A FIXED POINT APPROACH OF THE ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR DIFFERENTIAL EQUATIONS OF SECOND ORDER

OCTAVIAN MUSTAFA, CEZAR AVRAMESCU

Abstract. In an adecquate Banach space the integral operator associated to the initial value problem

$$\begin{cases} u'' + f(t, u, u') = 0, \ t \ge t_0 \\ u(t_0) = U_0 \quad u'(t_0) = U_1 \end{cases}$$
(1)

for some $t_0 \ge 1$ (for simplicity) satisfies the requirements of the Schauder-Tychonov theorem if f(t, u, v) is under a Bihari type restriction. The fixed point u(t) of this operator is asymptotic to at + b as $t \to +\infty$, where a, b are real constants.

1. Introduction

Starting with the paper by Bellman [3], functional analysis is freequently involved in studying the asymptotic behavior of solutions for differential equations. Papers such as those of Massera and Schäffer [5] are now fundamental.

Another important step is made by Corduneanu [4] who uses certain function spaces to analyze those solutions which go to $+\infty$ in the same way as some positive test function g, *i.e.* solutions x(t) such that |x(t)| = O(g(t)).

Corduneanu introduces Banach spaces like $(C_g, \|.\|_q)$ below:

$$C_g = \{ x \in C(\mathbb{R}_+, \mathbb{R}^m) : \lambda_x > 0, |x(t)| \le \lambda_x g(t), \ t \in \mathbb{R} \}$$

with the norm

$$||x||_g = \sup_{t\geq 0} \frac{|x(t)|}{g(t)}.$$

Lucrare elaborată în cadrul contractului de cercetare cu CNCSIS no. 196, cod 303, din 14.06.1999.

Such spaces are used also by Avramescu [1] for solutions x(t) such that |x(t)| = o(g(t)).

Following these ideas an adecquate Banach space is introduced herein to study the solutions u(t) of problem (1) which go to some $a_u t + b_u$ as $t \to +\infty$, where a_u , b_u are real constants.

2. The fixed point technique applied to the study of asymptotic behavior

Consider the initial value problem

$$\begin{cases} u'' + f(t, u, u') = 0, t \ge t_0 \\ u(t_0) = U_0 \quad u'(t_0) = U_1 \end{cases}$$

when the following hold true:

(i) The function f(t, u, v) is continuous in $D = \{(t, u, v) : t \in [t_0, +\infty), u, v \in \mathbb{R}\}$ and f(t, 0, 0) = 0 for every $t \ge t_0$.

(ii) There exist three continuous functions $h, g_1, g_2 : \mathbb{R}_+ \to \mathbb{R}_+$ such that

$$|f(t, u_1, v_1) - f(t, u_2, v_2)| \le h(t)g_1(\frac{|u_1 - u_2|}{t})g_2(|v_1 - v_2|)$$
(2)

where for s > 0 the functions $g_1(s)$, $g_2(s)$ are positive and nondecreasing,

$$A = \int_{t_0}^{\infty} sh(s)ds < +\infty \tag{3}$$

and

$$\sup_{r \ge t_0} \frac{r}{g_1(r)g_2(r)} = +\infty \tag{4}$$

and

$$g_1(0)g_2(0) = 0. (5)$$

On the real linear space $X(t_0) = \{ u \in C^1(t_0, +\infty; \mathbb{R}) : \lim_{t \to +\infty} u'(t) = a_u, \lim_{t \to +\infty} [u(t) - a_u t] = b_u; a_u, b_u \in \mathbb{R} \}$ we introduce the norm

$$||u|| = \sup_{t \ge t_0} \{ |u'(t)| + |u(t) - a_u t| + \frac{|u(t)|}{t} \}.$$

Proposition 2.1. The space $(X(t_0), ||.||)$ is complete.

Proof. Consider $(f_n)_{n\geq 1}$ a Cauchy sequence in $X(t_0)$. Then the sequence of derivatives, $(f'_n)_{n\geq 1}$, is uniformly convergent on $[t_0, +\infty)$ to a continuous function g while $(f_n)_{n\geq 1}$ is pointwise convergent on $[t_0, +\infty)$ to a certain function f. The Weierstrass theorem regarding sequences of derivable functions (see Niculescu [7], Theorem 6.5.4, p. 283-284) shows that f is a C^1 -function on $[t_0, +\infty)$ and f' = g. Furthermore, $(f_n)_{n\geq 1}$ has local uniform convergence to f since for every $\varepsilon > 0$ there exists $N(\varepsilon) > 0$ such that

$$\left|\frac{f_n(t)}{t} - \frac{f(t)}{t}\right| < \varepsilon, \ t \ge t_0$$

for every $n \geq N(\varepsilon)$. In this way,

$$\sup_{t\in[t_0,T]}|f_n(t)-f(t)|\leq \varepsilon T, \ n\geq N(\varepsilon)$$

for T > 0 fixed. The usual $\varepsilon - N(\varepsilon)$ technique shows that $f \in X(t_0)$ and

$$\lim_{n \to +\infty} a_{f_n} = a_f, \ \lim_{n \to +\infty} b_{f_n} = b_f$$

and $\frac{f_n(t)}{t}$ goes uniformly to $\frac{f(t)}{t}$ on $[t_0, +\infty)$ as $n \to +\infty$ and $f_n(t) - a_{f_n}t$ goes uniformly to $f(t) - a_f t$ on $[t_0, +\infty)$ as $n \to +\infty$.

