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Abstract. We present fixed point results for admissibly compact maps on cones
in Fréchet spaces. We first extend the Krasnosel’skĭı fixed point theorem with
order type cone-compression and cone-expansion conditions. Then, we extend
the monotone iterative method to this context. Finally, we present fixed point
results under a combination of the assumptions of the previous results. More
precisely, we combine a cone-compressing or cone-extending condition only on
one side of the boundary of an annulus with an assumption on the existence of
an upper fixed point. In addition, we show that the usual monotonicity condition
can be weaken.
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1. Introduction

The classical Krasnosel’skĭı fixed point theorem is very well known and use-
ful, see [13, 14]. Assuming cone-compression and cone-expansion conditions on the
boundary of two nested bounded, neighborhoods of the origin relative to a cone, it
establishes the existence of nontrivial fixed points of maps on cones in Banach spaces.
Two types of cone-compression and cone-expansion conditions were considered: one
involving the norm and the other involving the order on the space induced by the cone.
This result was extended to Fréchet spaces in [1, 2, 12] using the fact that a Fréchet
space is the projective limit of a sequence of Banach spaces. All those generalizations
rely on at least one cone-compression condition involving the norm of the values of
maps on the relative boundary of suitable bounded, open sets in those Banach spaces.

On the other hand, the monotone iterative method is often applied to deduce
the existence of fixed points of nondecreasing maps f defined on closed intervals [α, β]
in ordered Banach spaces, where α is a lower fixed point of f (i.e. α ≤ f(α)) and β is
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an upper fixed point of f (i.e. f(β) ≤ β). The fixed points are obtained as the limits
of iterative sequences. This method was introduced by Amann [3] for single-valued
maps and extended to multivalued maps in [7].

In a series of papers, Cabada, Cid, Infante and their collaborators (see [4, 5, 6, 8,
10]) obtained many fixed point theorems on cones in Banach spaces by imposing cone-
compression or cone-extension conditions on the boundary relative to a cone of only
one bounded, neighborhood of the origin instead of two. The usual second condition
was replaced by assuming that the map f is nondecreasing (or nonincreasing) on a
suitable shell and by assuming the existence of an upper fixed point (or a lower fixed
point) instead of assuming the existence of both as in the monotone iterative method.

In this paper, we present fixed point results for maps on cones in Fréchet spaces.
In section 3, we extend the Krasnosel’skĭı fixed point theorem with order type cone-
compression and cone-expansion conditions instead of norm-type conditions. Our re-
sults will rely on the fixed point index theory for multivalued mapping in cones ob-
tained by Fitzpatrick and Petryshyn [9].

In section 4, we extend the monotone iterative method to Fréchet spaces. In
addition, we show that the monotonicity condition can be dropped. In that case, the
existence of a fixed point is still insured but some precision on its localization is lost.

Finally, in the last section, existence results are presented relying on one cone-
compression or cone-expansion condition combined with one condition of the type
upper fixed point or lower fixed point. It is not assumed that the cone is normal
or solid. Also, a condition weaker than monotonicity is imposed. Therefore, even in
the particular case where the Fréchet space is a Banach space, our results generalize
theorems due to Cabada, Cid and Infante [6].

Using the fact that a Fréchet space is the projective limit of a sequence of
Banach spaces, our results are presented for admissibly compact maps. This notion
was introduced in [11]. It is worthwhile to mention that our results could have been
presented for admissibly condensing maps or admissible maps satisfying a Leggett-
William type condition as in [1]. We first present some preliminaries on the fixed point
index for multivalued maps on closed, convex sets, then on Fréchet spaces, and finally
on admissibly compact maps.

2. Preliminaries

2.1. Fixed point index

In all this text, E denotes a Fréchet space endowed with a family of semi-norms
{‖ · ‖n}n∈N. Let X,Y be subsets of E and F : X → Y a multivalued map with non-
empty closed values. The map F is compact if F (X) is relatively compact in Y ; it is
completely continuous if F (B) is relatively compact in Y for every B ⊂ X bounded.
It is upper semi-continuous (u.s.c.) if {x ∈ X : F (x)∩A 6= ∅} is closed in Y for every
A closed in X.

Let C be a closed, convex set in E. For U a nonempty, open set in E, we denote
UC = U ∩ C, UC = U ∩ C and ∂CU = UC\UC the boundary of U in C.
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In [9], Fitzpatrick and Petryshyn defined a fixed point index for upper semi-
continuous, condensing, multivalued maps F : UC → C with nonempty, convex,
compact values such that F has no fixed point on ∂CU . This fixed point index is
denoted iC(F,U). Here is their Theorem 2.1 in the particular case of compact maps.

