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Abstract. In the present note, firstly we established a generalization of Hermite
Hadamard’s inequality for s-convex functions via conformable fractional integrals
which generalized Riemann-Liouville fractional integrals. Secondly, we proved
new identity involving conformable fractional integrals via beta and incompleted
beta functions.Then, by using this identity, some Hermite Hadamard type integral
inequalities for s-convex functions in the second sense are obtained.
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1. Introduction

One of the most famous inequality for convex functions is so called Hermite-
Hadamard inequality as follows: Let f : I ⊆ R→ R be a convex function and a, b ∈ I
with a < b, then

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
(1.1)

This famous inequality discovered by C. Hermite and J. Hadamard is important in
the literature. For more studies via Hermite Hadamard type inequalities see [13] in
the references.

Definition 1.1. Let f : I ⊆ R→ R be a function and a, b ∈ I with a < b, the function
f : I ⊆ R→ R is said to be convex if the inequality

f (tx+ (1− t) y) ≤ tf (x) + (1− t) f (y)

holds for all x, y ∈ I and t ∈ [0, 1].
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Definition 1.2. [7, 15] A function f : R+ → R is said to be s-convex in the second
sense if

f(αx+ βy) ≤ αsf(x) + βsf(y)

for all x, y ∈ R+ and all α, β ≥ 0 with α+ β = 1.

We denote this by K2
s . It is obvious that the s-convexity means just the convexity

when s = 1.

In [12] Dragomir and Fitzpatrick proved a variant of Hermite-Hadamard inequal-
ity which holds for s-convex functions in the second sense.

Theorem 1.3. Suppose that f : [0,∞)→ [0,∞) is an s-convex function in the second
sense, where s ∈ (0, 1] and let a, b ∈ [0,∞), a < b. If f ∈ L1[a, b], then the following
inequality hold:

2s−1f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f (x) dx ≤ f (a) + f (b)

s+ 1
(1.2)

The constant k = 1
s+1 is the best possible in the second inequality in (1.2). For

more study related to s-convexity in the second sense, see, e.g, (for example) ([3], [5],
[11]).

Theory of convex functions has great importance in various fields of pure and
applied sciences. It is known that theory of convex functions is closely related to
theory of inequalities. Many interesting convex functions inequalities established via
Riemann-Liouville fractional integrals. Now, lets us give some necessary definition
and mathematical preliminaries of fractional calculus theory as follows, which are
used lots of study. For more details, one can consult ([8]-[10], [14], [16]-[23], [28]).

Definition 1.4. Let f ∈ L1[a, b]. The Riemann-Liouville integrals Jαa+f and Jαb−f of
order α > 0 with a ≥ 0 are defined by

Jαa+f(x) =
1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt, x > a

and

Jαb−f(x) =
1

Γ(α)

∫ b

x

(t− x)α−1f(t)dt, x < b

respectively. Here Γ(t) is the Gamma function and its definition is

Γ(t) =

∫ ∞
0

e−xxt−1dx.

It is to be noted that J0
a+f(x) = J0

b−f(x) = f(x) and in the case of α = 1, the
fractional integral reduces to the classical integral.

The beta function defined as follows:

B (a, b) =
Γ(a)Γ(b)

Γ(a+ b)
=

∫ 1

0

ta−1 (1− t)b−1 dt, a, b > 0,
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where Γ (α) is Gamma function. The incomplete beta function is defined by

Bx(a, b) =

∫ x

0

ta−1(1− t)b−1dt, 0 ≤ x ≤ 1.

For x = 1, the incomplete beta function coincides with the complete beta function.
For easy understanding the computation in our theorems, let us give some properties
of beta and incompleted beta function:

B(a, b) = Bt(a, b) +B1−t(b, a), i.e B(a, b) = B 1
2
(a, b) +B 1

2
(b, a)

Bx(a+ 1, b) =
aBx(a, b)− (x)a(1− x)b

a+ b

Bx(a, b+ 1) =
bBx(a, b) + (x)a(1− x)b

a+ b
B(a, b+ 1) +B(a+ 1, b) = B(a, b)

In [21] Sarıkaya et al. gave a remarkable integral inequality of Hermite-Hadamard
type involving Riemann-Liouville fractional integrals as follows:

Theorem 1.5. Let f : [a, b]→ R be a positive function with 0 ≤ a < b and f ∈ L1[a, b].
If f is convex function on [a, b], then the following inequality for fractional integrals
hold:

f

(
a+ b

2

)
≤ Γ(α+ 1)

2(b− a)α
[(Jαa+f)(b) + (Jαb−f)(a)] ≤ f (a) + f (b)

2
(1.3)

It is obviously seen that, if we take α = 1 in Theorem 1.5, then the inequality
(1.3) reduces to well known Hermite-Hadamard inequality as (1.1).