Finally, f_n goes to f in $X(t_0)$ as $n \to +\infty$.

The operator $T: X(t_0) \to X(t_0)$ is defined by

$$(Tu)(t) = U_1t + U_0 - \int_{t_0}^t (t-s)f(s, u, u')ds.$$

One has the following estimations:

$$\begin{cases} |(Tu_1 - Tu_2)'(t)| \le g_1(||u_1 - u_2||)g_2(||u_1 - u_2||) \int_{t_0}^{\infty} h(s)ds \\ \frac{|(Tu_1 - Tu_2)(t)|}{t} \le g_1(||u_1 - u_2||)g_2(||u_1 - u_2||) \int_{t_0}^{\infty} h(s)ds \end{cases}$$

 \mathbf{and}

$$\left| \int_{t}^{\infty} |f(s, u_{1}, u_{1}')| \, ds - \int_{t}^{\infty} |f(s, u_{2}, u_{2}')| \, ds \right|$$

$$\leq \frac{g_{1}(||u_{1} - u_{2}||)g_{2}(||u_{1} - u_{2}||)}{t} \int_{t}^{\infty} sh(s) \, ds$$
(6)

for $u_1, u_2 \in X(t_0)$ and $t \ge t_0$. The values of a_{Tu}, b_{Tu} can be computed from

$$\begin{cases} a_{Tu} = U_1 - \int_{t_0}^{\infty} f(s, u, u') ds \\ b_{Tu} = U_0 + \int_{t_0}^{\infty} sf(s, u, u') ds, \end{cases}$$

since $\lim_{t \to +\infty} \{t \int_{t}^{\infty} f(s, u, u') ds\} = 0$ for every $u \in X(t_0)$. Using u(t) = 0, this follows easily from (6) since f(t, 0, 0) = 0 for $t \ge t_0$. We need also the formula $(Tu)(t) - a_{Tu}t = U_0 + \int_{t_0}^{t} sf(s, u, u') ds + t \int_{t}^{\infty} f(s, u, u') ds$. All of this shows that $TX_0 \subseteq X_0$ and

$$||Tu_1 - Tu_2|| \le 3Ag_1(||u_1 - u_2||)g_2(||u_1 - u_2||), \ u_1, u_2 \in X(t_0).$$
(7)

A compactness criterion on $X(t_0)$ is the one below.

Proposition 2.2. Let $M \subset X(t_0)$ satisfy the next properties:

(i) For every $\varepsilon > 0$ there exists L > 0 such that

$$|u'(t)| \le L, \quad |u(t) - a_u t| \le L$$

for every $t \ge t_0$ and $u \in M$.

(ii) For every $\varepsilon > 0$ there exists $\delta(\varepsilon) > 0$ such that

$$|u'(t_1) - u'(t_2)| < arepsilon, \ |u(t_1) - u(t_2) - a_u(t_1 - t_2)| < arepsilon$$

for every t_1 , $t_2 \ge t_0$, with $|t_1 - t_2| < \delta(\varepsilon)$, and $u \in M$.

(iii) For every $\varepsilon > 0$ there exists $Q(\varepsilon) > 0$ such that

$$|u'(t) - a_u| < \varepsilon, \ |u(t) - a_u t - b_u| < \varepsilon$$

for every $t \geq Q(\varepsilon)$ and $u \in M$.

Then, M is relatively compact in $X(t_0)$.

Proof. A simple consequence of the compactness criterion on $C_n^f = \{u \in C(t_0, +\infty; \mathbb{R}^n) : \lim_{t \to +\infty} u(t) = l_u, l_u \in \mathbb{R}^n\}$. See Avramescu [2].

We introduce the straight line $x_0(t) = U_1t + U_0$. Thus, $T(0) = x_0$. According to (4) $\sup_{r \ge t_0} \frac{r}{g_1(||x_0||+r)g_2(||x_0||+r)} = +\infty$ and from (3) there exists $b \ge ||x_0||$ such that $3 \int_{t_0}^{\infty} sh(s) ds \le \frac{b}{g_1(||x_0||+b)g_2(||x_0||+b)}$. The set $D_0 = \{u \in X(t_0) : ||u - x_0|| \le b\}$ is closed and convex.