Theorem 2.1 ([9]). Let F : UC → C be a compact, u.s.c., multivalued map with
nonempty, convex, compact values and such that x 6∈ F (x) for all x ∈ ∂CU . Then,
the following statements hold:

(1) If iC(F,U) 6= 0, then F has a fixed point.
(2) If x0 ∈ UC , then iC({x0}, U) = 1, where {x0} denotes the constant map.
(3) If U = U1 ∪ U2, where U1 and U2 are disjoint open sets and are such that

x 6∈ F (x) if x ∈ ∂CU1 ∪ ∂CU2, then

iC(F,U) = iC(F,U1) + iC(F,U2).

(4) If H : [0, 1] × UC → C is a compact, u.s.c., multivalued map with nonempty,
convex, compact values and such that x 6∈ H(t, x) for all t ∈ [0, 1] and x ∈ ∂CU ,
then

iC(H(1, ·), U) = iC(H(0, ·), U).

By K, we denote a cone in E; that is a closed set such that, for every x, y ∈ K
and every λ, δ ≥ 0, λx+ δy ∈ K and K ∩ (−K) = {0}. A cone K is called normal if,
for every n ∈ N, there exists cn ≥ 1 such that

‖x‖n ≤ cn‖y‖n for every x, y ∈ K such that y − x ∈ K.

Fitzpatrick and Petryshyn [9] obtained the following Krasnosel’skĭı type fixed
point result which relied on the previous theorem in the particular case where the
closed, convex set is a cone. Using the fact that a Fréchet space is metrizable, they
considered d a metric on E generating the same topology. For r > 0, let

Bd(x0, r) = {x ∈ E : d(x, x0) < r} and Bd(x0, r) = {x ∈ E : d(x, x0) ≤ r}.

Again, their theorem is stated for compact maps instead of condensing maps.

Theorem 2.2 ([9]). Let r1, r2 ∈ (0,∞), r = min{r1, r2} and R = max{r1, r2}. Let K

be a cone in E and F : Bd(0, R) ∩K → K a compact, u.s.c., multivalued map with
nonempty, convex, compact values satisfying the following conditions:

(i)
(
F (x)− x

)
⊂ K if x ∈ ∂KBd(0, r1);

(ii)
(
x− F (x)

)
⊂ K if x ∈ ∂KBd(0, r2);

(iii) there exists a continuous semi-norm p, non-vanishing on K, such that

(I − F )(Bd(0, r1) ∩K) is p-bounded.

Then, F has a fixed point x0 ∈ Bd(0, R)\Bd(0, r).

It could be difficult to apply this result to deduce the existence of solutions
to differential or integral equations on unbounded intervals. Indeed, in general, the
operator associated to the problem will not be compact on open sets. The problem is
that open sets in Fréchet spaces are big.
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Let us give an example. Let C(R) be the space of continuous functions on the
real line and, for n ∈ N, the semi-norm

‖x‖n = max
t∈[−n,n]

|x(t)|.

Endowed with the family of semi-norms {‖ · ‖n}n∈N, C(R) is a Fréchet space. Let
U ⊂ C(R) be a neighborhood of 0. Then, there exist n0 ∈ N and r > 0 such that

{x ∈ C(R) : ‖x‖n0
< r} ⊂ U.

Also, in this context, it could be more difficult to get non trivial fixed points. For
example, let

B(0, r) = {x ∈ C(R) : |x(t)| < r ∀t ∈ R}.
From the previous remark, B(0, r) has empty interior. Therefore, there exists a se-
quence {xn} in C(R) such that xn → 0 and ‖xn‖n ≥ r for every n ∈ N.

2.2. Fréchet spaces and projective limits

For sake of completeness, we recall some notations and properties of Fréchet
spaces presented in [11].

Let E be a Fréchet space with the topology generated by a family of semi-norms
{‖ · ‖n}n∈N. In what follows, we will always assume that the following condition is
satisfied:

‖x‖1 ≤ ‖x‖2 ≤ · · · for every x ∈ E. (2.1)

For x̂ ∈ E, r > 0, R = (r1, r2, . . . ) ∈ (0,∞)N and n ∈ N, we denote

Bn(x̂, r) = {x ∈ E : ‖x− x̂‖n < r},

Bn(x̂, r) = {x ∈ E : ‖x− x̂‖n ≤ r},
B(x̂, R) = {x ∈ E : ‖x− x̂‖n < rn ∀n ∈ N},

B(x̂, R) = {x ∈ E : ‖x− x̂‖n ≤ rn ∀n ∈ N}.

For X ⊂ E and n ∈ N, we denote by diamn, the n-diameter of X induced by ‖ · ‖n;
that is,

diamn(X) = sup{‖x− y‖n : x, y ∈ X} ∈ [0,∞) ∪ {∞}.
We say that X is bounded if there exists R ∈ (0,∞)N such that X ⊂ B(0, R); so,
diamn(X) <∞ for every n ∈ N.

Remark 2.3. Observe that if E is not a Banach space, then

(1) an open set in E is never bounded;
(2) a bounded set in E has empty interior.

