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Global existence and blow-up of a Petrovsky
equation with general nonlinear dissipative
and source terms

Mosbah Kaddour and Farid Messelmi

Abstract. This work studies the initial boundary value problem for the Petrovsky
equation with nonlinear damping

∂2u

∂t2
+ ∆2u−∆u′ + |u|p−2 u+ αg

(
u′
)

= βf (u) in Ω× [0,+∞[ ,

where Ω is open and bounded domain in Rn with a smooth boundary ∂Ω = Γ,
α, and β > 0. For the nonlinear continuous term f (u) and for g continuous,
increasing, satisfying g (0) = 0, under suitable conditions, the global existence of
the solution is proved by using the Faedo-Galerkin argument combined with the
stable set method in H2

0 (Ω). Furthermore, we show that this solution blows up
in a finite time when the initial energy is negative.
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1. Introduction

This paper devoted to the global existence, uniqueness, and the blow-up of so-
lutions for the nonlinear general Petrovsky equation

∂2u
∂t2 + ∆2u (t)−∆u′ (t) + |u|p−2

u (t) + αg (u′ (t)) = βf (u (t)) , in Ω× R+,
u = ∂ηu = 0, on Γ× [0,+∞[ ,

u(x, 0) = u0(x), u′(x, 0) = u1(x) in Ω.

(1.1)

Recently, in the absence of the strong damping term −∆u′ (t) and in the case where

βf (u (t)) = −q (x)u (x, t) + |u|p−2
u (t)
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for g continuous, increasing, satisfying g (0) = 0, and q : Ω→ R+, a bounded function,
the problem (1.1) becomes the following

∂2u

∂t2
+ ∆2u (t) + q (x)u (x, t) + g (u′ (t)) = 0, in Ω× R+.

This equation together with initial and boundary conditions of Dirichlet type was
considered by Guesmia in [5], he proved a global existence and a regularity result
of the solution, the author under suitable growth conditions on g showed that the
solution decays exponentially if g behaves like a linear function, whereas the decay is
of a polynomial order otherwise. Without the strong damping term −∆u′ (t) with

αg (u′ (t)) = |u′ (t)|σ−2
u′ (t)

and

βf (u (t)) = (b+ 1) |u (t)|p−2
u (t) , b > 0,

the problem (1.1) reduced to the following problem

∂2u

∂t2
+ ∆2u (t) + |u′ (t)|σ−2

u′ (t) = b |u (t)|p−2
u (t) , in Ω× R+,

this problem has been considered by Messaoudi in [9], where he investigated the global
existence and blow-up of solution. More precisely, he showed that solutions with any
initial data continue to exist globally in time if σ ≥ p and blow-up in finite time
if σ < p and the initial energy is negative. He used a new method introduced by
Georgiev and Todorova [4] based on the fixed point theorem for the proof. In [12],
Wu and Tsai showed that the solution of the problem considered in [9] is global under
some conditions. Also, Chen and Zhou [11] studied the blow-up of the solution of the
same problem as in [9]. In the presence of the strong damping, in the case where

βf (u (t)) = (b+ 1) |u (t)|p−2
u (t) ,

g (u′ (t)) = |u′ (t)|σ−1
u′ (t) , b > 0,

general Petrovsky problem as in (1.1) becomes

∂2u

∂t2
+ ∆2u (t)−∆u′ (t) + |u′ (t)|σ−1

u′ (t) = b |u (t)|p−1
u (t) , (1.2)

this problem was considered by Li et al. [6], in [10] and in [2], the authors obtained
global existence, uniform decay of solutions without any interaction between p and
σ, the blow-up of the solution result was established when σ < p . Very recently,
Pişkin and Polat [10] studied the decay of the solution of the problem (1.2). In this
paper, our aim is to extend the results of [9], [12] and others’ established in a bounded
domain to a general problem as in (1.1). The nonlinear term f in (1.1) likes

f (u (x, t)) = a (x) |u (t)|r−2
u (t)− b (x) |u (t)|q−2

u (t)

with r > q ≥ 1 and a (x) , b (x) > 0, and g in (1.1) likes

g (u′ (x, t)) = α (x) |u′ (t)|σ−2
u′ (t)

with σ ≥ 2 for α : Ω → R+ a function, satisfying α1 ≥ α (x) ≥ α0 > 0. For these
purposes, we must establish the global existence of solution for (1.1), we use the
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variational approach of Faedo–Galerkin approximation combined with the monoto-
nous, compactness, and the stable set method as in [9], [11] and in [10] with some
modification in some passages to derive the blow-up result in the infinite time of the
solution.

2. Hypotheses

Let us state the precise hypotheses on p, g, and f . Let p be a positive number
with

2 < p ≤ 2n− 6

n− 4
(n ≥ 5) (2 ≤ p <∞ if n = 1, 2, 3, 4) , (H1)

g is an odd increasing C1 function and{
xg (x) ≥ d0 |x|σ , ∀x ∈ R, p > σ ≥ 2,

|g (x)| ≤ d1 |x|+ d2 |x|σ−1
, ∀x ∈ R, p > σ ≥ 2, di ≥ 0.

(H2)

Let f (x, s) ∈ C1 (Ω× R), satisfies:

sf (x, s) + k1 (x) |s| ≥ pF (x, s) , p > 2, (H3)

and the growth conditions |f (x, s)| ≤ l1
(
|s|θ + k2 (x)

)
,

|fs (x, s)| ≤ l1
(
|s|θ−1

+ k3 (x)
)

in Ω× R,
(H4)

where F (x, s) =
∫ s

0
f (x, ζ) dζ, with some l0, l1 > 0 and the non-negative functions

k1 (x) , k2 (x) , k3 (x) ∈ L∞ (Ω), a.e. x ∈ Ω, and 1 < θ ≤ σ
2 <

p
2 .

3. Local existence

In this section, we establish a local existence result for (1.1) under the assump-
tions on f, g, and p.

Theorem 3.1. Let (u0, u1) ∈W ∩Lp(Ω)×H2
0 (Ω)∩L2σ−2(Ω). Assume that (H1)-(H4)

hold. Then problem (1.1) has a unique weak solution u (t) satisfying:

u ∈ L∞(0, T ;W ∩ Lp(Ω)), (3.1)

u′ ∈ L∞(0, T ;H2
0 (Ω)), (3.2)

g (u′ (t)) .u′ (t) ∈ L1
(
0, T ;L1(Ω)

)
, (3.3)

u′′ ∈ L∞(0, T ;L2(Ω)), (3.4)

where

H2
0 (Ω) =

{
ϕ ∈ H2 (Ω) : ϕ = ∂ηϕ = 0 on ∂Ω

}
,

and

W =
{
ϕ ∈ H4 (Ω) ∩H2

0 (Ω) : ∆ϕ = ∂η∆ϕ = 0 on ∂Ω
}
.
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Note that throughout this paper, C denotes a generic positive constant depend-
ing on Ω and as all given constants, which may be different from line to line, and is
capable of being examined and modified.