Theorem 2.3. The requirements below are satisfied:

- (a) $TD_0 \subseteq D_0$.
- (b) If H is bounded in $X(t_0)$ then TH is relatively compact in $X(t_0)$.
- (c) The operator T is continuous in $X(t_0)$.

Proof. For (a) one has the estimation

$$||Tu - x_0|| \le 3g_1(||x_0|| + b)g_2(||x_0|| + b)\int_{t_0}^{\infty} sh(s)ds \le b.$$

For (b) one has to test the properties (i), (ii) and (iii) from Proposition 2.2. For (i), if $M = \sup_{h \in H} ||h||$ then

$$||Th|| \le L = ||x_0|| + 3Ag_1(M)g_2(M),$$

according to (7) since $T(0) = x_0$. For (ii), if $t_1 \ge t_2 \ge t_0$ then one has the following estimations:

$$|(Tu)'(t_1) - (Tu)'(t_2)| \le g_1(M)g_2(M)\int\limits_{t_2}^{t_1}h(s)ds$$

and

$$|(Tu)(t_1) - (Tu)(t_2) - a_{Tu}(t_1 - t_2)|$$

$$\leq g_1(M)g_2(M)\{\int_{t_0}^{\infty} h(s)ds + \int_{t_2}^{t_1} h(s)ds\}(t_1 - t_2).$$

For (iii), again, one has the estimations below:

$$|(Tu)'(t) - a_{Tu}| \leq g_1(M)g_2(M)\int_t^\infty h(s)ds$$

and

$$|(Tu)(t) - a_{Tu}t - b_{Tu}| \le g_1(M)g_2(M)\int_t^\infty sh(s)ds + |R(u)|(t),$$

where $R(u)(t) = t \int_{t}^{\infty} f(s, u, u') ds$. According to (6), $\lim_{t \to +\infty} R(u)(t) = 0$ uniformly with respect to $u \in H$ since R(0) = 0 and

$$|R(u)(t)| \leq g_1(M)g_2(M)\int_t^\infty sh(s)ds, \ u \in H.$$

The requirement (c) is justified by (5). If u_n goes to u in $X(t_0)$ as $n \to +\infty$

$$||Tu_n - Tu|| \le 3Ag_1(||u_n - u||)g_2(||u_n - u||) \to 0$$

as $n \to +\infty$.

then

According to the Schauder-Tychonov theorem (see Rus [9], Theorem 7.42, p. 58-59) the operator T has a fixed point u(t) in $X(t_0)$. This is exactly the desired solution of problem (1).

Note. Whenever (2) is replaced by the Lipschitz type restriction

$$|f(t, u_1, v_1) - f(t, u_2, v_2)| \le h(t)(\frac{|u_1 - u_2|}{t} + |v_1 - v_2|)$$

and (3) is valid the operator $T: X(t_0) \to X(t_0)$ becomes a contraction under some Bielecki type norm. See Mustafa [6].

In what regards the term $\frac{|u_1-u_2|}{t}$ in (2) it appears to be a natural requirement. See Rogovchenko [8], Theorems 1-3.

Since (4) implies that

$$\int_{t_0}^{\infty} \frac{ds}{g_1(s)g_2(s)} \geq \sup_{r \geq t_0} \frac{r}{g_1(r)g_2(r)} = +\infty,$$

86

which is the standard Bihari condition, (4) itself can be properly refer to by a Bihari

type condition.

References

- [1] C. Avramescu, Sur l'existence des solutions des équations intégrales dans certains espaces fonctionnels, An. Univ. din Craiova, 13 (1987)
- [2] C. Avramescu, Sur l'existence des solutions convergentes de systèmes d'équations différentielles non linéaires, Ann. Math. Pura e Appl. IV, 81, LXXXI (1969), p. 147-168
- [3] R. Bellman, On an application of a Banach-Steinhaus theorem to the study of the boundness of solutions of nonlinear differential and difference equations, Ann. of Math., vol. 49, 3 (1948)
- [4] C. Corduneanu, Problèmes globaux dans la théorie des équations intégrales de Volterra, Ann. Math. Pura e Appl. 67 (1965)
- [5] J.J. Massera, J.G. Schäffer, Linear differential equations and function spaces, Academic Press, New-York, 1966
- [6] O. Mustafa, A fixed point approach of the asymptotic behavior of solutions for differential equations of second order, submitted
- [7] C.P. Niculescu, Fundaments of mathematical analysis (in Romanian), vol. I: Analysis on the real axis, Ed. Academiei, București, 1996
- [8] Y.V. Rogovchenko, On the asymptotic behavior of solutions for a class of second order nonlinear differential equations, Collect. Math. 49, 1 (1998), p. 113-120
- [9] I.A. Rus, Principles and applications of the fixed point theory (in Romanian), Ed. Dacia, Cluj-Napoca, 1979