The space E is the projective limit of a sequence of Banach spaces {En}. Indeed,
for each n ∈ N, we write

x ∼n y if and only if ‖x− y‖n = 0. (2.2)

This defines an equivalence relation on E. We denote by En the completion of the
quotient space E/∼n with respect to ‖ · ‖n (the norm on E/∼n induced by ‖ · ‖n and
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its extension to En are still denoted by ‖ · ‖n). This construction defines a continuous
map µn : E → En such that

µn(x) = [x]n, (i.e. µn(x) = µn(y) ⇐⇒ x ∼n y).

Similarly, for every m ≥ n, we can define an equivalence relation on Em, still noted
∼n, which defines a continuous map µn,m : Em → En since Em/∼n can be regarded
as a subset of En. So, E is the projective limit of {En}.

For each subset X ⊂ E and each n ∈ N, we set Xn = µn(X), and we denote Xn,
and ∂nXn, respectively the closure and the boundary of Xn with respect to ‖ · ‖n in
En.

The following lemma gives an important property of closed subsets of E.

Lemma 2.4 ([11]). Let E be a Fréchet space endowed with a family of semi-norms
satisfying (2.1), and let X be a closed subset of E. Then, for every sequence {zn}
with zn ∈ Xn, such that for every n ∈ N, {µn,m(zm)}m≥n is a Cauchy sequence in

Xn, there exists x ∈ X such that {µn,m(zm)}m≥n converges to µn(x) ∈ Xn for every
n ∈ N.

For every n ∈ N, let A(n) ⊂ En. We define

Lim
n→∞

A(n) = {x ∈ E : ∃N0 ⊂ N infinite and zn ∈ A(n) for n ∈ N0

such that ∀ n ∈ N, µn,m(zm)→ µn(x)

as m→∞ with m ∈ N0 and m ≥ n}.
(2.3)

Notice that if X is closed, then

X = Lim
n→∞

Xn.

Taking into account the fact that many applications in Fréchet spaces lead to
look for solutions in a closed set with empty interior, the notion of pseudo-interior
was introduced in [11].

Definition 2.5. Let X be a subset of E. The pseudo-interior of X is defined by

pseudo-int(X) = {x ∈ X : µn(x) ∈ Xn\∂Xn for every n ∈ N}.

The set X is pseudo-open if X = pseudo-int(X).

For n ∈ N, let Cn be a closed, convex set in En. In what follows, the topology
in Cn induced by ‖ · ‖n will play a key role. So, we introduce the following notation.
Let U be a nonempty pseudo-open set in E, we denote

UCn
= Un ∩ Cn, UCn

= Un ∩ Cn and ∂Cn
Un = UCn

\UCn
=
(
Un\Un

)
∩ Cn.

2.3. Admissibly compact maps

Here is the notion of admissibly compact maps introduced in [11].

Definition 2.6. Let X ⊂ E and C closed and convex in E. A map f : X → C is called
admissibly compact if it satisfies the following properties for every n ∈ N:
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(i) The multivalued map F̂n : Xn → Cn defined by

F̂n(µn(x)) = co
(
µn

(
f({x}n,X)

))
,

admits an upper semi-continuous compact extension Fn : Xn → Cn with convex,
compact values, where

{x}n,X = {y ∈ X : µn(y) = µn(x)} = µ−1n

(
[x]n

)
∩X.

(ii) For every ε > 0, there exists m ≥ n such that, for every x ∈ X,

diamn

(
f
(
{x}m,X

))
< ε.

A map f : X → C is called admissibly completely continuous if it is admissibly
compact on every bounded sets in X.

The following proposition will play a key role in the proof of the forthcoming
fixed point theorems.

Proposition 2.7. Let X ⊂ E be closed, C ⊂ E closed, convex, and f : X → C an
admissibly compact map. Assume that there exists N0 ⊂ N infinite such that, for every
n ∈ N0, there exists zn ∈ Xn such that zn ∈ Fn(zn). Then, f has a fixed point.

Proof. For m ∈ N0, Fm has a fixed point zm ∈ Xm. From the definition of Fn, one
sees that

µn,m(zm) ∈ Fn(µn,m(zm)) for every n ≤ m.
Thus, without lost of generality, we can assume that N0 = N.

The compactness of F1 implies that the sequence {µ1,k(zk)}k≥1 has a sub-

sequence {µ1,k(zk)}k∈N1
converging to some x1 ∈ X1. It follows from the upper

semi-continuity of F1 that x1 ∈ F1(x1).
Similarly, the sequence {µ2,k(zk)}k∈N1

has a subsequence {µ2,k(zk)}k∈N2
con-

verging to x2 ∈ X2, with x2 ∈ F2(x2). The uniqueness of the limit implies that
µ1,2(x2) = x1.

Repeating this argument gives, for every n ∈ N, the existence of xn ∈ Xn such
that xn ∈ Fn(xn) and µn,m(xm) = xn for every m ≥ n. It follows from Lemma 2.4
that there exists x ∈ X such that µn(x) ∈ Fn(µn(x)) for every n ∈ N.