Proof. We adopt the Galerkin method to construct a global solution. Let T > 0
be a fixed, and denote by Vm the space generated by {ϕ1, ϕ2, ..., ϕm} , where the
set {ϕm; m ∈ N} is a basis of L2(Ω), H2

0 (Ω), and H4 (Ω) ∩ H2
0 (Ω) . We construct

approximate solutions um (m = 1, 2, 3, ...) in the form

um(t) =

m∑
j=1

Kjm(t)wj ,

where Kjm are determined by the following ordinary differential equations:

(u′′m, wj) + (∆um,∆wj) + (∇u′m,∇wj) (3.5)

+
(
|um|p−2

um, wj

)
+ α (g (u′m) , wj) = β (f (um) , wj) ,

um (0) = u0m =

m∑
i=1

(u0, wj)wj
as m−→∞−→ u0 (3.6)

in H4 (Ω) ∩H2
0 (Ω) ∩ Lp(Ω) ,

u′m (0) = u1m =

m∑
i=1

(u1, wj)wj
as m−→∞−→ u1 (3.7)

in H2
0 (Ω) ∩ L2σ−2(Ω),

with u0, u1 are given functions on Ω, by virtue of the theory of ordinary differential
equations, the system (3.5)-(3.7) has a unique local solution on some interval [0, tm).
We claim that for any T > 0, such a solution can be extended to the whole interval
[0, T ], as a consequence of the a priori estimates that shall be proven in the next step.
We denote by C, Ck or ck the constants which are independent of m, the initial data
u0 and u1.

Multiplying the equation (3.5) by K ′jm(t) and performing the summation over
j = 1, ...,m, the integration par parts gives

E′m (t) + |∇u′m (t)|2 + α (g (u′m (t)) , u′m (t)) = 0, ∀t ≥ 0, (3.8)

where

Em (t) =
1

2
|u′m(t)|2 +

1

2
|∆um(t)|2 +

1

p
‖um(t)‖pp − β

∫
Ω

F (x, um(t)) dx, (3.9)

by (H3), and Young inequality, we have

−
∫

Ω

F (x, um) dx ≥ −1

p

∫
Ω

k1 (x) |um| dx−
1

p

∫
Ω

umf (x, um) dx (3.10)

≥ −εC2
∗ |∆um(t)|2 − Cε |k1 (x)|2 − 1

p

∫
Ω

umf (x, um) dx,
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by using hypotheses (H4), Young’s inequality yields

1

p

∫
Ω

umf (x, um) dx ≤ 1

p
|f (x, um)| |um|

≤ l21
p
ε

∫
Ω

(
|um|2θ + |k2 (x)|2

)
dx+

c (ε, p)

p2

∫
Ω

|um|2 dx

=
l21
p
ε ‖um‖2θ2θ +

l21
p
ε |k2 (x)|2 +

c (ε, p)

p2
‖um‖2p (3.11)

≤ l21
p
ε

(
p− 2θ

p
+

2θ

p
‖um‖pp

)
+
l21
p
ε |k2 (x)|2

+C ′ (ε, p) +
1

p2
‖um‖pp ,

substituting (3.11) in (3.10), and chosen ε ≤ C0 = min
(

1
2C2
∗

; p
2θl21+1

)
, (3.9) becomes

Em (t) ≥ 1

2
|u′m(t)|2 + C1 |∆um(t)|2 + C2 ‖um‖pp − C3 (1 +K1 +K2) , (3.12)

or

|u′m(t)|2 + |∆um(t)|2 + ‖um‖pp ≤ C4 (Em (t) +K1 +K2 + 1) , (3.13)

where

0 < C1 ≤
(
1− C0C

2
∗
)
, 0 < C2 ≤

(
1

p
− 2θl21 + 1

p2
C0

)
,

C3 = max

(
Cε;

l21
p
ε;C ′ (ε, p) +

l21
p
ε
p− 2θ

p

)
,

C4 = max

(
1

min
(

1
2 , C1, C2

) , C3

)
.

Thus, it follows from (3.8), and (3.12) that, for any m = 1, 2, ..., and t ≥ 0,

|u′m(t)|2 + |∆um(t)|2 + ‖um (t)‖pp +

∫ t

0

|∇u′m (s)|2 ds (3.14)

+α

∫ t

0

(g (u′m (s)) , u′m (s)) ds ≤ C4 (Em (0) +K1 +K2 + 1) .

By assumption (H2)-(H4), according to the Hölder’s inequality, we have∣∣∣∣∫
Ω

F (x, u0m) dx

∣∣∣∣ ≤ 1

p

∫
Ω

k1 (x) |u0m| dx+
1

p

∫
Ω

u0mf (x, u0m) dx (3.15)

≤ C
(
|um(0)|2 + |k1 (x)|2 + ‖um (0)‖pp + |k2 (x)|2 + |um (0)|2

)
.
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Then using (3.6), (3.7), (3.8), and (3.9) we obtain that

Em (t) ≤ Em (0) =
1

2
|u1m|2 +

1

p
‖u0m‖pp

+
1

2
|∆u0m|2 − β

∫
Ω

F (x, u0m) dx (3.16)

≤ C4

(
|u1m|2 + ‖u0m‖pp + |∆u0m|2 + |u0m|2 +K1 +K2

)
≤ C,

for some C > 0, where K1 = ‖k1‖2∞ , K2 = ‖k2‖2∞ .
Hence, for any t ≥ 0, and m = 1, 2, ..., from (3.14), and (3.16) we get

|u′m(t)|2 + |∆um(t)|2 +

∫ t

0

|∇u′m (s)|2 ds+ ‖um (t)‖pp

+ α

∫ t

0

∫
Ω

g (u′m (s))u′m (s) dxds

≤ C. (3.17)

By the growth conditions, the estimate (3.17), and as 2θ ≤ p, we have

|f (um)|2 ≤ Cl1
(
|um|2θ + |k2 (x)|2

)
≤ C

(
||um||2θp + ‖k2‖2∞

)
≤ C.

With this estimate we can extend the approximate solution um (t) to the interval
[0, T ] and the following a priori estimates

um is bounded in L∞ (0, T ;Lp(Ω)) ,
u′m is bounded in L∞

(
0, T ;L2(Ω)

)
,

∇u′m is bounded in L2
(
0, T ;L2(Ω)

)
,

g (u′m) .u′m is bounded in L1 (Ω× (0, T )) ,
∆um(t) is bounded in L∞

(
0, T ;L2(Ω)

)
,

f (um) is bounded in L∞
(
0, T ;L2(Ω)

)
,

(3.18)

hold. �

Lemma 3.2. There exists a constant K > 0 such that

||g (u′m (t))||
L

σ
σ−1 (Ω×[0,T ])

≤ K,

for all m ∈ N.

