
Stud. Univ. Babeş-Bolyai Math. 66(2021), No. 1, 223–240
DOI: 10.24193/subbmath.2021.1.18

Properties of Hamiltonian in free final
multitime problems

Constantin Udriste and Ionel Tevy
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Abstract. In single-time autonomous optimal control problems, the Hamiltonian
is constant on optimal evolution. In addition, if the final time is free, the opti-
mal Hamiltonian vanishes on the hole interval of evolution. The purpose of this
paper is to extend some of these results to the case of multitime optimal con-
trol. The original results include: anti-trace problem, weak and strong multitime
maximum principles, multitime-invariant systems and change rate of Hamilton-
ian, the variational derivative of volume integral, necessary conditions for a free
final multitime expressed with the Hamiltonian tensor that replaces the energy-
momentum tensor, change of variables in multitime optimal control, conversion
of free final multitime problems to problems over fixed interval.
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1. Introduction

The scientific sources for this paper are: necessary conditions for multiple inte-
gral problem in the calculus of variations [1], lower semicontinuity of integral function-
als [2], time-optimal control of the Bi-Steerable Robot [4], Pontryagin functions for
multiple integral control problems [6], multitime maximum principle and multitime
dynamic programming [7]- [3].

We give a positive answer to an important question: does the Hamiltonian at-
tached to multitime control problems have properties similar to the Hamiltonian at-
tached to single-time control problems?

Section 2 underlines properties of Hamiltonian in single-time optimal control.
Section 3 studies the Hamiltonian in multitime optimal control. Section 4 analyses
the strong multitime maximum principle. Section 5 is dedicated to multitime-invariant
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dynamical systems and change rate of Hamiltonian. The variational derivative of
volume integral is analysed in Section 6. The necessary conditions for a free final
multitime are given in Section 7. The change of variables in multitime optimal control
is described in Section 8. The conversion of free end multitime problems to problems
over fixed interval is realized in Section 9. Section 10 contains conclusions.

We tested the theory in relevant applications: multitime control strategies for
skilled movements [3], minirobots moving at different partial speeds [16], optimal
control of electromagnetic energy [5], multitime optimal control for quantum systems
[10] etc.

The basic results are consequences of some properties that deserve to be empha-
sized: (1) the controlled PDEs used in the paper are completely integrable and this
means symmetry conditions, (2) in Section 4 are used the Goursat-Darboux system
and Goursat (hyperbolic) PDE, which are totally symmetric, and (3) the dynamical
systems analysed in Section 5 are multitime-invariant.

2. Hamiltonian in single-time optimal control

2.1. Maximum principle with algebraic constraints

Single-time optimal control problem. Find

max
u

J(u) = φ(x(t0), x(tf )) +

∫ tf

t0

L(x(t), u(t)) dt,

subject to

(i) ẋ(t) = X(x(t), u(t)), t ∈ (t0, tf ),

(ii) u(t) ∈ U , t ∈ (t0, tf ),

(iii) Φ(x(t0), x(tf )) ∈ K .

We have x : R → Rn, u : R → Rq, L : Rn × Rq → R, φ : Rn × Rn → R, X :
Rn ×Rq → Rn, Φ : Rn ×Rn → Rk, U ⊆ Rm, K ⊆ Rk. Usually U is bounded and K
is compact and convex.

Consider the Hamiltonian

H : Rn ×Rn ×Rq → R, H(x, p, u) = L(x, u) + 〈p,X〉

and the endpoints Lagrangian

Ψ : Rn ×Rn ×Rk → R,

Ψ((x0, xf ), ψ) = φ(x(t0), x(tf )) + 〈ψ,Φ(x(t0), x(tf ))〉.

Our problem becomes: find maxJ (u), where

J (u) = Ψ((x0, xf ), ψ) +

∫ tf

t0

(H(x(t), p(t), u(t)) − 〈p(t), X(x(t), u(t))〉) dt .
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Proposition 2.1. The optimal solution (x∗, p∗, u∗) satisfies the conditions

(a) ẋ∗(t) =
∂H

∂p
(x∗(t), p∗(t), u∗(t)) ,

(b) ṗ∗(t) = −∂H
∂x

(x∗(t), p∗(t), u∗(t)) ,

(c) H(x∗(t), p∗(t), u∗(t)) = max
u∈U

H(x∗(t), p∗(t), u) ,

(d) p∗(tf ) =
∂Ψ

∂xf
(x∗(t0), x∗(tf ), ψ∗) ,

(e) p∗(t0) = − ∂Ψ

∂x0
(x∗(t0), x∗(tf ), ψ∗) ,

and ψ∗ is an element of the normal cone to K at the point (x∗(t0), x∗(tf )) .

If the final time is free, we consider it as a new control which maximizes

J = Ψ(x(t0), x(tf ), ψ) +

∫ tf

t0

(
H(x(t), u(t), p(t))− pi(t)ẋi(t)

)
dt .