We have to show that x = f(x). If this is false, there exist n ∈ N and r > 0 such
that ‖x−f(x)‖n = r. Let ε < r/2. By Definition 2.6(ii), there exists m ≥ n such that

diamn

(
f
(
{x}m,X

))
< ε. Observe that

diamn

(
f
(
{x}m,X

))
= diamn

(
co
(
f
(
{x}m,X

)))
.

On the other hand, since µm(x) ∈ Fm(µm(x)), there is w ∈ co
(
f
(
{x}m,X

))
such that

‖x− w‖m < ε. Thus,

r = ‖x− f(x)‖n ≤ ‖x− w‖n + ‖w − f(x)‖n

< ‖x− w‖m + diamn

(
co
(
f
(
{x}m,X

)))
< 2ε < r.

Thus, x = f(x). �
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3. Krasnosel’skĭı type fixed point results

In this section, we present Krasnosel’skĭı type fixed point results with order-type
cone-compressing and cone-extending conditions on the pseudo-boundary of bounded
sets in E.

Let us first recall the following two fixed point results obtained in [12] for ad-
missibly completely continuous maps in Fréchet spaces satisfying norm-type cone-
compressing and cone-extending type conditions. Notice that, for K a cone in E, one
has that Kn is a cone in En for every n ∈ N.

Theorem 3.1 ([12]). Let f : K → K be an admissibly completely continuous map.
Assume that there exist U, V two bounded, pseudo-open subsets of E satisfying the
following conditions for every n ∈ N:

(i) ‖y‖n ≥ ‖x‖n ∀y ∈ Fn(x),∀x ∈ ∂Kn
Un

(resp. ‖y‖n ≤ ‖x‖n ∀y ∈ Fn(x),∀x ∈ ∂Kn
Un);

(ii) ‖y‖n ≤ ‖x‖n ∀y ∈ Fn(x),∀x ∈ ∂Kn
Vn

(resp. ‖y‖n ≥ ‖x‖n ∀y ∈ Fn(x),∀x ∈ ∂Kn
Vn);

(iii) 0 ∈ Un\∂nUn ⊂ Un ⊂ V n\∂nVn for every n ∈ N.

Then, there exists x a fixed point of f such that

x ∈ Lim
n→∞

A(n),

where A(n) = Kn ∩ Vn\Un and Limn→∞A(n) is defined in (2.3).

In the particular case where U and V are pseudo-balls, the previous result can
be stated as follows.

Corollary 3.2 ([12]). Let f : K → K be an admissibly completely continuous map.
Assume that there exist {r1,n} and {r2,n} nondecreasing sequences in (0,∞) such
that, for every n ∈ N,

(i) ‖y‖n ≥ ‖x‖n ∀y ∈ Fn(x),∀x ∈ ∂Kn
Bn(0, r1,n);

(ii) ‖y‖n ≤ ‖x‖n ∀y ∈ Fn(x),∀x ∈ ∂Kn
Bn(0, r2,n);

(iii) r1,n 6= r2,n.

Then, there exists x a fixed point of f such that

x ∈ Lim
n→∞

Kn ∩Bn(0, Rn)\Bn(0, rn),

where Rn = max{r1,n, r2,n} and rn = min{r1,n, r2,n}.

Analogous results can be obtained if the norm-type cone-compressing and cone-
extending conditions are replaced by order-type conditions.

Theorem 3.3. Let f : K → K be an admissibly completely continuous map. Assume
that there exist U, V two bounded, pseudo-open subsets of E satisfying the following
conditions for every n ∈ N:

(i)
(
Fn(x)− x

)
∩Kn\{0} = ∅ for all x ∈ ∂Kn

Un

(resp.
(
x− Fn(x)

)
∩Kn\{0} = ∅ for all x ∈ ∂Kn

Un);
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(ii)
(
x− Fn(x)

)
∩Kn\{0} = ∅ for all x ∈ ∂Kn

Vn
(resp.

(
Fn(x)− x

)
∩Kn\{0} = ∅ for all x ∈ ∂Kn

Vn);

(iii) 0 ∈ Un\∂nUn ⊂ Un ⊂ V n\∂nVn for every n ∈ N.

Then, there exists x a fixed point of f such that

x ∈ Lim
n→∞

A(n),

where A(n) = Kn ∩ Vn\Un.

Proof. For every n ∈ N, we claim that

∃zn ∈ Fn(zn) such that zn ∈ A(n). (3.1)

If this is false, we define

Hn : [0, 1]× UKn
→ Kn by Hn(t, x) = tFn(x).