Proof. From (H2), Holder’s, and Young’s inequalities gives∫ T

0

∫
Ω

|g (u′m)|
σ
σ−1 dxdt =

∫ T

0

∫
Ω

|g (u′m)| |g (u′m)|
1

σ−1 dxdt

≤
∫ T

0

∫
Ω

|g (u′m (t))|
(
d1 |u′m (t)|+ d2 |u′m (t)|σ−1

) 1
σ−1

dxdt

≤ C
∫ T

0

∫
Ω

|g (u′m (t))|
(
|u′m (t)|

1
σ−1 + |u′m (t)|

)
dxdt

= C

∫ T

0

∫
Ω

|g (u′m (t))| |u′m (t)|
1

σ−1 dxdt
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+C

∫ T

0

∫
Ω

|g (u′m (t))| |u′m (t)| dxdt

≤ σ − 1

σ

∫ T

0

∫
Ω

|g (u′m)|
σ
σ−1 dxdt+ C (σ)

∫ T

0

∫
Ω

|u′m (t)|
σ
σ−1 dxdt

+C

∫ T

0

∫
Ω

|g (u′m (t))| |u′m (t)| dxdt,

therefore

1

σ

∫ T

0

∫
Ω

|g (u′m (t))|
σ
σ−1 dxdt ≤ C (σ)

∫ T

0

∫
Ω

|u′m (t)|
σ
σ−1 dxdt

+C

∫ T

0

∫
Ω

|g (u′m (t))| |u′m (t)| dxdt

≤ C
∫ T

0

||u′m (t)||
σ
σ−1

2 dt+ C

∫ T

0

∫
Ω

|g (u′m (t))| |u′m (t)| dxdt,

hence, by (3.18), we deduce∫ T

0

∫
Ω

|g (u′m (t))|
σ
σ−1 dxdt ≤ K. �

Lemma 3.3. There exists a constant M > 0 such that

|u′′m(t)|+ |∆u′m(t)|+
∫ T

0

|∇u′′m (t)| dt ≤M,

for all m ∈ N.

Proof. From (3.5) we obtain

|u′′m(0)| ≤ |u0m|p−1
+
∣∣∆2u0m

∣∣+ |∆u1m|+ α |g (u1m)|+ β |f (u0m)| ,
by (H4) we have

|f (u0m)|2 ≤ l1
(
|u0m|2θ + |k2 (x)|2

)
≤ C

(
||∆u0m||2θ2 + ‖k2‖2∞

)
,

Since g (u1m) is bounded in L2 (Ω) by (H2), from (3.6) and (3.7) we obtain

|u′′m(0)| ≤ C.
Differentiating (3.5) with respect to t, we get

(u′′′m, wj) +
(
∆2u′m, wj

)
− (∆u′′m, wj) + (p− 1)

(
|um|p−2

u′m, wj

)
+α (g′ (u′m)u′′m, wj) = β (f ′ (um)u′m, wj) . (3.19)

Multiplying it by K ′′jm(t) and summing over j from 1 to m , according to the Hölder’s
inequality, to find

1

2

d

dt

(
|u′′m(t)|2 + |∆u′m (t)|2

)
+ |∇u′′m (t)|2 + α (g′ (u′m)u′′m, u

′′
m) (3.20)

≤ (p− 1)

∫
Ω

|um|p−2 |u′m| |u′′m| dx+ β

∫
Ω

|f ′ (um)| |u′m| |u′′m| dx.
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By choosing λ satisfies the inequalities{
λ+ 1 ≤ min

(
p

2(θ−1) ,
n
n−4

)
if n ≥ 5,

λ+ 1 ≤ p
2(θ−1) if n = 1, 2, 3, 4,

then by using (H4), estimates (3.18) and generalized Hölder’s inequality, we deduce
that ∫

Ω

|f ′ (um)| |u′m| |u′′m| dx

≤
∥∥∥l1 (|um|θ−1

+ k3 (x)
)∥∥∥λ

2(λ+1)
||u′m||2(λ+1) ‖u

′′
m‖2

≤ C
(∥∥∥|um|θ−1

∥∥∥λ
2(λ+1)

+ ‖k3 (x)‖λ2(λ+1)

)
||u′m||2(λ+1) ‖u

′′
m‖2

≤ C
(
‖um‖λ(θ−1)

p + ‖k3 (x)‖λp
)
||∆u′m||2 ‖u

′′
m‖2

≤ C5

(
|u′′m(t)|2 + |∆u′m (t)|2

)
, (3.21)

where C1 and C2 are positive constants independent of m and t ∈ [0, T ] .

By same manner, using condition (H1), Young’s inequality, Sobolev embedding, and
estimate (3.18) we reach to∫

Ω

|um|p−2 |u′m| |u′′m| dx ≤
∥∥∥|um|p−2

∥∥∥
n
‖u′m‖ 2n

n−2
‖u′′m‖2

≤ C ||∆u′m||2 ‖u
′′
m‖2 ≤ C5

(
|u′′m(t)|2 + |∆u′m (t)|2

)
. (3.22)

Combining (3.20), (3.21) and (3.22) we deduce

1

2

d

dt

(
|u′′m(t)|2 + |∆u′m (t)|2

)
+ |∇u′′m (t)|2 + α (g′ (u′m)u′′m, u

′′
m)

≤ C6

(
|u′′m(t)|2 + |∆u′m (t)|2

)
.

Integrating the last inequality over (0, t) and applying Gronwall’s lemma, we obtain

|u′′m(t)|+ |∆u′m (t)|+
∫ t

0

|∇u′′m (t)|2 ds ≤ C for all t ≥ 0.

Therefore

u′′m is bounded in L∞
(
0, T ;L2(Ω)

)
,

∆u′m is bounded in L∞
(
0, T ;L2(Ω)

)
, (3.23)

∇u′′m is bounded in L2
(
0, T ;L2(Ω)

)
,

it follows from (3.23), (u′m) is bounded in L∞
(
0, T ;H2

0 (Ω)
)
.

Furthermore, by applying the Lions-Aubin compactness Lemma in [7], we claim that

u′m is compact in L2
(
0, T ;L2(Ω)

)
, (3.24)
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From (3.18) and (3.23), there exists a subsequence of (um), still denote by (um), such
that 

um −→ u weak star in L∞
(
0, T ;H2

0 (Ω)
)

,
um −→ u strongly in L2

(
0, T ;L2(Ω)

)
,

u′m −→ u′ weak star in L∞
(
0, T ;H2

0 (Ω)
)

,
u′m −→ u′ strongly in L2

(
0, T ;L2(Ω)

)
,

u′′m −→ u′′ weak star in L∞
(
0, T ;L2(Ω)

)
,

g (u′m) −→ χ weak star in L
σ
σ−1 (Ω× (0, T )) ,

f (um) −→ ζ weak star in L∞
(
0, T ;L2(Ω)

)
.

(3.25)

Using the compactness of H2
0 (Ω) to L2(Ω), it is easy to see that∫ T

0

∫
Ω

|um|p−2
umvdxdt→

∫ T

0

∫
Ω

|u|p−2
uvdxdt, for all v ∈ Lσ

(
0, T ;H2

0 (Ω)
)
,

as m→∞.
By (H2), and estimates (3.25) we have

g (u′m) −→ g (u′) a.e.in Ω× (0, T ) .

