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Superdense unbounded divergence of a class
of interpolatory product quadrature formulas
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Abstract. The aim of this paper is to highlight the superdense unbounded diver-
gence of a class of product quadrature formulas of interpolatory type on Jacobi
nodes, associated to the Banach space of all real continuous functions defined on
[−1, 1], and to a Banach space of measurable and essentially bounded functions
g : [−1, 1] → R. Some aspects regarding the convergence of these formulas are
pointed out, too.
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1. Introduction

This paper deals with a class of interpolatory product quadrature formulas,
regarding their divergence and the convergence rate, as follows. Let C be the Banach
space of all continuous functions f : [−1, 1]→ R, endowed with the supremum norm
‖ · ‖. Denoting by µ the Lebesgue measure on the interval [−1, 1], let (Lp, ‖ · ‖p),
1 ≤ p ≤ ∞, be the Banach space of all measurable functions (equivalence classes of
functions, with respect to the equality µ-a.e.) g : [−1, 1]→ R, normed by

‖g‖p =

(∫ 1

−1
|g(x)|pdx

)1/p

, if 1 ≤ p <∞, and ‖g‖∞ = esssup|g|.

According to [7], [8], if p ∈ [1,∞] and ρ ∈ Lq (with p−1+q−1 = 1) are given such

that ρ(x) > 0 µ-a.e. on [−1, 1], the notation (L
(1/ρ)
p , ‖ · ‖(1/ρ)p ) stands for the Banach

space of all measurable functions g for which g/ρ ∈ Lp and ‖g‖(1/ρ)p = ‖g/ρ‖p.
Further, let consider an arbitrary triangular node matrix

M = {xkn : n ≥ 1, 1 ≤ k ≤ n}



316 Alexandru I. Mitrea

so that the n-th row of M, n ≥ 1, contains n distinct nodes of [−1, 1], then let us
denote, as usual, by Lnf ∈ Pn−1 (the space of all polynomials of degree at most n−1)
and λn the Lagrange interpolation polynomial and the Lebesgue function associated
to the n-th row of M, respectively, i.e.,

(Lnf)(x) =

n∑
k=1

f(xkn)lkn(x), f ∈ C, λn(x) =

n∑
k=1

|lkn(x)|,

where lkn are the fundamental Lagrange interpolation polynomials, [2], [10].
The equalities

∫ 1

−1
g(x)f(x)dx =

∫ 1

−1
g(x)(Lnf)(x)dx+Rn(f ; g), f ∈ C, g ∈ L(1/ρ)

p , n ≥ 1 (1.1)

involving

Rn(P, g) = 0, ∀ f ∈ Pn−1 and g ∈ L(1/ρ)
p , n ≥ 1 (1.2)

describe product quadrature formulas of interpolatory type, associated to the spaces

C and L
(1/ρ)
p .

If p = 1, these product quadrature formulas were intensively studied, in their conver-
gence aspects, for various functions g ∈ L1, ρ ∈ L∞ (including ρ(x) = (1−x)a(1+x)b,
a, b ≥ 0) and node matrices M, [1], [3], [4], [7], [8]. We notice, also, the divergence
result obtained by I.H. Sloan and W.E. Smith, for arbitrary node matrices M and
ρ(x) = 1, −1 ≤ x ≤ 1, [8, Th. 6]. A recent result, [5], refers to more general product
quadrature formulas of interpolatory type, involving polynomial projection opera-
tors Ln : C → Pn−1 (namely Lnf ∈ Pn−1, ∀ f ∈ C, and Lnf = f if and only if
f ∈ Pn−1) instead of Lagrange projections in (1.1) and highlights the phenomenon of
double condensation of singularities for the corresponding product quadrature formu-
las (1.1), meaning unbounded divergence on superdense sets belonging to the spaces

C and L
(1/ρ)
1 , for arbitrary node matrices M and ρ ∈ L∞, with ρ(x) > 0 µ-a.e. on

[−1, 1].

The aim of this paper is to point out the superdense unbounded divergence
of the product quadrature formulas described by (1.1) and (1.2) for p = ∞,
ρ(x) = (1 − x)a(1 + x)b, with a, b > −1, and M = M(α,β), α > −1, β > −1, where

M(α,β) is the Jacobi node matrix (namely, its n-th row contains the roots x
(α,β)
n ,

1 ≤ k ≤ n, of the Jacobi polynomial P
(α,β)
n , n ≥ 1). Moreover, some aspects regard-

ing the convergence of these formulas (for functions f ∈ C satisfying a Dini-Lipschitz

condition and arbitrary g ∈ L(1/ρ)
∞ ) will be presented in the last section.