For x ∈ ∂Kn
Un and t ∈ (0, 1], x 6∈ Hn(t, x). Otherwise,(

1

t
− 1

)
x ∈

(
Fn(x)− x

)
∩Kn,

which contradicts (i). It follows from (iii) and Theorem 2.1(2), (4) that

iKn
(Fn, Un) = iKn

(0, Un) = 1. (3.2)

On the other hand, choose û ∈ Kn such that

‖û‖n > max{‖x− y‖n : x ∈ V Kn
, y ∈ Fn(x)}. (3.3)

Such û exists since Vn and Fn(V Kn
) are bounded. Let us define

Ĥn : [0, 1]× V Kn
→ Kn by Ĥn(t, x) = tû+ Fn(x).

By (ii), x /∈ Ĥn(t, x) for all t ∈ [0, 1] and x ∈ ∂Kn
Vn. It follows from (3.3) that

x 6∈ Ĥn(1, x) for every x ∈ V Kn
. Theorem 2.1(1), (4) implies that

iKn
(Fn, Vn) = iKn

(Ĥn(1, ·), Vn) = 0. (3.4)

Combining (3.2) and (3.4) and applying Theorem 2.1(3) permit us to deduce that

iKn
(Fn, Vn\Un) = iKn

(Fn, Vn)− iKn
(Fn, Un) = −1.

Therefore, (3.1) holds.
The conclusion follows from Proposition 2.7. �

Here is a corollary of the previous theorem in the particular case where U and
V are pseudo-balls.

Corollary 3.4. Let f : K → K be an admissibly completely continuous map. Assume
that there exist {r1,n} and {r2,n} nondecreasing sequences in (0,∞) such that, for
every n ∈ N,

(i) x− Fn(x) ⊂ Kn ∀y ∈ Fn(x),∀x ∈ ∂Kn
Bn(0, r1,n);

(ii) Fn(x)− x ⊂ Kn ∀y ∈ Fn(x),∀x ∈ ∂Kn
Bn(0, r2,n).
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Then, there exists x a fixed point of f such that

x ∈ Lim
n→∞

Kn ∩Bn(0, Rn)\Bn(0, rn),

where Rn = max{r1,n, r2,n} and rn = min{r1,n, r2,n}.

4. Monotone iterative method in cones

Let K be a cone in E and Kn the associated cone in En for every n ∈ N. The
cone K defines the partial orderings in E and in En given by

for x, y ∈ E, x � y if and only if y − x ∈ K,
for n ∈ N and x, y ∈ En, x �n y if and only if y − x ∈ Kn.

(4.1)

For x, y ∈ E such that x � y (resp. x, y ∈ En such that x �n y for some n ∈ N)
we denote

[x, y] = {z ∈ E : x � z � y} (resp. [x, y]n = {z ∈ En : x �n z �n y}),
[x,∞) = {z ∈ E : x � z} (resp. [x,∞)n = {z ∈ En : x �n z}).

Arguing as in [3], the well-known monotone iterative method permits to get the
following fixed point result in Fréchet space.

Theorem 4.1. Let α � β be in E and f : [α, β] → E a compact map. Assume the
following conditions are satisfied:

(i) α � f(α) and f(β) � β;
(ii) f is nondecreasing; that is, for every x, y ∈ [α, β] such that x � y, one has

f(x) � f(y).

Then, f has a fixed point and the iterative sequences {fk(α)} and {fk(β)} converge
respectively to the smallest and the greatest fixed point of f in [α, β].

For some α ∈ E (resp. β ∈ E) such that α 6� f(α) (resp. f(β) 6� β), there
could exist some n ∈ N such that µn(α) �n µn(f(α)) (resp. µn(f(β) �n µn(β)). This
remark leads us to consider admissibly compact maps. Since they involve multivalued
maps, different notions of monotonicity can be defined.

Definition 4.2. Let Y be a space endowed with a partial order ≤, X ⊂ Y and
T : X → Y a multivalued map. Let x−, x+ ∈ X and y−, y+ ∈ Y be such that
x− ≤ x+ and y− ≤ y+.

(i) The map T is right-nondecreasing on [x−, x+] and in [y−, y+] if y− ∈ T (x−)
and, for every x1, x2 ∈ X and every y1 ∈ T (x1) such that

x− ≤ x1 ≤ x2 ≤ x+ and y− ≤ y1 ≤ y+,
there exists y2 ∈ T (x2) such that y1 ≤ y2 ≤ y+.

(ii) The map T is left-nondecreasing on [x−, x+] and in [y−, y+] if y+ ∈ T (x+) and,
for every x1, x2 ∈ X and every y2 ∈ T (x2) such that

x− ≤ x1 ≤ x2 ≤ x+ and y− ≤ y2 ≤ y+,
there exists y1 ∈ T (x1) such that y− ≤ y1 ≤ y2.
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Similarly, one can define that T is right-nonincreasing (resp. left-nonincreasing) on
[x−, x+] and in [y−, y+].

The following fixed point result concerns admissibly compact maps which are
nondecreasing in the sense of the previous definition.