Hermite-Hadamard type inequalities for s-convex functions via Riemann-
Liouville fractional integral is given in [22] as follows:

Theorem 1.6. Let f : [a, b]→ R be a positive function with 0 ≤ a < b and f ∈ L1[a, b].
If f is s-convex mapping in the second sense on [a, b], then the following inequality
for fractional integral with α > 0 and s ∈ (0, 1] hold:

2s−1f

(
a+ b

2

)
≤ Γ(α+ 1)

2(b− a)α
[(Jαa+f)(b) + (Jαb−f)(a)] (1.4)

≤ α
[ 1

α+ s
+B(α, s+ 1)]

f (a) + f (b)

2

where B(a,b) is Euler beta function.

Sarikaya et al. established an identity which we will generalize for conformable
fractional integral in section 3 for differentiable convex mappings via Riemann-
Liouville fractional integral. Then they gave some results by using this identity.
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Lemma 1.7. [21] Let f : [a, b]→ R be a differentiable mapping on (a, b) with a < b. If
f ′ ∈ L[a, b], then the following equality for fractional integrals holds:

f(a) + f(b)

2
− Γ(α+ 1)

2(b− a)α
[Jαa+f(b) + Jαb−f(a)] (1.5)

=
b− a

2

∫ 1

0

[
(1− t)α − tα

]
f ′(ta+ (1− t)b)dt.

Theorem 1.8. [21] Let f : [a, b]→ R be a differentiable mapping on (a, b) with a < b.
If f ′ ∈ L[a, b], then the following inequality for fractional integrals holds:∣∣∣∣f(a) + f(b)

2
− Γ(α+ 1)

2(b− a)α
[Jαa+f(b) + Iαb−f(a)]

∣∣∣∣ (1.6)

≤ b− a
2(α+ 1)

(
1− 1

2α
)|f ′(a)|+ |f ′(b)|

Recently, some authors started to study on conformable fractional integral. In
[18], Khalil et al. defined the fractional integral of order 0 < α ≤ 1 only. In [1],
Abdeljawad gave the definition of left and right conformable fractional integrals of
any order α > 0.

Definition 1.9. Let α ∈ (n, n+1] and set β = α−n then the left conformable fractional
integral starting at a if order α is defined by

(Iaαf)(t) =
1

n!

∫ t

a

(t− x)n(x− a)β−1f(x)dx

Analogously, the right conformable fractional integral is defined by

(bIαf)(t) =
1

n!

∫ b

t

(x− t)n(b− x)β−1f(x)dx.

Notice that if α = n + 1 then β = α − n = n + 1 − n = 1 where n = 0, 1, 2, 3...
and hence (Iaαf)(t) = (Jan+1f)(t).

In [24] Set et.al. gave Hermite-Hadamard inequality for conformable fractional
integral as follows:

Theorem 1.10. Let f : [a, b]→ R be a function with 0 ≤ a < b and f ∈ L1[a, b]. If f is
a convex function on [a, b], then the following inequalities for conformable fractional
integrals hold:

f

(
a+ b

2

)
≤ Γ(α+ 1)

2(b− a)αΓ(α− n)
[(Iaαf)(b) + (bIαf)(a)] ≤ f (a) + f (b)

2
(1.7)

with α ∈ (n, n+ 1], where Γ is Euler Gamma function.

For some studies on conformable fractional integral, see ([1], [2], [4], [6]). In
papers ([25]-[27]), Set et.al obtained some Hermite-Hadamard, Ostrowski, Chebyshev,
Fejer type inequalities by using conformable fractional integrals for various classes of
functions. The aim of this study is to establish new Hermite-Hadamard inequalities
related to other fractional integral inequalities for conformable fractional integral.
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2. Hermite-Hadamard’s inequalities for conformable fractional
integrals

In this section, using the given properties of conformable fractional integrals,
we will establish a generalization of Hermite-Hadamard type inequalities for s-convex
functions. We will also noticed the relation with fractional and classical Hermite-
Hadamard type integral inequalities.