The necessary condition for extremum, using (d), is

0 =
∂J
∂t
|t=tf =

∂Ψ

∂xif
ẋi|t=tf +

(
H − piẋi

)
|t=tf = H(tf ) .

Hence, according with the Proposition 2.1, we have

Proposition 2.2. Let x∗, p∗, u∗ be the optimal solution for a free final time autonomous
problem. Then H∗(t) = 0 on the hole interval t0 ≤ t ≤ tf .

2.2. The Hamiltonian as a first integral

For any kind of single-time autonomous problem with bounded control, the fol-
lowing statement is true:

Proposition 2.3. Let x∗, p∗, u∗ be the optimal solution and

H∗(t) = H(x∗(t), p∗(t), u∗(t)) (2.1)

the pull-back of Hamiltonian on this solution. Then H∗(t) = constant.

Proof. According with maximum principle, in any interval of continuity, for each τ
and σ, we have

H∗(τ)−H∗(σ) ≥ H(x∗(τ), p∗(τ), u∗(σ))−H∗(σ) .

Then, for τ > σ, by the state and costate equations:

lim
τ↓σ

H∗(τ)−H∗(σ)

τ − σ
≥ lim

τ↓σ

H(x∗(τ), p∗(τ), u∗(σ))−H∗(σ)

τ − σ

=
∂H

∂x
(x∗(σ), p∗(σ), u∗(σ)) ẋ∗(σ) +

∂H

∂p
(x∗(σ), p∗(σ), u∗(σ)) ṗ∗(σ) = 0 .

Taking τ < σ , we obtain in a similar way the opposite inequality. Hence Ḣ∗(σ) = 0 .
The result follows.
With a bit completions at a point of discontinuity we have H∗(t) ≡ ct. �
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2.3. Conversion to problems over a fixed interval

For an optimal problem with free end time T, consider the change of variable
τ = t/T . Then the final time in the new variable is 1.

The functions of time expressed in this new variable become x̃(τ) = x(τT ),
ũ(τ) = u(τT ), the evolution is T X(x, u) and the running cost is T L(x, u).

Viewing T as a new state variable for the new problem, with Ṫ = 0 and costate
q, the new Hamiltonian will be H = T H. The optimality condition gives us

q̇ =
∂H
∂T

= H , q(0) = q(1) = 0 .

Then

0 = q(1)− q(0) =

∫ 1

0

H∗(τ) dτ

and, according with the Proposition 2.2, we have H∗(τ) = 0.

3. Hamiltonian in multitime optimal control

Generally, a multitime optimal control problem [7]-[3] is formulated in the fol-
lowing way: find

max
u

Q(u(·)) =

∫
Ω0t0

L(x(t), u(t))ω + g(x(t0))

subject to

∂xi

∂tα
(t) = Xi

α(x(t), u(t)), t ∈ Ω0t0 ⊂ Rm+ ,

a controlled PDEs evolution system which is completely integrable (m-flow), where
Ω0t0 ⊂ Rm+ is the parallelepiped determined by the diagonal opposite points 0 and t0,
x(t) = (x1(t), ..., xn(t)), t = (t1, ..., tm) ∈ Ω0t0 is the state vector, u(t) ∈ U, t ∈ Ω0t0

is the control vector, the C1 function L(x, u) is the running cost, ω = dt1 ∧ ... ∧ dtm
is the volume element, and g is a C1 function that defines the terminal cost.
The multitime maximum principle [7]- [3] involves the Hamiltonian H = L + pαi X

i
α,

the initial and adjoint PDEs

∂xi

∂tα
=
∂H

∂pαi
,
∂pαi
∂tα

= −∂H
∂xi

and the condition maxuH. Since the adjoint PDEs have too many solutions, we attach
an anti-trace problem which involves the Hamiltonian tensor field Hα

β = 1
mδ

α
βL +

pαi X
i
β , the initial and adjoint (completely integrable) PDEs

∂xi

∂tα
=
∂H

∂pαi
,
∂pαi
∂tβ

= −
∂Hα

β

∂xi

and the condition maxuH.
Anti-trace property: Any solution of the anti-trace problem is solution of multitime
maximum principle.
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Remark 3.1. The complete integrability condition for the adjoint PDEs is essential.
Generally, we can write the anti-trace adjoint PDEs in the Pfaff form

dpαi = −
∂Hα

γ

∂xi
dtγ .

Then, let us consider ω = dt1 ∧ ... ∧ dtm and ωα =
∂

∂tα
cω. The (m− 1)-forms pαi ωα

have the exterior differentials d(pαi ωα) = dpαi ∧ ωα. This suggests to use

dpαi ∧ ωα = −
∂Hα

γ

∂xi
dtγ ∧ ωα

and the identities dtβ ∧ ωα = δβα ω. We find the divergence PDEs system

∂pαi
∂tα

= −∂H
∂xi

if and only if ω 6= 0 on the solutions (complete integrability conditions).

For any type of autonomous multitime problem with bounded control, let
x∗, p∗, u∗ be the optimal solution and we denote H∗(t) = H(x∗(t), p∗(t), u∗(t)), where
t = (t1, ..., tm).