Theorem 4.3. Let X ⊂ E be closed and f : X → E an admissibly compact map.
Assume the following conditions are satisfied:

(i) there exists N0 ⊂ N infinite such that, for every n ∈ N0, there exist αn, βn ∈ Xn

such that αn �n βn in En and [αn, βn]n ⊂ Xn;
(ii) for every n ∈ N0, there exists ξn ∈ Fn(αn) ∩ [αn, βn]n (resp. ζn ∈ Fn(βn) ∩

[αn, βn]n);
(iii) for every n ∈ N0, Fn is right-nondecreasing on [αn, βn]n and in [ξn, βn]n (resp.

Fn is left-nondecreasing on [αn, βn]n and in [αn, ζn]n).

Then, f has a fixed point

x ∈ Lim
n→∞
n∈N0

A(n),

where

A(n) =
{
z ∈ [αn, βn]n : z = lim

k→∞
uk with uk+1 ∈ Fn(uk)

and αn �n ξn = u1 �n u2 �n · · · �n βn

}
,(

resp. A(n) =
{
z ∈ [αn, βn]n : z = lim

k→∞
vk with vk+1 ∈ Fn(vk)

and αn �n · · · �n v2 �n v1 = ζn �n βn

})
.

Proof. For n ∈ N0, Fn : [αn, βn]n → En is compact, u.s.c. with compact, convex
values. From (i)-(iii), one can construct a sequence {unk} in [αn, βn]n such that un1 =
ξn, unk+1 ∈ Fn(unk ) and unk �n unk+1 for every k ∈ N. Arguing as in the proof of
Theorem 3.4 in [7], one deduces that there exists zn = limk→∞ unk ∈ A(n) such that
zn ∈ Fn(zn). The conclusion follows from Proposition 2.7. �

Observe that assumption (iii) of the previous theorem implies that

Fn(x) ∩ [αn, βn]n 6= ∅ ∀x ∈ [αn, βn]n, ∀n ∈ N0.

In fact, this is sufficient to insure that f has a fixed point. However, we loose some
precision on its localization.

Theorem 4.4. Let X ⊂ E be closed and f : X → E an admissibly compact map.
Assume the following conditions are satisfied:

(i) there exists N0 ⊂ N infinite such that, for every n ∈ N0, there exist αn, βn ∈ Xn

such that αn �n βn in En and [αn, βn]n ⊂ Xn;
(ii) for every n ∈ N0, x ∈ [αn, βn]n, there exists u ∈ Fn(x) ∩ [αn, βn]n.

Then, f has a fixed point

x ∈ Lim
n→∞
n∈N0

[αn, βn]n.
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Proof. For n ∈ N0, let us define F̃n : [αn, βn]n → [αn, βn]n by

F̃n(x) = Fn(x) ∩ [αn, βn]n.

The assumptions imply that F̃n is a compact, u.s.c., multivalued map with nonempty,
compact, convex values and defined on a closed, convex subset of the Banach space

En. The Kakutani fixed point theorem insures the existence of zn ∈ F̃n(zn). The
conclusion follows from Proposition 2.7. �

Remark 4.5. In the results of this section, one can replace the compactness assumption
by the complete continuity if, in addition, we assume that K is normal. Indeed, in a
normal cone, an interval [α, β] (resp. [αn, βn]n) is bounded.

5. Fixed point results in cones with mixed type conditions

In this section, we present fixed point results relying on a combination of con-
ditions imposed in the theorems obtained in the two previous sections. In particular,
the existence of suitable pairs (αn, βn) is not assumed. More precisely, the assumption
on the existence of a suitable {αn} in Theorem 4.4 is removed and replaced by some
conditions on the pseudo-boundary of a suitable pseudo-open set. As before, Kn is
the cone in En associated to a cone K in E.

Theorem 5.1. Let β ∈ K and f : [0, β]→ K an admissibly compact map. Assume the
following conditions are satisfied:

(i) there exists U a bounded, pseudo-open set in E such that, for every n ∈ N,
0 ∈ UKn

\∂Kn
Un ⊂ UKn

⊂ [0, µn(β)]n;

(ii) the set

N0 = {n ∈ N : ∀x ∈ ∂Kn
Un, (Fn(x)− x) ∩Kn = ∅

or Fn(x) ∩ [x, µn(β)]n 6= ∅}

is infinite;
(iii) for every n ∈ N0 and every x̂ ∈ ∂Kn

Un such that Fn(x̂) ∩ [x̂,∞)n 6= ∅, one has

that Fn(x) ∩ [x̂, µn(β)]n 6= ∅ for every x ∈ [x̂, µn(β)]n.

Then, f has a fixed point x∗ such that

x∗ ∈ Lim
n→∞
n∈N0

A(n),

where

A(n) =
(
UKn

)
∪
( ⋃

x∈∂Kn
Un

[x, µn(β)]n

)
.