Therefore, from [7, Chapter1,Lemma1.3], we infer that

g (u′m) −→ g (u′) weak star in L
σ
σ−1

(
0, T ;L

σ
σ−1
)

,

as m→∞, and this implies that∫ T

0

∫
Ω

g (u′m) vdxdt→
∫ T

0

∫
Ω

g (u′) vdxdt for all v ∈ Lσ
(
0, T ;H2

0 (Ω)
)
.

By the same manner using the growth conditions in (H4) and estimate (3.25), we see
that ∫ T

0

∫
Ω

|f (um)|
θ+1
θ dxdt

is bounded and

f (um) −→ f (u) a.e.in Ω× (0, T ) ,

then

f (um) −→ f (u) weak star in L
θ+1
θ

(
0, T ;L

θ+1
θ

)
,

as m→∞, and this implies that∫ T

0

∫
Ω

f (um) vdxdt→
∫ T

0

∫
Ω

f (u) vdxdt for all v ∈ Lθ
(
0, T ;H2

0 (Ω)
)
.

It follows at once from all estimates that for each fixed v ∈ Lθ
(
0, T ;H2

0 (Ω)
)
∩

Lσ
(
0, T ;H2

0 (Ω)
)
,∫ T

0

∫
Ω

(
u′′m + ∆2um −∆u′m + |um|ρ um + αg (u′m)− βf (um)

)
vdxdt

→
∫ T

0

∫
Ω

(
u′′ + ∆2u−∆u′ + |u|p−2

u+ αg (u′)− βf (u)
)
vdxdt,

as m→∞.
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Consequently∫ T

0

∫
Ω

(
u′′ + ∆2u−∆u′ + |u|p−2

u+ αg (u′)− βf (u)
)
vdxdt = 0,

∀v ∈ Lθ
(
0, T ;H2

0 (Ω)
)
∩ Lσ

(
0, T ;H2

0 (Ω)
)
.

This means that the problem admit a weak solution u satisfying (1.1), and (3.1)-
(3.4). �

Theorem 3.4. Under the hypotheses of the Theorem 3.1, we have the solution u given
by Theorem 3.1, is unique.

Proof. Let u and v are two solutions, in the sense of the Theorem 3.1. Then w = u−v
satisfies

w′′ +
(
∆2u−∆2v

)
−∆w′ + α (g (u′)− g (v′))

+(|u|p−2
u− |v|p−2

v) = β (f (u)− f (v)) , (3.26)

w(0) = w′(0) = 0 in Ω, (3.27)

w = ∂ηw = 0 on Σ, (3.28)

w ∈ Lp(0, T ;W ∩ Lp(Ω)), (3.29)

w′ ∈ L2(0, T ;H2
0 (Ω)). (3.30)

Let’s multiply the two members of (3.26) by w′ and integrate on Ω. According to the
Green’s formula and conditions (3.28), integrating by part the result on [0, t], using
conditions (3.27) to find that

1

2

(
|w′(t)|2 + |∆w|2

)
≤
∫ t

0

∫
Ω

∣∣∣|u|p−2
u− |v|p−2

v
∣∣∣ |w′| dxds (3.31)

+β

∫ t

0

∫
Ω

|f (u)− f (v)| |w′| dxds.

According to the Hölder’s, Young’s inequalities, condition (H1), the estimates (3.25)
the first term on the right-hand side of (3.31) can be estimated as follows:∫ t

0

∫
Ω

∣∣∣|u|p−2
u− |v|p−2

v
∣∣∣ |w′| dxds

≤ (p− 1)

∫ t

0

(∥∥∥|u|p−2
∥∥∥
Ln(Ω)

+
∥∥∥|v|p−2

∥∥∥
Ln(Ω)

)
‖w‖

L
2n
n−2 (Ω)

‖w′‖L2(Ω) ds

≤ C
∫ t

0

(
‖u‖p−2

Ln(p−2)(Ω)
+ ‖v‖p−2

Ln(p−2)(Ω)

)
‖∆w‖L2(Ω) ‖w

′‖L2(Ω) ds (3.32)

≤ C
∫ t

0

(
‖∆u‖p−2

L2(Ω) + ‖∆v‖p−2
L2(Ω)

)
‖∆w‖L2(Ω) ‖w

′‖L2(Ω) ds

≤ C
∫ t

0

(
|w′(s)|2 + |∆w (s)|2

)
ds.
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Now let Uε = εu+ (1− ε) v, 0 ≤ ε ≤ 1, by the growth conditions, for the second term
of the right side to (3.31), we have∣∣∣∣∫ t

0

∫
Ω

|f (u)− f (v)| |w′| dxdt
∣∣∣∣ =

∣∣∣∣∫ t

0

∫
Ω

∫ 1

0

d

dε
f (Uε) dεw

′dxds

∣∣∣∣
≤
∫ t

0

∫
Ω

∣∣∣∣∫ 1

0

d

dε
f (Uε) dε

∣∣∣∣ |w′| dxds
≤
∫ t

0

∫
Ω

∫ 1

0

∣∣∣∣ ddεf (Uε) dε

∣∣∣∣ |w′| dxds
≤ l1

∫ t

0

∫
Ω

∫ 1

0

(
|Uε|θ−1

+ |k3 (x)|
)
|u− v| |w′| dεdxds

≤ C
∫ t

0

∫
Ω

(
|u|θ−1

+ |v|θ−1
+ |k3 (x)|

)
|w (s)| |w′ (s)| dxds = I.

Using the generalized Hölder’s, Young’s inequalities, and the estimates (3.25), and
choosing λ such that {

λ+ 1 ≤ n
(θ−1)(n−4) if n ≥ 5,

2 ≤ λ+ 1 <∞ if n = 1, 2, 3, 4,

we infer

I ≤ C
∫ t

0

∥∥∥|u|θ−1
+ |v|θ−1

+ |k3 (x)|
∥∥∥λ

2(λ+1)
||w||2(λ+1) ‖w

′‖2

≤ C
∫ t

0

(∥∥∥|u|θ−1
∥∥∥λ

2(λ+1)
+
∥∥∥|v|θ−1

∥∥∥λ
2(λ+1)

+ ‖k3 (x)‖λ2(λ+1)

)
||w||2(λ+1) ‖w

′‖2 ds

≤ C
∫ t

0

(
‖∆u‖λ(θ−1)

2 + ‖∆v‖λ(θ−1)
2 + ‖k3 (x)‖λ∞

)
||∆w||2 ‖w

′‖2 ds

≤ C
∫ t

0

||∆w||2 ‖w
′‖2 ds ≤ C

∫ t

0

(
|w′(s)|2 + |∆w (s)|2

)
ds. (3.33)

Combining (3.31), (3.32) and (3.33) to obtain

|w′(t)|2 + |∆w (t)|2 ≤ C
∫ t

0

(
|w′(s)|2 + |∆w (s)|2

)
ds.