Theorem 3.2. Suppose we have an autonomous multitime optimal problem (multitime-
invariant dynamics and Lagrangian), with bounded control. If the Lagrangian L is
independent on x = (xi) and the optimal solution x∗, p∗, u∗ fulfills the anti-trace
PDEs, then H∗ is constant on the optimal m-sheets.

Proof. According to the multitime maximum principle for any fixed σ in any m-
interval of continuity, τ ∈ Rm and ε ∈ R we have

H∗(σ + ετ)−H∗(σ) ≥ H(x∗(σ + ετ), p∗(σ + ετ), u∗(σ))−H∗(σ) .

Then, for ε > 0,

lim
ε↓0

H∗(σ + ετ)−H∗(σ)

ε
≥ lim

ε↓0

H(x∗(σ + ετ), p∗(σ + ετ), u∗(σ))−H∗(σ)

ε

=

[
∂H

∂xi
(x∗(σ), p∗(σ), u∗(σ))

∂x∗i

∂tγ
(σ) +

∂H

∂pαi
(x∗(σ), p∗(σ), u∗(σ))

∂p∗αi
∂tγ

(σ)

]
τγ .

By hypotheses (anti-trace property of multitime maximum principle), at x∗(σ), p∗(σ),
u∗(σ), we have

Hα
β =

1

m
δαβL+ pαi X

i
β , H = L+ pαi X

i
α.

∂xi

∂tα
=
∂H

∂pαi
,
∂pαi
∂tγ

= −
∂Hα

γ

∂xi
.

It follows

∂H

∂tγ
=
∂H

∂xi
∂xi

∂tγ
+
∂H

∂pαi

∂pαi
∂tγ

=
∂L

∂xi
∂xi

∂tγ
+
∂pαi
∂tγ

Xi
α + pαi

∂Xi
α

∂xj
∂xj

∂tγ

=
∂L

∂xi
Xi
γ

(
1− 1

m

)
+ pαi [Xγ , Xα]i = 0,
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([Xγ , Xα] = 0 means the complete integrability condition), i.e., H is a first integral
of the anti-trace PDEs.

Hence

lim
ε↓0

H∗(σ + ετ)−H∗(σ)

ε
≥ 0 .

Taking ε < 0, we obtain in a similar way the opposite inequality; the derivative of H∗

at σ in any direction τ vanishes. The result follows.
With some additions for points of discontinuity, it follows H∗(t) ≡ ct. �

4. Strong multitime maximum principle

This Section discusses the differences between two kind of evolution systems in-
volved into multitime optimal control problems: (i) a full completely integrable PDEs
system and (ii) a hyperbolic (diagonal) PDEs system which is completely integrable
via an m-order hyperbolic PDE.

4.1. Full PDEs evolution system, no running cost

This case involves the PDEs evolution system (m-flow)

(PDEf )
∂xi

∂tα
(t) = Xi

α(x(t), u(t)), t ∈ Ω0t0 ⊂ Rm+

with i = 1, ..., n, α = 1, ...,m, and a terminal cost.
The Hamiltonian and the Hamiltonian tensor are respectively

H(x, p, u) = pαi X
i
α(x, u) , Hα

β (x, p, u) = pαi X
i
β(x, u) ,

pαi being the costate variables. The (PDEf ) can be written ∂xi

∂tα = ∂H
∂pαi

. According

to the strong multitime maximum principle, we can built an optimal costate function
via the adjoint equations

(ADJ 1, 2)
∂pαi
∂tα

= −∂H
∂xi

,
∂pαi
∂tβ

= −
∂Hα

β

∂xi
.

4.2. Missing equations in PDEs evolution system, no running cost

Let us suppose that a PDEs evolution system does not contain all equations
previously indexed by i = 1, ..., n, α = 1, ...,m. An example could be a diagonal
system (hyperbolic system, Goursat-Darboux system)

∂xα

∂tα
(t) = Xα

α (x(t), u(t)), α = 1, ...,m (no sum).

To include these kinds of PDEs in the set of all first order normal PDEs, let us
use an indicator (characteristic) function χ which, generally, is a function defined on
a set A that indicates membership of an element in a subset A of A, having the value
1 for all elements of A and the value 0 for all elements of A not in A. In our case,
χ = 1, if the equation with indices i and α appears in the initial evolution system and
χ = 0, if not. So the (PDEf ) can be written

(PDEm) χ
∂xi

∂tα
(t) = χXi

α(x(t), u(t)), t ∈ Ω0t0 ⊂ Rm+
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with i = 1, ..., n, α = 1, ...,m.
Then the Hamiltonian and the Hamiltonian tensor are respectively

H(x, p, u) = pαi χX
i
α(x, u) , Hα

β (x, p, u) = pαi χX
i
β(x, u) ,

pαi being the costate variables.
According to the strong multitime maximum principle, we can built an optimal

costate function via the adjoint equations

(ADJ 1, 2)
∂χpαi
∂tα

= −∂H
∂xi

,
∂χpαi
∂tβ

= −
∂Hα

β

∂xi
.