Proof. It follows from (i) that, for every n ∈ N0 and every x ∈ ∂Kn
Un, one has

x �n µn(β).
Let

N1 =
{
n ∈ N0 : ∃αn ∈ ∂Kn

Un such that Fn(αn) ∩ [αn,∞)n 6= ∅}.
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If N1 is infinite, then the assumptions of Theorem 4.4 are satisfied with αn and
βn = µn(β). Therefore, f has a fixed point

x ∈ Lim
n→∞
n∈N1

[αn, µn(β)]n ⊂ Lim
n→∞
n∈N0

A(n).

On the other hand, if N1 is empty or finite, then N2 = N0\N1 is infinite and,
for every n ∈ N2, (Fn(z)− z)∩Kn = ∅ for every z ∈ ∂Kn

Un. Arguing as in the proof
of Theorem 3.3, one deduces that the fixed point index

iKn
(Fn, Un) = 1 ∀n ∈ N2.

Hence, there exists zn ∈ UKn
such that zn ∈ Fn(zn). Proposition 2.7 permits to

conclude that f has a fixed point

x ∈ Lim
n→∞
n∈N2

UKn
⊂ Lim

n→∞
n∈N0

A(n).

�

We obtain the following corollary by adding a monotonicity condition.

Corollary 5.2. Let β ∈ K and f : [0, β] → K an admissibly compact map satisfying
conditions (i) and (ii) of Theorem 5.1. In addition, assume that

(iii’) for every n ∈ N0 and every x̂ ∈ ∂Kn
Un such that Fn(x̂)∩[x̂,∞)n 6= ∅, there exists

ŷ ∈ Fn(x̂) such that Fn is right-nondecreasing on [x̂, µn(β)]n and in [ŷ, µn(β)]n.

Then, f has a fixed point.

In [6], Cabada, Cid and Infante consided completely continuous maps de-
fined on a solid, normal cone in a Banach space and which are nondecreasing on
[0, β]\B(0, r/c). Here is a corollary of Theorem 5.1 for admissibly completely contin-
uous maps satisfying a monotonicity condition analogous to the condition imposed
in [6].

Corollary 5.3. Let K be a normal cone and f : K → K an admissibly completely
continuous map. Assume there exist β ∈ K and {rn} a nondecreasing sequence in
(0,∞) satisfying the following conditions:

(i) Bn(0, rn) ∩Kn ⊂ [0, µn(β)[n;
(ii) the set

N0 = {n ∈ N : ∀x ∈ ∂Kn
Bn(0, rn), (Fn(x)− x) ∩Kn = ∅

or Fn(x) ∩ [x, µn(β)]n 6= ∅}

is infinite;
(iii) for every n ∈ N0 and every x̂ ∈ Kn\Bn(0, rn/cn) such that Fn(x̂)∩ [0, µn(β)]n 6=

∅, one has that Fn is right-nondecreasing on [x̂, µn(β)]n and in [ŷ, µn(β)]n for
every ŷ ∈ Fn(x̂) ∩ [0, µn(β)]n.

Then, f has a fixed point.
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Proof. Since K is normal, [0, β] is bounded and hence, f : [0, β] → K is admissibly
compact. Moreover,

[x̂, µn(β)]n ⊂ Kn\Bn(0, rn/cn) ∀x̂ ∈ ∂Kn
Bn(0, rn).

So, (iii) insures that condition (iii’) of Corollary 5.2 is satisfied. �

Adding extra assumptions to Theorem 5.1 permits to obtain more precision on
the localization of the fixed point.

Theorem 5.4. Let β ∈ K, X ⊂ K closed such that [0, β] ⊂ X and let f : X → K be
an admissibly compact map satisfying conditions (i)-(iii) of Theorem 5.1. In addition,
assume that the following conditions are satisfied:

(iv) there exists V a pseudo-open set in E such that, for every n ∈ N0,

0 ∈ V Kn
\∂Kn

Vn ⊂ V Kn
⊂ UKn

\∂Kn
Un,(

resp. 0 ∈ UKn
\∂Kn

Un ⊂ UKn
⊂ V Kn

\∂Kn
Vn ⊂ V Kn

⊂ Xn

)
;

(v) for every n ∈ N0, the fixed point index

iKn
(Fn, Vn) = 0.

Then, f has a fixed point x∗ such that

x∗ ∈ Lim
n→∞
n∈N0

Â(n),

where

Â(n) =
(
UKn

\VKn

)
∪
( ⋃

x∈∂Kn
Un

[x, µn(β)]n

)
,

(
resp. Â(n) =

(
V Kn

\UKn

)
∪
( ⋃

x∈∂Kn
Un

[x, µn(β)]n

))
.

Proof. It follows from the proof of Theorem 5.1 that f has a fixed point

x ∈ Lim
n→∞
n∈N0

( ⋃
x∈∂Kn

Un

[x, µn(β)]n

)
,

or, there exists N2 ⊂ N0 infinite such that iKn
(Fn, Un) = 1 for every n ∈ N2.

Theorem 2.1(1), (3), and assumptions (iv) and (v) imply that, for every n ∈ N2,

iKn
(Fn, Un\V n) = −1 (resp. iKn

(Fn, Vn\Un) = −1).