The integral inequality and Gronwall’s lemma show that w = 0. �

4. Global existence

In this section, we discuss the global existence of the solution for problem (1.1).
In order to state and prove our main results, we first introduce the following functions

I (t) = I (u (t)) = |∆u (t)|2 − β
∫

Ω

f (u (t))u (x, t) dx− β
∫
Ω

k1 (x) |u (x, t)| dx, (4.1)

J (t) = J (u (t)) =
1

2
|∆u|2 − β

∫
Ω

F (x, u) dx, (4.2)
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E(t) = E(u(t), u′(t)) = J (u (t)) +
1

2
|ut(t)|22 +

1

p
‖u(t)‖pp . (4.3)

And the stable set as

W =
{
u : u ∈ H2

0 (Ω) , I (t) > 0
}
∪ {0} . (4.4)

The next lemma shows that our energy functional (4.3) is a nonincreasing function
along with the solution of (1.1).

Lemma 4.1. E(t) is a nonincreasing function for t ≥ 0 and

E′ (t) = − |∇u′ (t)|2 − α
∫

Ω

u′ (t) g (u′ (t)) dx ≤ 0. (4.5)

Proof. By multiplying equation (1.1) by u′ and integrate over Ω, using integrate by
parts and summing up the product results,

E (t)− E (0) = −
∫ t

0

|∇u′ (s)|2 ds− α
∫ t

0

∫
Ω

u′ (s) g (u′ (s)) dxds for t ≥ 0. �

Lemma 4.2. Suppose that (H1)-(H4) hold, let u0 ∈W and u1 ∈ H2
0 (Ω) such that

γ = βCθ+1
∗

(
2p

p− 2
E (0)

) θ−1
2

(l1 + l1 ||k2 (x)||∞ + ||k1 (x)||∞) < 1. (4.6)

Then u ∈ W for each t ≥ 0, where C∗ is the Sobolev–Poincaré embedding such that
for all 2 < p ≤ 2n

n−4 (n ≥ 5), (2 ≤ p <∞ if n = 1, 2, 3, 4) we have

‖u (t)‖p ≤ C∗ ‖∆u (t)‖2 , ∀u ∈ H
2
0 (Ω).

Proof. Since I (0) > 0, by the continuity, there exists 0 < Tm < T such

I (t) ≥ 0, ∀t ∈ [0, Tm] ,

this gives from (4.2), and (H3),

E (t) ≥ J (t) =
1

p
I (t) +

p− 2

2p
|∆u|2

+
β

p

(∫
Ω

f (u)udx+

∫
Ω

k1 (x) |u| dx− p
∫

Ω

F (x, u) dx

)
≥ p− 2

2p
|∆u|2 . (4.7)

By using (4.7), (4.3), and (4.5),

|∆u|2 ≤ 2p

p− 2
J (t) ≤ 2p

p− 2
E (t) ≤ 2p

p− 2
E (0) . (4.8)
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By recalling (H1), (H2), (4.8), (4.6), Cauchy-Schwartz inequality, and Sobolev em-
bedding we have

β

∫
Ω

f (u)udx+ β

∫
Ω

k1 (x) |u| dx ≤ β
∫

Ω

|f (u)| |u| dx+ β

∫
Ω

|k1 (x)| |u| dx

≤ βl1
∫

Ω

|u|θ+1
dx+ βl1

∫
Ω

|k2 (x)| |u| dx+ β

∫
Ω

|k1 (x)| |u| dx

≤ βl1 ‖u (t)‖θ+1
θ+1 + β (l1 ||k2 (x)||∞ + ||k1 (x)||∞) ‖u (t)‖θ+1

θ+1

≤ βl1Cθ+1
∗ |∆u(t)|θ+1

+ βCθ+1
∗ (l1 ||k2 (x)||∞ + ||k1 (x)||∞) |∆u(t)|θ+1

(4.9)

= βl1C
θ+1
∗ |∆u(t)|θ−1 |∆u(t)|2

+βCθ+1
∗ (l1 ||k2 (x)||∞ + ||k1 (x)||∞) |∆u(t)|θ−1 |∆u(t)|2

≤ βCθ+1
∗

(
2p

p− 2
E (0)

) θ−1
2

(l1 + l1 ||k2 (x)||∞ + ||k1 (x)||∞) |∆u|2

< |∆u|2 on [0, Tm] .

Therefore, by using (4.1), we conclude that I (t) > 0 for all t ∈ [0, Tm] . By repeating
this procedure, and using the fact that

lim
t→Tm

βCθ+1
∗

(
2p

p− 2
E (t)

) θ−1
2

(l1 + l1 ||k2 (x)||∞ + ||k1 (x)||∞) ≤ D < 1,

Tm is extended to T. �

Lemma 4.3. Let the assumptions (4.6) holds. Then there exists η = 1− γ such that

β

∫
Ω

f (u)udx+ β

∫
Ω

k1 (x) |u| dx ≤ (1− η) |∆u|2 , (4.10)

and therefore

|∆u|2 ≤ 1

η
I (t) . (4.11)

Proof. From (4.9) we have

β

∫
Ω

f (u)udx+ β

∫
Ω

k1 (x) |u| dx ≤ γ |∆u|2 .

We get (4.10) by taking η = 1 − γ > 0, and by using (4.10), from (4.1) we get the
result (4.11). �

Theorem 4.4. Suppose that (H1)-(H4) hold. Let u0 ∈ W satisfying (4.6). Then the
solution of problem (1.1) is global.
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Proof. It sufficient to show that ‖ut‖22 + |∆u|2 is bounded independently to t. To see
this we use (4.1), (4.3), and (H3) to obtain

E(0) ≥ E(t) =
1

2
|∆u|2 − β

∫
Ω

F (x, u) dx+
1

2
‖u′(t)‖22 +

1

p
‖u(t)‖pp

≥ 1

2
|∆u|2 − β

p

∫
Ω

f (u)udx− β

p

∫
Ω

k1 (x) |u| dx

+
1

2
‖u′(t)‖22 +

1

p
‖u(t)‖pp =

1

2
|∆u|2 +

1

p

(
I (t)− |∆u|2

)
+

1

2
‖u′(t)‖22 +

1

p
‖u(t)‖pp

=
p− 2

2p
|∆u|2 +

1

p
I (t) +

1

2
‖u′(t)‖22 +

1

p
‖u(t)‖pp

≥ 1

2
‖u′(t)‖22 +

p− 2

2p
|∆u (t)|2 ,

since I (t) ≥ 0, and p > 2. Therefore

‖u′(t)‖22 + |∆u|2 ≤ max

(
2,

2p

p− 2

)
E(0).

These estimates imply that the solution u(t) exist globally in [0,+∞[. �

5. Blow-up of solution

In this section, after some estimates, we show that the solution of problem (1.1)
blows up in finite time under the assumption E(0) < 0, where

E(t) = E(u(t), u′(t)) =
1

2
|u′ (t)|2+

1

2
|∆u (t)|2+

1

p
‖u(t)‖pp−β

∫
Ω

F (x, u (t)) dx. (5.1)

Remark 5.1. We set

H (t) = −E (t) , (5.2)

we multiply Eq.(1.1) by −u′ and integrate over Ω, using (H2) to get

H ′ (t) = |∇u′ (t)|2 + α

∫
Ω

u′ (t) g (u′ (t)) dx ≥ αd0 ‖u′ (t)‖
σ
σ a.e. t ∈ [0, T ] , (5.3)

H (t) is absolutely continuous, hence

0 < H (0) ≤ H (t) ≤ β
∫

Ω

F (x, u) dx, (5.4)

when

E (0) < 0.

