A FIXED POINT THEOREM FOR HICKS-TYPE CONTRACTIONS IN PROBABILISTIC METRIC SPACES

DOREL MIHET

Abstract. A fixed point theorem for mappings with contractive iterate at a point on bounded uniform spaces is proved. As particular cases some fixed point theorems of Hicks - type are obtained.

1. A fixed point theorem

 $X \times X \rightarrow [0,\infty)$ with the properties

Definition 1.1. Let X be a nonempty set and \mathcal{B} be the class of all functions β :

 $\begin{array}{l} \beta 1) \ \beta(x,y) = 0 \Leftrightarrow x = y \\ \beta 2) \ \beta(x,y) = \beta(y,x)(\forall)x, y \in X \\ \beta 3) \ (\forall)\varepsilon > 0 \ (\exists)\delta > 0 : (\beta(x,y) < \delta, \beta(y,z) < \delta) \Rightarrow \beta(x,z) < \varepsilon \\ \beta 4) \ (\exists)M > 0 : \beta(x,y) \leq M, (\forall)x, y \in X. \\ A \ B \ - space \ is \ a \ pair \ (X,\beta) \ with \ \beta \in \mathcal{B}. \end{array}$

Proposition 1.2 ([1]). If β satisfies β 1) – β 3) then the family

$$U_{\beta} = \{S_{\beta,\varepsilon}\}_{\varepsilon>0}, where S_{\beta,\varepsilon} = \{(x,y) \in X^2 | \beta(x,y) < \varepsilon\}$$

is a base for a metrizable uniformity on X (which we will call the U_{β} - uniformity).

The proof is easy to be reproduced.

Definition 1.3. If M is a positive number, Φ_M means the class of all functions $\varphi : [0, \infty) \to [0, \infty)$ for which there exists $\alpha > M$ such that $\lim_{n\to\infty} \varphi^n(\alpha) = 0$. $(\varphi^n = \varphi \circ \varphi \circ \cdots \circ \varphi)$.

¹⁹⁹¹ Mathematics Subject Classification. 54-E70, 47-H10. Key words and phrases. uniform spaces, fixed point theorem, Hicks-contractions.

Definition 1.4. Let (X,β) be a \mathcal{B} space and $\varphi:[0,\infty) \to [0,\infty)$ be a function. We say that the mapping $f: X \to X$ has a $(O - \varphi)$ -contractive iterate at $x \in X$ if for each $y \in O_f(x)$ there exists

 $n = n(y) \in \mathbb{N}$ such that

$$(\varepsilon > 0, z \in O_f(y), \beta(y, z) < \varepsilon) \Rightarrow \beta(f^n y, f^n z) < \varphi(\varepsilon),$$

where $O_f(y)$ denoted the set $\{f^n y | n \in \mathbb{N}\}$.

Theorem 1.5. Let (X, β) be a U_{β} - complete \mathcal{B} -space. If $\varphi \in \Phi_M$ and $f : X \to X$ is a continuus mapping which has a $(O - \varphi)$ - contractive iterate at $x \in X$, then f has a fixed point which can be obtained by the successive approximation method, starting from an arbitrary point of $O_f(x)$.

Proof. We will show that for every $y \in O_f(x)$ the sequence $\{f^n y\}_{n \in \mathbb{N}}$ is a Cauchy sequence.

Lemma 1.6. Let (X,β) be a \mathcal{B} space, $\varphi \in \Phi_M$ and $f : X \to X$ be a mapping with $(O - \varphi)$ -contractive iterate at $x \in O_f(x)$. Then, for every $\varepsilon > 0$ there exists $m_0 = m(y,\varepsilon) \in \mathbb{N}$ such that

$$\beta(f^{m_0}y, f^{m_0+m}y) < \varepsilon \ (\forall)m \in \mathbf{N}.$$

Proof of Lemma. First we show that for every $s \in \mathbb{N}$ there exists $u = u(s, y) \in \mathbb{N}$ such that, for every $\alpha > M$,

(1)
$$\beta(f^{u(s)}y, f^{u(s)+m}y) < \varphi^{s}(\alpha), \ (\forall) \ m \in \mathbb{N}.$$

(1) is true for s = 0, because β satisfies β 4) and $M < \alpha$. Next, for every $j \ge 0$, let us define recursively the numbers v(i) and u(j) by v(0) = u(0), $v(j+1) = n(f^{u(j)}x)$ and u(j+1) = u(j) + v(j+1).

Then we have the following implication :

 $\beta(f^{u(s)}y, f^{u(s)+m}y) < \varphi^s(\alpha) \Rightarrow \beta(f^{v(s+1)}(f^{u(s)}y), f^{v(s+1)}(f^{u(s)+m}y)) < \varphi^{s+1}(\alpha),$ that is

$$\beta(f^{u(s)}y, f^{u(s)+m}y) < \varphi^s(\alpha) \Rightarrow \beta(f^{u(s+1)}y, f^{u(s+1)+m}y) < \varphi^{s+1}(\alpha)$$

-	
1	4
•	-

So, the relation (1) is proved by induction.

Now let $\varepsilon > 0$ be given. Since $\varphi \in \Phi_M$, then there exists $\alpha > M$ such that $\varphi^n(\alpha) \to 0$. For this α let us consider $s_0 \in \mathbb{N}$ for which $\varphi^{s_0}(\alpha) < \varepsilon$. If we take in (1) $m_0 = u(s_0)$ then we obtain

$$\beta(f^{m_0}y, f^{m_0+m}y) < \varepsilon \ (\forall) \ m \in \mathbb{N}$$

and the lemma is proved.