Remark 4.1. In the case of missing equations in PDEs evolution system, we work only
with the ”active” equations. The formalism of characteristic function is doing this.

4.3. Free endpoint problem with running cost

Let us consider that the cost functional include a running cost, i.e.,

(Q) Q(u(·)) =

∫
Ω0t0

X0(x(t), u(t))ω + g(x(t0)),

where x(t) = (x1(t), ..., xn(t)) is the state vector, Ω0t0 is the parallelepiped determined
by the diagonal opposite points 0 and t0, the running cost X0(x, u) is a C1 function,
and g is a C1 function associated to the terminal cost. Suppose the controlled PDEs
evolution system

∂xi

∂tα
(t) = Xi

α(x(t), u(t)), t ∈ Ω0t0 ⊂ Rm+
is full.
Adding new variables. Introducing new variables xn+1, ..., xn+m, and new costates
pαn+α(·), we convert the theory to the foregoing case. The new state variables are con-
strained by the diagonal PDEs system (hyperbolic system, Goursat-Darboux system)

∂xn+α

∂tα
= xn+α

α = xn+α+1, α = 1,m− 1 ,
∂xn+m

∂tm
= X0(x1, ..., xn, u),

equivalent to the Goursat (hyperbolic) PDE

∂mxn+1

∂t1... ∂tm
= X0(x1, ..., xn, u) ;

denote also, for convenience, xn+m+1 = X0(x1, ..., xn, u).
We introduce a costate matrix p̄(·) = (pαi (·))⊕ (pαn+α(·)). For the new equations

and new costates, pαn+β(·), the values of the indicator χ are summarized by δαβ .
The control Hamiltonian is

H(x̄, p̄, u) = pαi X
i
α(x, u) +

m∑
α=1

pαn+αx
n+α+1

and the control Hamiltonian tensor field Hα
β must have the form

Hα
β (x̄, p̄, u) =

{
pαi X

i
β(x, u) if α 6= β

pαi X
i
α(x, u) + pαn+αx

n+α+1 if α = β (no sum upon α).



230 Constantin Udriste and Ionel Tevy

To understand that the matrix Hα
β is the anti-trace of H, we need to have in

mind the diagonal matrices operations.
According to the strong multitime maximum principle, we can built a costate

function p̄∗(·) = (p∗αi (·))⊕ (p∗αn+α(·)) satisfying

(EDP1) xiα =
∂H

∂pαi
or xiα =

∂Hα
β

∂pβi
, (no sum), α, β = 1,m i = 1, n ,

(EDP2) xn+α
α =

∂H

∂pαn+α

or xn+α
α =

∂Hα
α

∂pαn+α

, α = 1,m (no sum),

(ADJ1)
∂p̄αi
∂tα

= −∂H
∂x̄i

, i = 1, n ;
∂pαn+α

∂tα
= − ∂H

∂xn+α
, α = 1,m (no sum)

(ADJ2)
∂pαi
∂tβ

= −
∂Hα

β

∂xi
, i = 1, n ;

∂pαn+α

∂tα
= − ∂Hα

α

∂xn+α
, α = 1,m (no sum).

All these PDEs systems are completely integrable.

5. Multitime-invariant dynamical systems and
change rate of Hamiltonian

Let us refer to open-end-multitime optimization problem. In the conditions of
Section 3, we have H∗ = constant as an alternative scalar necessary condition for
optimality.

Let us consider ω = dt1 ∧ ... ∧ dtm and ωα =
∂

∂tα
cω. Since the final multitime

tf is free to vary, we rewrite the functional

J =

∫
∂Ω0tf

vαωα +

∫
Ω0tf

(
H − pαi

∂xi

∂tα

)
ω

=

∫
Ω0tf

Div v +

∫
Ω0tf

(
H − pαi

∂xi

∂tα

)
ω,

where v(x(t)) = (vα(x(t))) is the generating vector field, and
∂vα

∂xi
(tf ) = pαi (tf ). Now

tf is an additional control variable for maximizing J . Consequently the cost sensitivity
via the total mixed operator Dt1...tm , to final multitime tf , should be zero, i.e.,

0 = Dt1...tmJ |t=tf =
∂vα

∂xi
∂xi

∂tα
|t=tf +

(
H − pαi

∂xi

∂tα

)
|t=tf = H(tf ).

Consequently, H∗ = 0 in the closed interval 0 ≤ t ≤ tf , i.e., in the hyperrectangle
Ω0tf .

Lemma 5.1. Let φ be a terminal cost, ψ be an algebraic condition for the terminal
point, both of class Cm, and v be a generating C1 vector field related by the PDE
Dt1...tm(φ+ νψ) = Div v, where ν is a constant Lagrange multiplier.

(i) Given v, there exists φ+ νψ; (ii) given φ+ νψ, there exists v.
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Proof. (i) Consequence of the formula φ(x(t)) + νψ(x(t)) =

∫
Ω0t

Div v ω.