Theorem 2.1. Let f : [a, b] → R be a function with 0 ≤ a < b, s ∈ (0, 1] and
f ∈ L1[a, b]. If f is an s-convex function on [a, b], then the following inequalities for
conformable fractional integrals hold:

Γ(α− n)

Γ(α+ 1)
f

(
a+ b

2

)
(2.1)

≤ 1

(b− a)α2s
[(Iaαf)(b) + (bIαf)(a)]

≤
[
B(n+ s+ 1, α− n) +B(n+ 1, α− n+ s)

n!

]
f (a) + f (b)

2s

with α ∈ (n, n+ 1], n = 0, 1, 2, ... where Γ is Euler Gamma function and B(a, b) is a
beta function.

Proof. Let x, y ∈ [a, b]. If f is a s-convex function on [a,b],

f

(
x+ y

2

)
≤
(

1

2

)s
f(x) +

(
1

2

)s
f(y)

if we change the variables with x = ta+ (1− t)b, y = (1− t)a+ tb,

2sf

(
a+ b

2

)
≤ f(ta+ (1− t)b) + f((1− t)a+ tb). (2.2)

Multiplying both sides of above inequality with 1
n! t

n(1− t)α−n−1 and integrating the
resulting inequality with respect to t over [0, 1], we get

2s

n!
f

(
a+ b

2

)∫ 1

0

tn(1− t)α−n−1dt

≤ 1

n!

∫ 1

0

tn(1− t)α−n−1f(ta+ (1− t)b)dt

+
1

n!

∫ 1

0

tn(1− t)α−n−1f((1− t)a+ tb)dt

=
1

n!

∫ b

a

(
b− x
b− a

)n(
x− a
b− a

)α−n−1
f(x)

dx

b− a

+
1

n!

∫ b

a

(
y − a
b− a

)n(
b− y
b− a

)α−n−1
f(y)

dy

b− a

=
1

(b− a)α
[Iaαf(b) +b Iαf(a)].
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Note that

f

(
a+ b

2

)
≤ Γ(α+ 1)

2s(b− a)αΓ(α− n)
[Iaαf(b) +b Iαf(a)] (2.3)

where ∫ 1

0

tn(1− t)α−n−1dt = B(n+ 1, α− n) =
Γ(n+ 1)Γ(α− n)

Γ(α+ 1)

which means that the left side of (2.1) is proved. Since f is s-convex in the second
sense, to prove the right side of (2.1) we have the following inequalities:

f(ta+ (1− t)b) ≤ tsf(a) + (1− t)sf(b)

f((1− t)a+ tb) ≤ (1− t)sf(a) + tsf(b).

Adding these two inequalities, we get

f(ta+ (1− t)b) + f((1− t)a+ tb) ≤ [ts + (1− t)s][f(a) + f(b)].

Multiplying both sides of the resulting inequality with 1
n! t

n(1− t)α−n−1 and integrat-
ing with respect to t over [0, 1], we have

1

(b− a)α
[Iaαf(b) +b Iαf(a)] (2.4)

≤ 1

n!

∫ 1

0

tn(1− t)α−n−1[ts + (1− t)s][f(a) + f(b)]dt

=
1

n!

[
B(n+ s+ 1, α− n) +B(n+ 1, α− n+ s)

]
[f(a) + f(b)].

Combining (2.3) and (2.4) completes the proof. �

Remark 2.2. If we choose s = 1 in Theorem (2.1), by using relation between Γ and
B functions, the inequality (2.1) reduced to inequality (1.7).

Remark 2.3. If we choose α = n+ 1 in Theorem 2.1, the inequality (2.2) reduced to
inequality (1.4). And also if we choose α, s = 1 in the inequality (2.2), then we get
well-known Hermite-Hadamard inequality as (1.2).

3. Some new Hermite Hadamard type inequalities via conformable
integration

In order to achieve our aim, we will give an important identity for differentiable
functions involving conformable fractional integrals as follows:

Lemma 3.1. Let f : [a, b] → R be a differentiable mapping on (a, b) with a < b. If
f ′ ∈ L[a, b], then the following inequality for conformable fractional integrals holds:

B(n+ 1, α− n)

(
f(a) + f(b)

2

)
− n!