So, there exists

zn ∈ Fn(zn) ∩ UKn
\V Kn

(resp. zn ∈ Fn(zn) ∩ VKn
\UKn

).

The conclusion follows from Proposition 2.7. �

Remark 5.5. The fixed point obtained in the previous theorem is non trivial if

0 6∈ Lim
n→∞
n∈N0

Â(n).
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Remark 5.6. Even in the particular case where E is a Banach space, Theorem 5.4
generalizes Theorem 2.3 in [6]. In particular, the cone is not assumed to be normal
and solid, and no monotonicity condition is imposed on f .

Corollary 5.7. Let β ∈ K, X ⊂ K closed such that [0, β] ⊂ X and let f : X → K be
an admissibly compact map satisfying conditions (i)-(iv) of Theorem 5.4. In addition,
assume that

(v’) for every n ∈ N0,
(
x− Fn(x)

)
∩Kn\{0} = ∅ for every x ∈ ∂Kn

Vn.

Then, f has a fixed point x∗ such that

x∗ ∈ Lim
n→∞
n∈N0

Â(n),

where Â(n) is defined in Theorem 5.4.

Proof. Arguing as in the proof of Theorem 3.3, one can show that, for every n ∈ N0,
Fn has a fixed point in ∂Kn

Vn or

iKn
(Fn, Vn) = 0.

The conclusion follows from Theorem 5.4. �

Condition (iii) in Theorem 5.1 insured that, for suitable x, there exists y ∈ Fn(x)
such that y ≤ µn(β). In the next result, we assume the opposite inequality.

Theorem 5.8. Let α ∈ K, X ⊂ K closed such that [0, α] ⊂ X and f : X → K an
admissibly compact map. Assume the following conditions are satisfied:

(i) there exists U a bounded pseudo-open set in E such that, for every n ∈ N,
0 ∈ UKn

\∂Kn
Un ⊂ UKn

⊂ [0, µn(α)]n;

(ii) the set

N0 = {n ∈ N : ∀x ∈ ∂Kn
Un, (x− Fn(x)) ∩Kn = ∅ or Fn(x) ⊂ [x,∞)n

is infinite;
(iii) there exists V a pseudo-open set in E such that, for every n ∈ N0,

0 ∈ V n\∂Kn
Vn ⊂ V Kn

⊂ UKn
\∂Kn

Un,(
resp. 0 ∈ UKn

\∂Kn
Un ⊂ UKn

⊂ V Kn
\∂Kn

Vn ⊂ V Kn
⊂ Xn

)
;

(iv) for every n ∈ N0, the fixed point index

iKn
(Fn, Vn) = 1.

Then, f has a fixed point x∗ such that

x∗ ∈ Lim
n→∞
n∈N0

Ã(n),
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where

Ã(n) =
(
UKn

\VKn

)
∪
( ⋃

x∈∂Kn
Un

[x, µn(α)]n

)
,

(
resp. Ã(n) =

(
V Kn

\UKn

)
∪
( ⋃

x∈∂Kn
Un

[x, µn(α)]n

))
.

Proof. It follows from (i) that, for every n ∈ N0 and every x ∈ ∂Kn
Un, one has

x �n µn(α).
Let

N1 =
{
n ∈ N0 : ∃x ∈ ∂Kn

Un such that
(
x− Fn(x)

)
∩Kn 6= ∅}.

If N1 is infinite, then, for zn ∈ ∂Kn
Un such that there exists u ∈ Fn(zn) with

zn − u ∈ Kn, one has Fn(zn) ⊂ [zn,∞)n. So, u �n zn �n u. Thus, zn ∈ Fn(zn) and
f has a fixed point

x ∈ Lim
n→∞
n∈N1

( ⋃
x∈∂Kn

Un

[x, µn(α)]n

)
⊂ Lim

n→∞
n∈N0

Ã(n).

On the other hand, if N1 is empty or finite, then N2 = N0\N1 is infinite and,
for every n ∈ N2, (z−Fn(z))∩Kn = ∅ for every z ∈ ∂Kn

Un. Arguing as in the proof
of Theorem 3.3, one deduces that the fixed point index

iKn
(Fn, Un) = 0 ∀n ∈ N2.

Theorem 2.1(3), and assumptions (iii) and (iv) imply that, for every n ∈ N2,

iKn
(Fn, Un\V n) = −1 (resp. iKn

(Fn, Vn\Un) = −1).

So, there exists

zn ∈ Fn(zn) ∩ UKn
\V Kn

(resp. zn ∈ Fn(zn) ∩ VKn
\UKn

).

The conclusion follows from Proposition 2.7. �

Remark 5.9. Even in the particular case where E is a Banach space, Theorem 5.8
generalizes Theorem 2.5 in [6]. Again, the cone is not assumed to be normal and solid,
and no monotonicity condition is imposed on f .
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