(ii) Explicitly v1 =
1

m
Dt2...tm(φ+ νψ), ..., vm =

1

m
Dt1...tm−1(φ+ νψ). �

This Lemma shows that the cost functional can be written also as

J = φ(x(tf )) + νψ(x(tf )) +

∫
Ω0tf

(
H − pαi

∂xi

∂tα

)
ω.

6. The variational derivative of volume integral

For a domain that evolves with the velocity v from Ω0 to Ωε and for the function

I(ε) =

∫
Ωε

f(t, ε)ω,

we have
dI

dε
(ε = 0) =

∫
Ω0

(
∂f

∂ε
+ div (f v)

)
ω .

If we want that the hyperrectangle Ω0 = [0, T ] to become Ωε = [0, T + ε δt] , it should

take the transformation t→ t+εv(t), where for example, v = (vα), with vα =
tα

Tα
δtα

(no summation). Then, for the function

ε→ I(x(·) + εh(·);T + εδt) =

∫
Ωε

L(x(t) + εh(t), xα(t) + εhα(t))ω,

we find
dI

dε
(ε = 0) =

∫
Ω0

[
∂L

∂xi
− ∂

∂tα

(
∂L

∂xiα

)]
hi ω

+

∫
Ω0

[
∂

∂tα

(
∂L

∂xiα
hi
)

+ div(L(x(t), xγ(t)) v)

]
ω

=

∫
Ω0

[
∂L

∂xi
− ∂

∂tα

(
∂L

∂xiα

)]
hi ω

+

∫
∂Ω0

δαβ

(
∂L

∂xiα
hi + L(x(t), xγ(t))

tα

Tα
δtα
)
nβ dσ ,

with the transversality tensor

T α =
∂L

∂xiα
hi + L(x(t), xγ(t))

tα

Tα
δtα .

In this way we have consistency because on the initial faces the integrand is 0,
since hi = 0, tα = 0 and canonical normals, and on the final faces tα = Tα. Moreover,
using the vector v, we find the connection between h and δt on the faces, from their
relationship to the final multitime T .

On the faces, h is related to δt. Indeed

x(t+ εv) + εh(t+ εv) = φ(t+ εv),
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whence, differentiating at ε = 0, we find

∂x

∂tγ
vγ + h =

∂φ

∂tγ
vγ or hi =

(
∂φi

∂tγ
− ∂xi

∂tγ

)
vγ .

The transversality vector becomes

T α =
∂L

∂xiα

(
∂φi

∂tγ
− ∂xi

∂tγ

)
vγ + L(x(t), xγ(t)) vγ

=

(
∂L

∂xiα

∂φi

∂tγ
− ∂L

∂xiα

∂xi

∂tγ
+ δαγL(x(t), xγ(t))

)
vγ

=

(
∂L

∂xiα

∂φi

∂tγ
− Tαγ

)
vγ ,

where Tαγ is the energy-momentum tensor.

Case of boundary integral

We can write

0 =

∫
∂Ω0

δαβ

(
∂L

∂xiα

∂φi

∂tγ
− Tαγ

)
vγ nβ dσ,

where

vγ |tγ=Tγ = δtγ , vγ |tγ=0 = 0

(2m faces, m terms of summation). Hence

0 = δtγ
m∑
α=1

∫
Fα

(
∂L

∂xiα

∂φi

∂tγ
− Tαγ

)
dσ.

Since δtγ is arbitrary, it follows

0 =

m∑
α=1

∫
Fα

(
∂L

∂xiα

∂φi

∂tγ
− Tαγ

)
dσ.

Here we have an algebraic system of m equations with m unknowns T 1, ..., Tm.

Case of multiple integral

Consequently

0 =

∫
Ω0

∂

∂tα

((
∂L

∂xiα

∂φi

∂tγ
− Tαγ

)
vγ
)
ω.
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7. Necessary conditions for a free final multitime

Let us look for optimization of the functional

I(x(·); tf ) =

∫
Ω0tf

L(x(t), xγ(t)) ω,

where the final multitime tf is free to vary.

Setting the final time free means that we want to use the final time as yet another
parameter for optimization. Let us return back to the calculus of variations, having
in mind that understanding of the boundary conditions is crucial.

The key idea: derive the necessary conditions with the end point tf of Ω0tf on
a sheet prescribed by the function φ : Ω0tf → Rn, t → φ(t). This trick is, that the
stretching or shrinking of the hyperrectangle Ω0tf is done by perturbing the stationary
value of the final multitime, denoted tf , with the same ε as we use to perturb the
functions x(t):

I(x(·) + εh(·); tf + εδtf ) =

∫
Ω0tf+εδtf

L(x(t) + εh(t), xγ(t) + εhγ(t))ω.

Using the differentiation of a multiple integral with a parameter, we impose the nec-
essary condition

0 =
d

dε
I(ε)|ε=0 =

∫
Ω0tf

(
∂L

∂xi
−Dγ

∂L

∂xiγ

)
hi ω

+

∫
∂Ω0tf

δαβ

(
∂L

∂xiα
hi + Lδtαf

)
nβdσ.