2(b− a)α
[Iaαf(b) +b Iαf(a)] (3.1)

=
(b− a)

2

{∫ 1

0

[
B1−t(n+ 1, α− n)−Bt(n+ 1, α− n)

]
f ′(ta+ (1− t)b)dt

}
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where B(a, b), Bt(a, b) is Euler beta and incompleted beta functions respectively and
α ∈ (n, n+ 1], n = 0, 1, 2, . . ..

Proof. Let

I =

∫ 1

0

[
B1−t(n+ 1, α− n)−Bt(n+ 1, α− n)

]
f ′(ta+ (1− t)b)dt.

Then, integrating by parts and changing variables with x = ta+(1− t)b, we can write

I1 =

∫ 1

0

B1−t(n+ 1, α− n)f ′(ta+ (1− t)b)dt (3.2)

=

∫ 1

0

(∫ 1−t

0

xn(1− x)α−n−1dx

)
f ′(ta+ (1− t)b)dt

=

(∫ 1−t

0

xn(1− x)α−n−1dx

)
f(ta+ (1− t)b)dt

a− b

∣∣∣∣1
0

+

∫ 1

0

(1− t)ntα−n−1f(ta+ (1− t)b) dt

a− b

=

(∫ 1

0

xn(1− x)α−n−1dx

)
f(b)

b− a

+
1

b− a

∫ b

a

(
x− a
b− a

)n(
b− x
b− a

)α−n−1
f(x)

dx

a− b

= B(n+ 1, α− n)
f(b)

b− a
− n!

(b− a)α+1
(bIαf)(a)

I2 =

∫ 1

0

Bt(n+ 1, α− n)f ′(ta+ (1− t)b)dt (3.3)

= Bt(n+ 1, α− n)
f(ta+ (1− t)b)

a− b

∣∣∣∣1
0

−
∫ 1

0

tn(1− t)α−n−1f(ta+ (1− t)b) dt

a− b

= −B(n+ 1, α− n)
f(a)

b− a
+

1

b− a

∫ b

a

(
b− x
b− a

)n(
x− a
b− a

)α−n−1
f(x)

dx

b− a

= −B(n+ 1, α− n)
f(a)

b− a
+

n!

(b− a)α+1
(Iaαf)(b).

It means that I = I1 − I2. Thus, by multiplying both sides by b−a
2 i.e

b− a
2

I =
b− a

2
I1 −

b− a
2

I2

we have desired result. �

Remark 3.2. If we choose α = n + 1 in Lemma 3.1, the equality (3.1) becomes the
equality (1.5).
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Now, using the obtained identity, we will establish some inequalities connected
with the left part of the inequality (2.1)

Theorem 3.3. Let f : [a, b] → R be a differentiable mapping on (a, b) with a < b. If
f ′ ∈ L[a, b] and |f ′| is s-convex in the second sence with s ∈ (0, 1], then the following
inequality for conformable fractional integrals holds:∣∣∣∣B(n+ 1, α− n)

(
f(a) + f(b)

2

)
− n!

2(b− a)α
[Iaαf(b) +b Iαf(a)]

∣∣∣∣ (3.4)

≤ b− a
2

[
|f ′(a)|+ |f ′(b)|

s+ 1

]
{
B 1

2
(α− n+ s+ 1, n+ 1)−B 1

2
(n+ 1, α− n+ s+ 1)

+B 1
2
(n+ s+ 2, α− n)−B 1

2
(α− n, n+ s+ 2) +B(n+ 1, α− n)

}
where B(a, b), Bt(a, b) is Euler beta and incompleted beta functions respectively and
α ∈ (n, n+ 1], n = 0, 1, 2, . . ..

Proof. Taking modulus on Lemma 3.1 and using s-convexity of |f ′| we get:

∣∣B(n+ 1, α− n)

(
f(a) + f(b)

2

)
− n!