We need the following lemma, easy to prove by using the definition of the energy
corresponding to the solution
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Lemma 5.2. Let 2 < p ≤ 2n
n−4 if n ≥ 5 and 2 < p < ∞ if n ≤ 4. Then there exists a

positive constant C > 1, depending only on Ω, such that

‖u(t)‖sp ≤ C
(
‖u(t)‖pp + |∆u (t)|2

)
, with 2 ≤ s ≤ p, (5.5)

for any u ∈ H2
0 (Ω). If u is the solution constructed in Theorem 3.1, then

‖u(t)‖sp ≤ C
(
H (t) + ‖u(t)‖pp + |u′ (t)|2 + β

∫
Ω

F (x, u (t)) dx

)
, (5.6)

with 2 ≤ s ≤ p on [0, T ) .

Theorem 5.3. Let the conditions of the Theorem 3.1 be satisfied. Assume further that

E (0) < 0. (5.7)

Then the solution (3.1) blows up in a finite time T .

Proof. We pose 
L (t) = |u (t)|2 =

∫
Ω

|u (x, t)|2 dx,

L′ (t) = 2 (u (t) , u′ (t)) ,

L′′ (t) = 2 |u′ (t)|2 + 2 (u (t) , u′′ (t)) ,

we define the function

G (t) = H1−a (t) + εL′ (t)− 3εpeT−tβ

∫
Ω

F (x, u (t)) dx

+γ1εt ‖k1 (x)‖∞ + γ2εt ‖k2 (x)‖σ∞ , t ≥ 0, (5.8)

where γ1, γ2, ε > 0 are positives constants to be specified later, and

0 < a ≤ min

(
p− 2

2p
,

p− σ
(θ + 1) (σ − 1)

)
< 1, (5.9)

derivative the Eq. (5.8), using Eq. (1.1), and hypotheses (H3) we obtain

d

dt
G (t) = (1− a)H−a (t)H ′ (t) + εL′′ (t) + γ1ε ‖k1 (x)‖∞

+γ2ε ‖k2 (x)‖σ∞ +
d

dt

(
−3pεeT−tβ

∫
Ω

F (x, u (t)) dx

)
= (1− a)H−a (t)H ′ (t) + 2ε |u′ (t)|2 + 2ε (u (t) , u′′ (t))

+γ1ε ‖k1 (x)‖∞ + γ2ε ‖k2 (x)‖σ∞

+3pεeT−tβ

∫
Ω

F (x, u (t)) dx− 3pεeT−tβ

∫
Ω

f (u (t))u′ (t) dx (5.10)

= (1− a)H−a (t)H ′ (t) + 2ε |u′ (t)|2 + 2βε

∫
Ω

u (t) f (u (t)) dx− 2ε |∆u (t)|2

−2ε

∫
Ω

u (t) ∆u′ (t) dx− 2ε ‖u (t)‖pp + γ1ε ‖k1 (x)‖∞ + γ2ε ‖k2 (x)‖σ∞

+3pεeT−tβ

∫
Ω

F (x, u (t)) dx−3pεeT−tβ

∫
Ω

f (u (t))u′ (t) dx−2αε

∫
Ω

u (t) g (u′ (t)) dx.
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We then exploit Holder’s, Young’s inequalities, and the hypotheses on g, to estimate
the last term in (5.10) as

2αε

∣∣∣∣∫
Ω

u (t) g (u′ (t)) dx

∣∣∣∣ ≤ 2αεd1

∫
Ω

|u′ (t)| |u (t)| dx+ 2αεd2

∫
Ω

|u′ (t)|σ−1 |u (t)| dx

≤ 2αεd1
δσ

σ
||u (t)||σσ + 2αεd1

σ − 1

σ
δ

σ
1−σ ||u′ (t)||

σ
σ−1
σ
σ−1

(5.11)

+2αεd2
δσ

σ
||u (t)||σσ + 2αεd2

σ − 1

σ
δ

σ
1−σ ||u′ (t)||σσ

= 2 (d1 + d2)
δσ

σ
αε ||u (t)||σσ

+2αε
σ − 1

σ
δ

σ
1−σ

(
d1 ||u′ (t)||

σ
σ−1
σ
σ−1

+ d2 ||u′ (t)||
σ
σ

)
, δ > 0,

because σ
σ−1 ≤ σ, then by (5.3) we have

d1 ||u′ (t)||
σ
σ−1
σ
σ−1

+ d2 ||u′ (t)||
σ
σ ≤ C (Ω)

σ−2
σ d1 ||u′ (t)||

σ
σ−1
σ +

d2

αd0
H ′ (t)

≤ C∗d1C (Ω)
σ−2
σ ||u′ (t)||σσ +

d2

αd0
H ′ (t)

≤ 1

αd0

(
C∗d1C (Ω)

σ−2
σ + d2

)
H ′ (t) . (5.12)

By the boundary conditions we derive the following estimates∫
Ω

u (t) ∆u′ (t) dx =

∫
Ω

∆u (t)u′ (t) dx ≤ 1

4
|∆u (t)|2 + |u′ (t)|2 . (5.13)

Using hypotheses (H4), Holder’s, Young’s inequalities, conditions (5.9), and (5.3) we
have ∫

Ω

|f (u (t))| |u′ (t)| dx ≤ l1
∫
Ω

(
|u|θ |u′ (t)|+ |k2 (x)| |u′ (t)|

)
dx

≤ l1 ||u (t)||θ2θ ||u
′ (t)||2 + l1

σ − 1

σ
δ

σ
1−σ ||u′ (t)||

σ
σ−1
σ
σ−1

+ l1
δσ

σ
‖k2 (x)‖σ∞

≤ l1
σ
C (δ, σ) δσ ||u (t)||2θ2θ +

1

σ
l1δ

σ
1−σ ||u′ (t)||22

+l1
σ − 1

σ
δ

σ
1−σ ||u′ (t)||

σ
σ−1
σ
σ−1

+ l1
δσ

σ
‖k2 (x)‖σ∞

≤ l1
σ
C∗C (δ, σ)C (Ω)

σ−2θ
2θσ ||u||σσ

+
1

σ
l1C
∗C (Ω)

σ−2
2σ δ

σ
1−σ ||u′ (t)||σσ

+l1
σ − 1

σ
δ

σ
1−σC∗C (Ω)

σ−2
2σ ||u′ (t)||σσ + l1

δσ

σ
‖k2 (x)‖σ∞

≤ l1
αd0

C∗C (Ω)
σ−2
2σ δ

σ
1−σH ′ (t)

+
l1
σ
C (δ, σ) δσC∗C (Ω)

σ−2θ
2θσ ||u||σσ + l1

δσ

σ
‖k2 (x)‖σ∞ .
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By the hypotheses (H3), and the estimate (5.4) we have