Via Euler-Lagrange equations, it remains the only condition

0 =

∫
∂Ω0tf

δαβ

(
∂L

∂xiα
hi + Lδtαf

)
nβdσ,

where

δtαf |tβ=0 = 0, ∀α, β = 1, ...,m.

The surface integral represents the flux of the vector field

T α =
∂L

∂xiα
hi + Lδtαf

through the surface ∂Ω0tf .

Obviously h(t) and δt are related since x(t) is requested to lie in the sheet φ(t) on the
end faces tα = tαf , i.e.,

x(t+ εδt) + εh(t+ εδt) = φ(t+ εδt), on the end faces of Ω0tf .

Differentiating with respect to ε and evaluating at ε = 0, we find

∂x

∂tα
δtα + h =

∂φ

∂tα
δtα.



234 Constantin Udriste and Ionel Tevy

Computing h(t), and replacing in Tα(t), we get the transversality vector

T α(t) =
∂L

∂xiα
(x(t), xγ(t))

(
∂φi

∂tβ
(t)− ∂xi

∂tβ
(t)

)
δtβ + L(x(t), xγ(t)δαβ δt

β

=

(
∂L

∂xiα
(x(t), xγ(t))

∂φi

∂tβ
(t)− Tαβ (t)

)
δtβ ,

where Tαβ is the energy-momentum tensor. Since δtβ is arbitrary, and the normal
vector field nα of each face of Ω0tf belongs to the set of canonical orthonormal versors
and their opposites in Rm, the transversality relation can be written as

∂L

∂xiα
(x(t), xγ(t))

∂φi

∂tβ
(t)− Tαβ (t) = 0, t ∈ union of end faces.

The energy-momentum tensor Tαβ = pαi x
i
β−Lδαβ can be changed into Hamiltonian ten-

sor Hα
β = pαi x

i
β− 1

m Lδαβ by scaling the partial velocities. The trace of the Hamiltonian

tensor is H = pαi x
i
α−L. It follows that for a free-final-multitime and fixed-final-state

scenario, in which φ(t) = c, c ∈ Rn, the transversality condition simplifies to

Hα
β (t) = 0 =⇒ H(t) = 0, t ∈ union of end faces.

Consequently, H∗ = 0 in the interval 0 ≤ t ≤ tf , i.e., in the hyperrectangle Ω0tf .

Remark 7.1. (i) The transition from the multitime calculus of variations to the mul-
titime optimal control, especially when it comes to the definition of Hamiltonian, is
somewhat tricky.

(ii) The classical Reynolds’ transport theorem is:

d

dε

∫
Ω(ε)

f(x, ε)dV =

∫
Ω(ε)

∂

∂ε
f(x, ε)dV +

∫
∂Ω(ε)

(vb · n)f(x, ε)dA,

where n(x, ε) is the outward-pointing unit-normal, x is a point in the region and is
the variable of integration, and dV , dA are volume and surface elements at x, and
vb(x, ε) is the velocity of the area element - so not necessarily the flow velocity.

8. Change of variables in multitime optimal control

In order to transform the control conditions to other coordinates and, over all, to
converse a free end multitime problem to a fixed end one, we must use the transforma-
tion of the independent variables as t = w(τ), i. e. tα = wα(τ1, ..., τm) , α = 1, ...,m.
Then a function x will change in x̄(τ) = x(w(τ)). Consider the Jacobian matrix of

the transformation, J =

(
∂wα

∂τβ

)
and assume that det(J) is not zero at all points of

the domain Ω. In the new variables, the domain Ω becomes Ωτ , the volume element
is transformed as

dt1...dtm = det(J) dτ1...dτm

and the partial derivatives in variables tα become in the new variables

∂xi

∂t
=

(
∂x̄i

∂τβ
∂τβ

∂tα

)
=
∂x̄i

∂τ
J−1 .
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Let us consider a non-autonomous multitime control problem given by a con-
trolled functional

I(u) =

∫
Ω

L(t, x(t), u(t))dt1...dtm

and a non-autonomous PDE system

∂xi

∂tα
(t) = Xi

α(t, x(t), u(t)) .

We may transform this non-autonomous problem by a change of the multitime
in two ways.

8.1. Change the problem

The multitime controlled functional I becomes

Iτ =

∫
Ωτ

L(w(τ), x̄(τ), ū(τ)) det(J) dτ1...dτm

and the constraints change in

∂x̄i

∂τα
=
∂xi

∂tβ
∂wβ

∂τα
= Xi

β(w(τ), x̄(τ), ū(τ))
∂wβ

∂τα
,

or
∂x̄i

∂τ
= Xi(w(τ), x̄(τ), ū(τ)) J .

Then we obtain the Lagrange functional, with adjoint vectors qi = (qαi ) ,

I =

∫
Ωτ

[
L(w(τ), x̄(τ), ū(τ)) + Tr qi(τ)

(
Xi(w(τ), x̄(τ), ū(τ)) J − ∂x̄i

∂τ

)]
×det(J) dτ1...dτm .