2(b− a)α
[Iaαf(b) +b Iαf(a)]

∣∣ (3.5)

=
b− a

2

∣∣∣∣ ∫ 1

0

[
B1−t(n+ 1, α− n)−Bt(n+ 1, α− n)

]
f ′(ta+ (1− t)b)dt

∣∣∣∣
≤ b− a

2

∫ 1

0

∣∣[B1−t(n+ 1, α− n)−Bt(n+ 1, α− n)
]∣∣∣∣f ′(ta+ (1− t)b)

∣∣dt
=

b− a
2

∫ 1
2

0

[
B1−t(n+ 1, α− n)−Bt(n+ 1, α− n)

]∣∣f ′(ta+ (1− t)b)
∣∣dt

+

∫ 1

1
2

[
Bt(n+ 1, α− n)−B1−t(n+ 1, α− n)

]∣∣f ′(ta+ (1− t)b)
∣∣dt

≤ b− a
2

{∫ 1
2

0

B1−t(n+ 1, α− n)
(
ts|f ′(a)|+ (1− t)s|f ′(b)|

)
dt

−
∫ 1

2

0

Bt(n+ 1, α− n)
(
ts|f ′(a)|+ (1− t)s|f ′(b)|

)
dt

+

∫ 1

1
2

Bt(n+ 1, α− n)
(
ts|f ′(a)|+ (1− t)s|f ′(b)|

)
dt

−
∫ 1

1
2

B1−t(n+ 1, α− n)
(
ts|f ′(a)|+ (1− t)s|f ′(b)|

)
dt

}
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=
b− a

2

{
|f ′(a)|

∫ 1
2

0

[
B1−t(n+ 1, α− n)−Bt(n+ 1, α− n)

]
tsdt

+|f ′(b)|
∫ 1

2

0

[
B1−t(n+ 1, α− n)−Bt(n+ 1, α− n)

]
(1− t)sdt

+|f ′(a)|
∫ 1

1
2

[
Bt(n+ 1, α− n)−B1−t(n+ 1, α− n)

]
ts
)
dt

+|f ′(b)|
∫ 1

1
2

[
Bt(n+ 1, α− n)−B1−t(n+ 1, α− n)

]
(1− t)sdt.

On the other hand, using the properties of incompleted beta function we have:

B1−t(n+ 1, α− n)−Bt(n+ 1, α− n) (3.6)

=

∫ 1−t

0

xn(1− x)α−n−1dx−
∫ t

0

xn(1− x)α−n−1dx

=

∫ 1−t

t

xn(1− x)α−n−1dx, where 0 ≤ t ≤ 1

2

and

Bt(n+ 1, α− n)−B1−t(n+ 1, α− n) (3.7)

=

∫ t

0

xn(1− x)α−n−1dx−
∫ 1−t

0

xn(1− x)α−n−1dx

=

∫ t

1−t
xn(1− x)α−n−1dx, where

1

2
≤ t ≤ 1

Using (3.6), (3.7) and Newton Leibnitz formula and integrating by parts we can write
the following computation:

Φ1 =

∫ 1
2

0

(∫ 1−t

t

xn(1− x)α−n−1dx

)
tsdt (3.8)

=

[(∫ 1−t

t

xn(1− x)α−n−1dx

)
ts+1

s+ 1

]∣∣∣∣ 12
0

−
∫ 1

2

0

(
− (1− t)ntα−n−1 − tn(1− t)α−n−1

) ts+1

s+ 1
dt

=
1

s+ 1

[ ∫ 1
2

0

tα−n+s(1− t)ndt+

∫ 1
2

0

tn+s+1(1− t)α−n−1dt
]

=
1

s+ 1

[
B 1

2
(α− n+ s+ 1, n+ 1) +B 1

2
(n+ s+ 2, α− n)

]
,
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Φ2 =

∫ 1
2

0

(∫ 1−t

t

xn(1− x)α−n−1dx

)
(1− t)sdt (3.9)

=

[(∫ 1−t

t

xn(1− x)α−n−1dx

)
−(1− t)s+1

s+ 1

]∣∣∣∣ 12
0

−
∫ 1

2

0

(
− (1− t)ntα−n−1 − tn(1− t)α−n−1

)−(1− t)s+1

s+ 1
dt

=
1

s+ 1

∫ 1

0

xn(1− x)α−n−1dx

− 1

s+ 1

[ ∫ 1
2

0

tα−n−1(1− t)n+s+1dt+

∫ 1
2

0

tn(1− t)α−n+sdt
]