2β

∫
Ω

u (t) f (u (t)) dx ≥ 2βp

∫
Ω

F (x) dx− 2β

∫
Ω

k1 (x) |u (x)| dx

≥ 2pH (t)− 2β

∫
Ω

k1 (x) |u (x)| dx, (5.14)

and by Holder’s, Young’s inequalities,∫
Ω

k1 (x) |u (x)| dx ≤ C (σ, α) ‖k1 (x)‖∞ + 2α
δσ

σ
||u (t)||σσ . (5.15)

By substituting in (5.10), and using (5.11)-(5.15), yields,

d

dt
G (t)

≥

(
(1− a)H−a (t)

− 1
αd0

(
3pεeT−tβC∗C (Ω)

σ−2
2σ + 2αεσ−1

σ

(
C∗d1C (Ω)

σ−2
σ + d2

))
δ

σ
1−σ

)
H ′ (t)

+2pεH (t)− 2ε ‖u (t)‖pp −
5

2
ε |∆u (t)|2 + (γ1 − 2βC (σ, α)) ε ‖k1 (x)‖∞

+

(
γ2 − 3pεeT−tβl1

δσ

σ

)
ε ‖k2 (x)‖σ∞ + 3pβε

∫
Ω

F (x, u (s)) dx

−ε
(

3θpeT−tβl1C (δ, σ)C∗C (Ω)
σ−2θ
2θσ + 2βα (d1 + d2)

) δσ
σ
||u (t)||σσ , (5.16)

∀δ, ε > 0.

At this point, for a large positive constant λ to be chosen later, picking δ such that
δ

σ
1−σ = λH−a (t) > 0 in (5.16) we arrive for all t > 0 at

d

dt
G (t)

≥

(
(1− a)

− λ
αd0

(
3pεeTβC∗C (Ω)

σ−2
2σ + 2αεσ−1

σ

(
C∗d1C (Ω)

σ−2
σ + d2

)) )
H−a (t)H ′ (t)

+3βpε

∫
Ω

F (x, u) dx− 2ε ‖u (t)‖pp −
5

2
ε |∆u (t)|2 + 2pεH (t)

+ (γ1 − 2βC (σ, α)) ε ‖k1 (x)‖∞ (5.17)

+

(
γ2 − 3pεeTβl1

δσ

σ

)
ε ‖k2 (x)‖σ∞

−ε
(

3θpeTβl1C (δ, σ)C∗C (Ω)
σ−2θ
2θσ + 2βα (d1 + d2)

) λ1−σ

σ
Ha(σ−1) (t) ||u (t)||σσ ,

∀δ, ε > 0.
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By exploiting (5.4), we have

Ha(σ−1) (t) ||u (t)||σσ ≤ β
a(σ−1)

∫
Ω

F (x, u) dx

a(σ−1)

||u (t)||σσ , (5.18)

from (H3) we have∫
Ω

F (x, u) dx ≤ l1
p

∫
Ω

|u (t)|θ+1
dx+ (|k2 (x)|+ |k1 (x)|) |u|


≤ l1
p
||u (t)||θ+1

θ+1 + C
l1
p

(‖k1 (x)‖∞ + ‖k2 (x)‖∞) ||u (t)||θ+1
θ+1 ,

≤ C l1
p
||u (t)||θ+1

θ+1 (5.19)

by condition (5.9), and the estimates (5.6) we confirm that

βa(σ−1)

∣∣∣∣∣∣
∫
Ω

F (x, u) dx

∣∣∣∣∣∣
a(σ−1)

||u (t)||σσ

≤ C l1
p
βa(σ−1)

(
||u (t)||θ+1

θ+1

)a(σ−1)

||u (t)||σσ

= C
l1
p
βa(σ−1) ||u (t)||(θ+1)a(σ−1)

θ+1 ||u (t)||σσ

≤ C l1
p
βa(σ−1) ||u (t)||(θ+1)a(σ−1)

θ+1 ||u (t)||σθ+1

= C
l1
p
βa(σ−1) ||u (t)||(θ+1)a(σ−1)+σ

θ+1

≤ l1
p
βa(σ−1)C

H (t) + ‖u(t)‖pp + |u′(t)|2 + β

∫
Ω

F (x, u) dx


≤ C l1

p
βa(σ−1)

(
H (t) + ‖u(t)‖pp + |u′(t)|2 + β

∫
Ω

F (x, u) dx

+ ‖k1 (x)‖∞ + ‖k2 (x)‖σ∞

)
(5.20)

substituting (5.20) in (5.17) we obtain

d

dt
G (t) ≥

(
(1− a)− λ

αd0

(
3pεeTβC∗C (Ω)

σ−2
2σ

+2αεσ−1
σ

(
C∗d1C (Ω)

σ−2
σ + d2

) ))H−a (t)H ′ (t)

+3pβε

∫
Ω

F (x, u) dx− 5

2
ε |∆u (t)|2 − 2ε ‖u (t)‖pp

+ε (γ1 − 2βC (σ, α)) ‖k1 (x)‖∞

+ε

(
γ2 − 3pεeTβl1

δσ

σ

)
‖k2 (x)‖σ∞ (5.21)
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+ε


2pH (t)−

(
3θpeTβl1C (δ, σ)C∗C (Ω)

σ−2θ
2θσ + 2βα (d1 + d2)

)
λ1−σ

σ
l1
p β

a(σ−1)

×C

(
H (t) + ‖u(t)‖pp + |u′(t)|2 + β

∫
Ω

F (x, u) dx

+ ‖k1 (x)‖∞ + ‖k2 (x)‖σ∞

) 
or

d

dt
G (t) ≥

 (1− a)

− λ
αd0

(
3pεeTβC∗C (Ω)

σ−2
2σ

+2αεσ−1
σ

(
C∗d1C (Ω)

σ−2
σ + d2

) )
H−a (t)H ′ (t)

+3pβε

∫
Ω

F (x, u) dx− 5

2
ε |∆u (t)|2 − 2ε ‖u (t)‖pp

+ε (γ1 − 2βC (σ, α)) ‖k1 (x)‖∞ (5.22)

+ε

(
γ2 − 3pεeTβl1

δσ

σ

)
‖k2 (x)‖σ∞

+ε


(5p− 1)H (t)

−

(
3θpeT−tβl1C (δ, σ)C∗C (Ω)

σ−2θ
2θσ

+2βα (d1 + d2)

)
λ1−σ

σ
l1
p β

a(σ−1)

×C
(
H (t) + ‖u(t)‖pp + |u′(t)|2 + β

∫
Ω
F (x, u) dx

+ ‖k1 (x)‖∞ + ‖k2 (x)‖σ∞

)
 − ε (3p− 1)H (t) .