The new Hamiltonian is

H1 =
(
L(w(τ), x̄(τ), ū(τ)) + Tr qi(τ)Xi(w(τ), x̄(τ), ū(τ)) J

)
det(J)

= H det(J)

and the corresponding variational equations are:

∂

∂τα
(det(J) qαi ) = − det(J)

∂H
∂x̄i

,
∂x̄i

∂τα
=
∂H
∂qαi

,
∂H
∂u

= 0 .

8.2. Change the variables in the Lagrange functional

The Lagrange functional, with adjoint vectors pi = (pαi ), is

J =

∫
Ω

[
L(t, x(t), u(t)) + pαi (t)

(
Xi
α(t, x(t), u(t))− ∂xi

∂tα

)]
dt1...dtm .

Changing the multitime by t = w(τ), the Lagrange functional becomes

J =

∫
Ωτ

[
L(w(τ), x̄(τ), ū(τ)) + Tr p̄i(τ)

(
Xi(w(τ), x̄(τ), ū(τ)) − ∂x̄i

∂τ
J−1

)]
×det(J) dτ1...dτm
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=

∫
Ωτ

[
L(w(τ), x̄(τ), ū(τ)) + Tr J−1 p̄i(τ)

(
Xi(w(τ), x̄(τ), ū(τ)) J − ∂x̄i

∂τ

)]
×det(J) dτ1...dτm .

The new Hamiltonian is

K1 =
(
L(w(τ), x̄(τ), ū(τ)) + Tr p̄i(τ)Xi(w(τ), x̄(τ), ū(τ))

)
det(J) = K det(J) .

For the two ways commute, the costates pi and qi must be related in a change of
variable following the rule

p̄i(τ) = J qi(τ) .

8.3. Conversion to problems over a fixed interval

By the multitime transformation sα =
1

Tα
tα, where Tα = tαf , for constants

tαf > 0, a free-end multitime problem is converted to problem over the fixed interval

Ω01 = [0, 1]m. The unknown end multitime T is represented by an additionally state

variable T = (Tα), for which
∂Tα

∂sβ
= 0 and T (0) = tf is assumed. The evolution

PDEs will be
∂x̄

∂tα
= δαβT

βXα ,
∂Tα

∂sβ
= 0 , T (0) = tf .

Using the Jacobian ∆ = T 1 · · ·Tm, it follows

J =

∫
Ω0tf

L(x(t), xγ(t))dt1...dtm =

∫
Ω01

L(x(Tα sα), u(Tα sα)) ∆ ds1...dsm

=

∫
Ω01

T 1 · · ·Tm L(x̄(s), ū(s)) ds1...dsm .

Denoting qβα the costates associated with the variables Tα we have the following new
extended Lagrangian

L = T 1 · · ·Tm
(
L(x̄, ū) + pαi X

i
αT

α − pαi xiα − qβαTαβ
)

= T 1 · · ·Tm
(
H− pαi xiα − qβαTαβ

)
,

where H = L(x̄, ū) + pαi X
i
αT

α is the new Hamiltonian.
The variational Euler equations with respect to x̄, p, ū, T and q, respectively give us

∂H
∂x̄i

+
∂pαi
∂sα

= 0 ,
∂H
∂pαi

− x̄iα = 0 ,
∂H
∂ū

= 0 ,

∂

∂Tα
(T 1 · · ·Tm H) +

∂qβα
∂sβ

= 0 , Tαβ = 0 .

Let us consider that there exist functions Qα such that

∂qβα
∂sβ

=
∂mQα

∂s1...∂sm
.

Then we have, by an integral on Ω01,∫
Ω01

∂

∂Tα
(T 1 · · ·Tm H) ds1...dsm = −

∫
Ω01

∂mQα
∂s1...∂sm

ds1...dsm = Qα(1) = 0 .
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8.4. Generating costates

In a multitime optimal control problem there exist generating costates pi such
that

pαi =
∂m−1pi

∂t1...∂̂tα...∂tm

(analogously for q). So we have

1

m

∂H
∂x̄i

+
∂mp̄i

∂s1...∂sm
= 0 and

1

m

∂H
∂Tα

+
∂mqα

∂s1...∂sm
= 0 .

By an integral on Ω01 we obtain

T 1...T̂α...Tm
∫

Ω01

H ds1...dsm = −m
∫

Ω01

∂mqα
∂s1...∂sm

ds1...dsm = qα(1) = 0 .

But H∗(t) ≡ ct and hence H∗(t) ≡ 0.