=
1

s+ 1

[
B(n+ 1, α− n)−B 1

2
(α− n, n+ s+ 2)

−B 1
2
(n+ 1, α− n+ s+ 1)

]
,

Φ3 =

∫ 1

1
2

(∫ t

1−t
xn(1− x)α−n−1dx

)
tsdt (3.10)

=

[(∫ t

1−t
xn(1− x)α−n−1dx

)
ts+1

s+ 1

]∣∣∣∣1
1
2

− 1

s+ 1

∫ 1

1
2

(
tn(1− t)α−n−1 + tα−n−1(1− t)n

)
ts+1dt

=
1

s+ 1

∫ 1

0

xn(1− x)α−n−1dx

− 1

s+ 1

[ ∫ 1

1
2

tn+s+1(1− t)α−n−1dt+

∫ 1

1
2

tα−n+s(1− t)ndt
]

=
1

s+ 1

[
B(n+ 1, α− n)−B 1

2
(α− n, n+ s+ 2)

−B 1
2
(n+ 1, α− n+ s+ 1)

]
and

Φ4 =

∫ 1

1
2

(∫ t

1−t
xn(1− x)α−n−1dx

)
(1− t)sdt (3.11)

=

[(∫ t

1−t
xn(1− x)α−n−1dx

)
−(1− t)s+1

s+ 1

]∣∣∣∣1
1
2

+

∫ 1

1
2

(
tn(1− t)α−n−1 + tα−n−1(1− t)n

) (1− t)s+1

s+ 1
dt
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=
[ ∫ 1

1
2

tn(1− t)α−n+sdt+

∫ 1

1
2

tα−n−1(1− t)n+s+1dt
]

=
1

s+ 1

[
B 1

2
(α− n+ s+ 1, n+ 1) +B 1

2
(n+ s+ 2, α− n)

]
,

Using the fact that B(a, b) = B 1
2
(a, b) + B 1

2
(b, a) and combining (3.8), (3.9), (3.10),

(3.11) with (3.5) completes the proof. �

Corollary 3.4. Taking s = 1 in Theorem 3.3 i.e |f ′| is convex, we get the following
result:

∣∣∣∣B(n+ 1, α− n)

(
f(a) + f(b)

2

)
− n!

2(b− a)α
[Iaαf(b) +b Iαf(a)]

∣∣∣∣
≤ b− a

2

(
|f ′(a)|+ |f ′(b)|

2

)
(3.12)

×
{
B 1

2
(α− n+ 2, n+ 1)−B 1

2
(n+ 1, α− n+ 2)

+B 1
2
(n+ 3, α− n)−B 1

2
(α− n, n+ 3) +B(n+ 1, α− n)

}

Remark 3.5. Taking α = n+1 in Corollary 3.4, the inequality (3.12) reduces to (1.6).

Theorem 3.6. Let f : [a, b]→ R be a differentiable mapping on (a, b), a < b and p > 1
with 1

p + 1
q = 1. If f ′ ∈ L[a, b] and |f ′|q is s-convex in the second sense, then the

following inequality for conformable fractional integrals holds:

∣∣∣∣B(n+ 1, α− n)

(
f(a) + f(b)

2

)
− n!

2(b− a)α
[Iaαf(b) +b Iαf(a)]

∣∣∣∣
≤ b− a

2
Ψ

1
p

[
|f ′(a)|q + |f ′(b)|q

s+ 1

] 1
q

. (3.13)

where B(a, b) is Euler beta function, α ∈ (n, n+ 1], n = 0, 1, 2, . . . and

Ψ = 2

∫ 1
2

0

(∫ 1−t

t

xn(1− x)α−n−1dx

)p
.
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Proof. Taking modulus and using Hölder inequality with a function of |f ′|q convexity
we get inequalities as follow:∣∣B(n+ 1, α− n)

(
f(a) + f(b)

2

)
− n!

