 887-897.
[8] Das, K.C., Proof of conjectures on adjacency eigenvalues of graphs, Discret. Math., 313(1)(2013), 19-25.
[9] Erdös, P., Réyni A., Sós V.T., On a problem of graph theory, Sci. Math. Hungarica, 1(966), 215-235.
[10] Godsil, C.D., Royle, G., Algebraic Graph Theory, Graduate Texts in Mathematics 207, 2001.
[11] Gallian, J.A., A dynamic survey of graph labeling, Electron. J. Combin., 16(6)(2009), 1-219.
[12] Kanauer, U., Algebraic Graph Theory, Morphisms, Monoids and Matrices, 41, Walter de Gruyter, 2011.
[13] Mohammadian, A., Tayfeh-Rezaie, B., Graphs with four distinct Laplacian eigenvalues, Journal of Algebraic Combinatorics, 34(4)(2011), 671-682.
[14] Omidi, G.R., On graphs with largest Laplacian eignnvalues at most 4, Australasian J. Combin., 44(2009), 163-170.
[15] van Dam E.R., Haemers, W.H., Which graphs are determined by their spectrum?, Linear Alg. Appl., 373(2003), 241-272.
[16] van Dam, E.R., Haemers, W.H., Developments on spectral characterizations of graphs, Discrete Math., 309(2009), 576-586.
[17] Wang, J., Belardo, Huang, Q., Borovicanin, B., On the two largest Q-eigenvalues of graphs, Discrete Math., 310(2010), 2858-2866.
[18] Wang, J., Zhao, H., Huang, Q., Spectral characterization of multicone graphs, Czechoslovak Math. J., 62(1)(2012), 117-126.
[19] West, D.B., Introduction to Graph Theory, Upper Saddle River, Prentice Hall, 2001.

Seyed Morteza Mirafzal
Lorestan University, Faculty of Science
Lorestan, Khorramabad, Iran
e-mail: Morteza_mirafzal@yahoo.com; mirafzal.m@lu.ac.ir
Ali Zeydi Abdian
Lorestan University, College of Science
Lorestan, Khorramabad, Iran
e-mail: azeydiabdi@gmail.com; aabdian67@gmail.com; abdian.al@fs.lu.ac.ir