Let us consider the duality relation ∂mpi
∂t1...∂tm =

∂pαi
∂tα (divergence form, complete

integrability condition).
1) If pαi (t) are given, then

pi(t) =

∫
∂Ω0t

pαi ωα =

∫
Ω0t

∂pαi
∂tα

(t) dt1...dtm , with pi|tβ=0 = 0,

where ωα = (−1)α−1dt1...d̂tα...dtm .
Generally: If

ω = dt1 ∧ · · · ∧ dtm, ωα =
∂

∂tα
cω,

then ∫
∂Ω0t

pαi ωα =

∫
Ω0t

d(pαi ωα)

=

∫
Ω0t

∂pαi
∂tβ

dtβ ∧ ωα =

∫
Ω0t

∂pαi
∂tα

ω =

∫
Ω0t

∂mpi
∂t1...∂tm

ω

= pi(t)− Σαpi(t)|tα=0 + Σα6=βpi(t)|tα=0,tβ=0 − ...+ (−1)mpi(0).

2) If pi(t) is given, then we can take

pαi (t) =
1

m

∂m−1pi

∂t1... ˆ∂tα...∂tm
(t).

9. Conversion of free end multitime problems to
problems over fixed interval

The control problems considered so far are free end multitime problems, as
the end multitime tf of the interval Ω0tf = [0, tf ] is unspecified. By the multitime

transformation sα = 1
tαf
tα (no sum) for constants tαf > 0, such problems are converted

to problems over the fixed interval Ω01 = [0, 1]. The transformed problems are called
fixed end multitime problems. The unknown end multitime tf is represented by an

addition state variable y = (yα), for which ∂yα
∂sβ

= 0 and y(0) = tf is assumed.
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Definition 9.1. [Transformed multitime-optimal control problem with fixed end mul-
titime] A multitime optimal control problem is considered. Let z = (x̄, y) be the
extended state, M × Rm+ the extended state space, and

dx̄i = yαXαds
α, dy = 0

the extended control system. The problem to find an initial condition y(0) = tf and
an input map ū(·) such that a solution z(·) results which satisfies z(0) = (x0, tf ) and
z(1) = (xf , tf ) and gives the minimal value of the cost function I(z(·), ū(·)) = tf is
called transformed multitime-optimal control problem with fixed end multitime. Any
solution (z(·), ū(·)) to this problem is called transformed multitime-optimal solution.

Let us consider a free end multitime functional

J =

∫
Ω0tf

L(x(t), xγ(t)) dt1...dtm.

We introduce the changing of variables tα = tαf s
α, that moves Ω0tf to Ω01 and

∂x

∂tγ
=

∂x

∂sα
∂sα

∂tγ
=

1

tγf

∂x

∂sγ
.

Using the Jacobian ∆ = t1f ...t
m
f , it follows

J =

∫
Ω0tf

L(x(t), xγ(t)) dt1...dtm = ∆

∫
Ω01

L(x(tαf s
α),

1

tγf
xγ(tαf s

α)) ds1...dsm.

In this way, the free end multitime variational problem is changed into a fixed end
multitime variational problem.

Let us consider a free end controlled multitime functional

I(u) =

∫
Ω0tf

L(x(t), u(t)) dt1...dtm.

We introduce the changing of variables tα = tαf s
α, that moves Ω0tf to Ω01. Using the

Jacobian ∆ = t1f ...t
m
f , it follows

I =

∫
Ω0tf

L(x(t), u(t)) dt1...dtm = ∆

∫
Ω01

L(x(tαf s
α), u(tαf s

α)) ds1...dsm.

In this way, the free end controlled multitime problem is changed into a fixed end
multitime problem.

Remark 9.2. The evolution PDEs are

∂x̄

∂tα
= yαXα,

∂yα
∂sβ

= 0, y(0) = tf .
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10. Conclusions

We start with a single-time optimal control problem. The Hamiltonian is a func-
tion used to solve such a problem for a dynamical system. It was introduced by Lev
Pontryagin for single-time optimal control problems as part of his maximum princi-
ple. The idea is that a necessary condition for solving an optimal control problem
is that the control should be chosen so as to optimize the Hamiltonian. From Pon-
tryagin’s maximum principle, special conditions for the Hamiltonian can be derived.
When the final time tf is fixed and the Hamiltonian does not depend explicitly on
time (is autonomous), we have H(x∗(t), u∗(t), p∗(t)) ≡ ct, or if the terminal time is
free, then H(x∗(t), u∗(t), p∗(t)) ≡ 0. Further, if the terminal time tends to infinity, a
transversality condition on the Hamiltonian applies and limt→∞H(t) = 0.

The main question: do some of these properties from uni-temporal problems
survive for multi-temporal problems? Our goal was to provide positive answers where
possible, which we did in this paper.

In order to give positive answers, we had to go through the following steps of
original research: any solution of the anti-trace problem is solution of multitime maxi-
mum principle, weak and strong multitime maximum principle, multitime-invariant
dynamical systems and change rate of Hamiltonian, Hamiltonian tensor, change of
variables in multitime optimal control, generated costates. All these combine ideas
from differential geometry, multitemporal variational calculus and optimal multi-
temporal control, topics to which we have made an essential contribution in recent
years [5], [7]-[3].

Acknowledgments. The authors are indebted to the reviewers who insisted on getting
an improved version both scientifically and linguistically.
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