In this paper, the notation Mk, k ≥ 1, stands for some positive constants which
do not depend on n. Also, we denote by ω(f, ·) the modulus of continuity associated
to a function f ∈ C.
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2. Unbounded divergence on superdense sets

Suppose that ρ(x) = (1 − x)a(1 + x)b, a, b > −1 and M = M(α,β), α > −1,
β > −1. Let Un, n ≥ 1, be the continuous linear operators defined as

Un : C → (L
(1/ρ)
∞ )∗; f 7→ Unf

(Unf)(g) =

∫ 1

−1
g(x)(Lnf)(x)dx; f ∈ C, g ∈ L(1/ρ)

∞ ,
(2.1)

where Y ∗ is the Banach space of all continuous linear functionals defined on the
normed space Y .

Using standard arguments and classic results of Functional Analysis, we obtain
(see also [8]):

‖Un‖ = sup{‖Unf‖ : f ∈ C, ‖f‖ ≤ 1}

and

‖Unf‖ = sup

{∣∣∣∣∫ 1

−1
g(x)(Lnf)(x)dx

∣∣∣∣ : g/ρ ∈ L∞, ‖g/ρ‖∞ ≤ 1

}
= sup

{∣∣∣∣∫ 1

−1
ρ(x)g(x)(Lnf)(x)dx

∣∣∣∣ : g ∈ L∞, ‖g‖∞ ≤ 1

}
,

so we get

‖Un‖ = sup{‖ρLnf‖1 : f ∈ C, ‖f‖ ≤ 1}, n ≥ 1. (2.2)

Now, we can state:

Theorem 2.1. Suppose that α ≥ 2a+ 3/2 or β ≥ 2b+ 3/2. Then, a superdense set X0

in the Banach space L
(1/ρ)
∞ exists such that for every g in X0, the set of C consisting

of all functions for which the product quadrature formulas described by (1.1) and (1.2)
are unbounded divergent, namely

Y0(g) =

{
f ∈ C : lim sup

n→∞

∣∣∣∣∫ 1

−1
g(x)(Lnf)(x)dx

∣∣∣∣ =∞
}
,

is superdense in the Banach space C.

Proof. First, we show that the set {‖Un‖ : n ≥ 1} is unbounded. Similarly to [9], let
consider the function fn ∈ C, n ≥ 1, defined by

fn(x) =

{
(−1)k, if x = x

(α,β)
kn , 0 ≤ k ≤ n+ 1

linear, if x ∈ [x
(α,β)
kn , x

(α,β)
k,n−1], 1 ≤ k ≤ n+ 1,

where x
(α,β)
0n = 1 and x

(α,β)
n+1,n = −1.

It follows from (2.2):

‖Un‖ ≥ ‖ρLnfn‖1 =

∫ 1

−1
(1− x)a(1 + x)b|(Lnfn)(x)|dx. (2.3)
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Next, let us suppose that α ≥ 2a + 3/2 > −1/2 and set q0 = 1 − 4(a+ 1)

2α+ 1
(so,

0 ≤ q0 < 1). Using the estimation of [9, formula (3.3), with p = 1 and q = q0], we get:{
‖Un‖ ≥M1 log n, if q0 = 0

‖Un‖ ≥M2n
q0(α+1/2), if q0 > 0.

(2.4)

The relations (2.3) and (2.4) prove the unboundedness of the set {‖Un‖ : n ≥ 1},
if α ≥ 2a+ 3/2; similarly, the same assertion is true for β ≥ 2b+ 3/2 > −1

2
.

Now, we apply the principle of condensation of singularities [3, Theorem 5.2],

with X = L
(1/ρ)
∞ , T = C, Y = R, J = N∗ and An(g; f) = (Unf)(g). It is easily

seen that the hypotheses 1◦ and 2◦ of this principle are fulfilled. In order to show
the validity of the hypothesis 3◦, denote by U = {Un : n ≥ 1} the family of the
operators defined by (2.1). Using the principle of condensation of singularities, [3, Th.
5.4], with respect to the family U and taking into account the unboundedness of the
set {‖Un‖ : n ≥ 1}, we infer that the set of the singularities of U , namely

S(U) = {f ∈ C : sup{‖Unf‖ : n ≥ 1} =∞}, (2.5)

is superdense in C. Now, take T0 = S(U) from (2.5) and remark that

sup{‖Anf‖ : n ≥ 1} = sup{‖Unf‖ : n ≥ 1} =∞,
for every f ∈ T0, therefore the hypothesis 3◦ of [3, Theorem 5.2] holds, too. Finally,
denote by Y0(g) the set of singularities of the family A(g) = {An(g, ·) : n ≥ 1}, which
completes the proof. �

3. Dini-Lipschitz convergence

Let us estimate the quadrature errors Rn(f ; g) of (1.1), see also [7], [8]. Denoting

by I : C → (L
(1/ρ)
∞ )∗, the operator given by (If)(g) =

∫ 1

−1
g(x)f(x)dx and taking

into account the interpolatory condition (1.2), we get:

|Rn(f ; g)| = |(Un − I)(f − p)(g)| ≤ ‖U1 − I‖ · ‖f − p‖ · ‖g‖(1/ρ)∞ . (3.1)

Further, we obtain, for every f ∈ C:

‖ρLnf‖1 =

∫ 1

−1
ρ(x)|(Lnf)(x)|dx ≤

(∫ 1

−1
ρ(x)λn(x)dx

)
‖f‖,

so, (2.2) leads to:
‖Un‖ ≤ ‖ρλn‖1. (3.2)

Similarly, we get
‖I‖ ≤ ‖ρ‖1. (3.3)

Now, combining the relations (3.1), (3.2) and (3.3), the estimation

‖Rn(f ; g)‖ ≤M3(‖ρ‖1 + ‖ρλn‖1) · ‖g/ρ‖∞ · ω
(
f ;

1

n

)
(3.4)

holds for sufficient large n ≥ 1.
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The following step is to estimate ‖ρλn‖1. We have:

‖ρλn‖1 =

∫ 1

−1
(1− x)a(1 + x)bλn(x)dx = I(1)n + I(2)n , with

I
(1)
n =

∫ 0

−1
(1− x)a(1 + x)bλn(x)dx and

I
(2)
n =

∫ 1

0

(1− x)a(1 + x)bλn(x)dx.

(3.5)

Using the estimation

λn(x)− 1 ∼ |P (α,β)
n |

√
n[1 + (1− x)(2α+1)/4 log n], 0 ≤ x ≤ 1, [6],

we obtain

I(2)n ∼
∫ 1

0

(1− x)adx+
√
n

∫ 1

0

(1− x)a|P (α,β)
n (x)|dx

+
√
n(log n)

∫ 1

0

(1− x)a+α/2+1/4|P (α,β)
n (x)|dx. (3.6)

Next, the estimation [10, formula (7.34.1)]

∫ 1

0

(1− x)µ|P (α,β)
n (x)|dx ∼


nα−2µ−2, α > 2µ+ 3/2

n−1/2 log n, α = 2µ+ 3/2

n−1/2, α < 2µ+
3

2

; α, β, µ > −1,

gives for µ = a and µ = a+ α/2 + 1/4, respectively:

∫ 1

0

(1− x)a|P (α,β)
n (x)|dx ∼


nα−2a−2, α > 2a+ 3/2

n−1/2 log n, α = 2a+ 3/2

n−1/2, α < 2a+ 3/2

(3.7)

∫ 1

0

(1− x)a+α/2+1/4|P (α,β)
n |dx ∼ n−1/2. (3.8)

Finally, a combination of (3.6), (3.7) and (3.8) yields:

I(2)n ∼ 1 + log n+


nα−2a−3/2, α > 2a+ 3/2

log n, α = 2a+ 3/2

1, α < 2a+ 3/2.

(3.9)

A similar estimation holds for I
(1)
n of (3.5), namely:

I(1)n ∼ 1 + log n+


nβ−2b−3/2, β > 2b+ 3/2

log n, β = 2b+ 3/2

1, β < 2b+ 3/2.

(3.10)

Now, we prove the following statement.
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Theorem 3.1. If ρ(x) = (1− x)a(1 + x)b, −1 < α ≤ 2a+ 3/2 and −1 < β ≤ 2b+ 3/2,
then the product quadrature formulas given by (1.1) and (1.2) are convergent for each

g ∈ L(1/ρ)
∞ and for each f ∈ C satisfying a Dini-Lipschitz condition

lim
δ↘0

ω(f ; δ) log δ = 0.

Proof. The relations (3.5), (3.9) and (3.10) lead to the estimation ‖ρλn‖1 ∼ log n.
which combined with (3.4) gives:

|Rn(f ; g)| ≤M4 · ‖g/ρ‖∞ · ω
(
f ;

1

n

)
log n,

for sufficient large n ≥ 1, which completes the proof. �
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