2(b− a)α
[Iaαf(b) +b Iαf(a)]

∣∣ (3.14)

=
b− a

2

∣∣∣∣ ∫ 1

0

[
B1−t(n+ 1, α− n)−Bt(n+ 1, α− n)

]
f ′(ta+ (1− t)b)dt

∣∣∣∣
≤ b− a

2

∫ 1

0

∣∣B1−t(n+ 1, α− n)−Bt(n+ 1, α− n)
∣∣∣∣f ′(ta+ (1− t)b)

∣∣dt
≤ b− a

2

[ ∫ 1

0

∣∣B1−t(n+ 1, α− n)−Bt(n+ 1, α− n)
∣∣pdt] 1

p

×
[ ∫ 1

0

∣∣f ′(ta+ (1− t)b)
∣∣qdt] 1

q

.

It follows that:

Ψ =

∫ 1

0

∣∣B1−t(n+ 1, α− n)−Bt(n+ 1, α− n)
∣∣pdt (3.15)

=

∫ 1
2

0

(
B1−t(n+ 1, α− n)−Bt(n+ 1, α− n)

)p
dt

+

∫ 1

1
2

(
Bt(n+ 1, α− n)−B1−t(n+ 1, α− n)

)p
dt

=

∫ 1
2

0

(∫ 1−t

t

xn(1− x)α−n−1dx

)p
dt

+

∫ 1

1
2

(∫ t

1−t
xn(1− x)α−n−1dx

)p
dt

= 2

∫ 1
2

0

(∫ 1−t

t

xn(1− x)α−n−1dx

)p
dt

and ∫ 1

0

∣∣f ′(ta+ (1− t)b)
∣∣qdt ≤ |f ′(a)|q

∫ 1

0

tsdt+ |f ′(b)|q
∫ 1

0

(1− t)sdt

=
1

s+ 1

(
|f ′(a)|q + |f ′(b)|q

)
(3.16)

which completes the proof. �

Corollary 3.7. If we take s = 1 in Theorem 3.6, the inequality (3.13) reduces to
following inequality:∣∣∣∣B(n+ 1, α− n)

(
f(a) + f(b)

2

)
− n!

2(b− a)α
[Iaαf(b) +b Iαf(a)]

∣∣∣∣
≤ b− a

2
Ψ

1
p
[ |f ′(a)|q + |f ′(b)|q

2

] 1
q (3.17)
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where B(a, b) is Euler beta function and

Ψ = 2

∫ 1
2

0

(∫ 1−t

t

xn(1− x)α−n−1dx

)p
.

Corollary 3.8. If we take α = n + 1 in corollary 3.7, the inequality (3.17) reduces to
following inequality:∣∣∣∣B(α, 1)

(
f(a) + f(b)

2

)
− Γ(α)

2(b− a)α
[Jαa+f(b) + Jαb−f(a)]

∣∣∣∣ (3.18)

≤ b− a
2

Ψ
1
p

1

[
|f ′(a)|q + |f ′(b)|q

2

] 1
q

,

where Ψ1 = 2

∫ 1
2

0

(
(1− t)α − tα

α

)p
dt.

Remark 3.9. If we take α = 1 in Corollary 3.8, the inequality (3.18) reduces to
following inequality: ∣∣∣∣f(a) + f(b)

2
− 1

(b− a)

∫ b

a

f(x)dx

∣∣∣∣ (3.19)

≤ b− a
2

(
1

p+ 1

) 1
p
[
|f ′(a)|q + |f ′(b)|q

2

] 1
q

,

which is the same as Theorem 2.3 in [12].

Remark 3.10. If we take α ∈ (0, 1] in Corollary 3.8, then the inequality (3.18) reduces
to special case of Corollary 1 for s = 1 in [19], which is the same as∣∣∣∣ (f(a) + f(b)

2

)
− Γ(α+ 1)

2(b− a)α
[Jαa+f(b) + Jαb−f(a)]

∣∣∣∣ (3.20)

≤ b− a
2

(
1

αp+ 1

) 1
p
[
|f ′(a)|q + |f ′(b)|q

2

] 1
q

.
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[27] Set, E., Mumcu, İ., Hermite-Hadamard-Fejer type inequalies for conformable fractional
integrals , Submitted.

[28] Zhu, C., Feckan, M., Wang, J., Fractional integral inequalities for differentiable convex
mappings and applications to special means and a midpoint formula, J. Math. Stat.
Inform., 8(2)(2012), 21-28.

Erhan Set
Department of Mathematics, Faculty of Arts and Sciences, Ordu University
52200 Ordu, Turkey
e-mail: erhanset@yahoo.com

Abdurrahman Gözpınar
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