By using the definition (5.2), the estimate (5.22) gives

d

dt
G (t) ≥

 (1− a)

− λ
αd0

(
3pεeTβC∗C (Ω)

σ−2
2σ

+2αεσ−1
σ

(
C∗d1C (Ω)

σ−2
σ + d2

) )


×H−a (t)H ′ (t)

+ε


(

3p−1
2

)
−

(
C

(
3θpeTβl1C (δ, σ)C∗C (Ω)

σ−2θ
2θσ

+2βα (d1 + d2)

)
λ1−σ

σ
l1
p β

a(σ−1)

) 
× |u′ (t)|2

+

(
3p− 1

2
− 5

2

)
ε |∆u (t)|2

+ε

 (γ1 − 2βC (σ, α))

−C

((
3θpeTβl1C (δ, σ)C∗C (Ω)

σ−2θ
2θσ

+2βα (d1 + d2)

)
λ1−σ

σ
l1
p β

a(σ−1)

)  ‖k1 (x)‖∞

+ε


(
γ2 − 3pεeTβl1

δσ

σ

)
−C

((
3θpeTβl1C (δ, σ)C∗C (Ω)

σ−2θ
2θσ

+2βα (d1 + d2)

)
λ1−σ

σ
l1
p β

a(σ−1)

)  ‖k2 (x)‖σ∞
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+ε


(

3p−1
p − 2

)
−C

((
3θpeTβl1C (δ, σ)C∗C (Ω)

σ−2θ
2θσ

+2βα (d1 + d2)

)
λ1−σ

σ
l1
p β

a(σ−1)

) 
×‖u (t)‖pp

+ε

 3p− (3p− 1)

−C

((
3θpeTβl1C (δ, σ)C∗C (Ω)

σ−2θ
2θσ

+2βα (d1 + d2)

)
λ1−σ

σ
l1
p β

a(σ−1)

) β ∫
Ω

F (x, u) dx

+ε

 (5p− 1)

−C

((
3θpeTβl1C (δ, σ)C∗C (Ω)

σ−2θ
2θσ

+2βα (d1 + d2)

)
λ1−σ

σ
l1
p β

a(σ−1)

) H (t) .

pose

C1 = C

((
3θpeTβl1C (δ, σ)C∗C (Ω)

σ−2θ
2θσ

+2βα (d1 + d2)

)
1

σ

l1
p
βa(σ−1)

)
,

we arrive at

d

dt
G (t) ≥

 (1− a)

− λ
αd0

ε

(
3peTβC∗C (Ω)

σ−2
2σ

+2σ−1
σ

(
C∗d1C (Ω)

σ−2
σ + d2

) )
H−a (t)H ′ (t)

+ε

[
3p− 1

2
− C1λ

1−σ
]
|u′ (t)|2 +

(
3p− 1

2
− 5

2

)
ε |∆u (t)|2

+ε
(
(γ1 − 2βC (σ, α))− C1λ

1−σ) ‖k1 (x)‖∞

+ε

((
γ2 − 3pεeTβl1

δσ

σ

)
− C1λ

1−σ
)
‖k2 (x)‖σ∞

+ε

[
p− 1

p
− C1λ

1−σ
]
‖u (t)‖pp + ε

[
1− C1λ

1−σ]β ∫
Ω

F (x, u) dx (5.23)

+ε
(
(5p− 1)− C1λ

1−σ)H (t) .

chosen γ1 = 1 + 2βC (σ, α) , γ2 = 1 + 3pεeTβl1
δσ

σ and λ satisfying the following
inequality

λ ≥ λ0 = min

(
σ−1

√
2C1

3p− 1
, σ−1

√
pC1

p− 1
, σ−1
√
C1,

σ−1

√
C1

5p− 1

)
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so that the coefficients of H (t) , |u′ (t)|2 , |∆u (t)|2 , ‖u (t)‖pp , ‖k1 (x)‖∞, ‖k2 (x)‖∞
and

∫
Ω

F (x, u) dx in (5.23) are strictly positive, hence we get

d

dt
G (t) ≥

 (1− a)

− λ
αd0

ε

(
3peTβC∗C (Ω)

σ−2
2σ

+2ασ−1
σ

(
C∗d1C (Ω)

σ−2
σ + d2

) )
H−a (t)H ′ (t)

+ωε

(
H (t) + |u′ (t)|2 + ‖u (t)‖pp +

∫
Ω
F (x, u) dx

+ ‖k1 (x)‖∞ + ‖k2 (x)‖σ∞

)
, (5.24)

where ω is the minimum of these coefficients. We pick ε small enough, so that

0 < ε ≤ ε0 = min


1−a

λ
αd0

 3peTβC∗C (Ω)
σ−2
2σ

+2ασ−1
σ

(
C∗d1C (Ω)

σ−2
σ + d2

) 
;

H1−a(0)
−L′(0)+3peT β

∫
Ω
F (x,u0)dx


therefore (5.24) take the form

d

dt
G (t) ≥ ωε

(
H (t) + |u′ (t)|2 + ‖u (t)‖pp

+
∫

Ω
F (x, u) dx+ ‖k1 (x)‖∞ + ‖k2 (x)‖σ∞

)
, (5.25)

hence
G (t) ≥ G (0) > 0 for all t ≥ 0.

The second term in (5.8), by applying Young’s inequality we can estimate as follows

1

2
L′ (t) = (u (t) , u′ (t)) ≤ c |u′ (t)| ‖u (t)‖p ≤ c

(
|u′ (t)|2(1−a)

+ ‖u (t)‖
2(1−a)
1−2a
p

)
,

so

|(u (t) , u′ (t))|
1

1−a ≤ C
(
|u′ (t)|2 + ‖u (t)‖

2
1−2a
p

)
using Lemma (5.2) and the condition (5.9) we obtain

|(u (t) , u′ (t))|
1

1−a

≤ C
(
H (t) + |u′ (t)|2 + ‖u (t)‖pp +

∫
Ω

F (x, u) dx

)
, ∀t ≥ 0. (5.26)

Consequently we have

G (t)
1

1−a =

(
H1−a (t) + 2ε

∫
Ω

u (x, t)u′ (t) dx+ γ1εt ‖k1 (x)‖∞ + γ2εt ‖k2 (x)‖σ∞

) 1
1−a

≤ C

(
H (t) +

∣∣∣∣2ε∫
Ω

u (x, t)u′ (t) dx

∣∣∣∣ 1
1−a

+ |γ1εt ‖k1 (x)‖∞|
1

1−a
+ |γ2εt ‖k2 (x)‖σ∞|

1
1−a

)

≤ C
(
H (t) + |u′ (t)|2 + ‖u (t)‖pp +

∫
Ω

F (x, u) dx+ ‖k1 (x)‖∞ + ‖k2 (x)‖σ∞

)
. (5.27)

We then combine (5.25), (5.26), and (5.27), to arrive at

d

dt
G (t) ≥ ρG (t)

1
1−a , (5.28)
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where ρ is a constant depending on C, ω, and ε only, and not depend of u.
Integrate (5.28) over (0, t) to get

G (t)
a

1−a ≥ 1

G
a−1
a (0)− t a

(1−a)ρ
.

Therefore G (t) blows up in a finite time T ∗ where

T ∗ ≤ 1− a
aρG

a
1−a (0)

. �
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