Now it is easy to show that $\{f^n(y)\}$ is a Cauchy sequence: For given $\varepsilon > 0$ we consider $\delta(\varepsilon)$ from $\beta 3$.

By Lemma 1.6 there exists $m_0 \in \mathbb{N}$ such that

$$\beta(f^{m_0}y, f^{m_0+p}y) < \delta, (\forall)p \in \mathbf{N},$$

hence

$$\beta(f^{m_0}y, f^ny) < \delta, \beta(f^{m_0}y, f^{n+m}y) < \delta, \ (\forall) \ n \ge m_0, (\forall)m$$

From β 3) it follows that there exists $m_0 = m_0(y, \varepsilon) \in \mathbb{N}$ such that

$$\beta(f^n y, f^{n+m} y) < \varepsilon, \ (\forall) n \ge m_0, \ (\forall) m \in \mathbb{N},$$

i.e. $\{f^n(y)\}_{n \in \mathbb{N}}$ is a Cauchy sequence.

Since (X, β) is U_{β} - complete, then there exists $u_* \in X$, $u_* = \lim_{n \to \infty} f^n y$. From the continuity of f it follows that $f(u_*) = u_*$.

Corollary 1.7. If (X,β) is a complete B-space and $f : X \to X$ is a continous mapping with the property that for every $y \in X$ there exists $n = n(y) \in \mathbb{N}$ such that, for every $z \in O_f(y)$,

$$(\varepsilon > 0, \beta(y, z) < \epsilon) \Rightarrow \beta(f^n y, f^n z) < \varphi(\varepsilon)$$

then f has a fixed point which can be obtained by the successive approximation method, starting from an arbitrary point of X.

2. Applications to PM - spaces

Definition 2.1 ([10]). A PSM space (S, \mathcal{F}) is called a H - space if the following triangle inequality takes place :

 $(PM_{3H}) \ (\forall)\varepsilon > 0 \ (\exists)\delta > 0: (F_{pq}(\delta) > 1 - \delta, F_{qr}(\delta) > 1 - \delta) \Rightarrow F_{pr}(\varepsilon) > 1 - \varepsilon.$

Two important examples are

Example 2.2.

- a) Every σ Menger space (S, F, T) with sup_{a<1} T(a, a) = 1 and inf_{b>0}σ(b, b) = 0 is a H space.
- b) If (S, \mathcal{F}, τ) is a Serstnev space and the t function τ is continuous at $(\varepsilon_0, \varepsilon_0)$, then (S, \mathcal{F}) is a H space (for the basic notions used here see [6], [14] or [15]).

Lemma 2.3. Let r be a strictly decreasing and continuous function on $[0, \infty)$ such that r(0) = 1 and there exists $\alpha > 0$ such that $r(\alpha) = 0$. If (S, \mathcal{F}) is a PSM space and K_r is the mapping defined on $S \times S$ by

$$K_r(p,q) = \sup\{t > 0 | F_{pq}(t) \le r(t)\}$$

then

- a) K_r satisfies $\beta 4$, $\beta 1$ and $\beta 2$.
- b) $K_r(p,q) < t \Leftrightarrow F_{pq}(p,q) > r(t)$
- c) If (S, \mathcal{F}) is a H space then K_r satisfies $\beta 3$) and the uniformity U_{K_r} is the \mathcal{F} uniformity.

Proof. Let $g(t) = F_{pq}(t) - r(t)$. Then g is a left conntinous and strictly increasing function on $[0, \infty)$. If we denote $A = \{t > 0 | g(t) \ge 0\}$ then because g(t) > 0 if $t > \alpha$, we have $A \subset [0, \alpha]$ and we can choose $M = \alpha$. So K_r satisfies $\beta 4$). 76 Let now p = q. Then from PM1), $F_{pq}(t) = 1$ $(\forall)t > 0$, so r(0) = 1 from which it follows $K_r(p,q) = 0$. Conversely, if we suppose that $K_r(p,q) = 0$, then $F_{pq}(t) > r(t)$ $(\forall)t > 0$, so $F_{pq}(0+) = 1$ and, from PM 1) again, p = q.

 $\beta 2$) follows immediately from PM2): $F_{pq} = F_{qp} \ (\forall) p, q \in S$.

b) Let p, q be fixed and $m = \sup A = K_r(p, q)$.

If $(x_n) \subset A, x_n \nearrow m$, then, by the left continuity of g it follows $g(m) \leq 0$ and by the monotonocity of g we deduce that $g(t) > 0 \Rightarrow t > m$. So we proved the implication $F_{pq}(t) > r(t) \Rightarrow K_r(p,q) < t$. The converse implication immediately follows from the definition of $K_r(p,q)$.

c) Let us suppose that (S, \mathcal{F}) is a H - space. We prove that $(\forall) \varepsilon > 0(\exists) \delta > 0 : (F_{pq}(\delta) > r(\delta), F_{qr}(\delta) > r(\delta)) \Rightarrow F_{pr}(\varepsilon) > r(\varepsilon)$ and then $\beta 3$) follows from b).

Let $\varepsilon > 0$ be fixed. We choose $\varepsilon_1 = \min(\varepsilon, 1 - r(\varepsilon))$ and let δ_1 be the ε_1 - correspondent from $PM3_H$). There exists $\delta < \delta_1$ such that $r(\delta) > 1 - \delta_1$. Then, $F_{pq}(\delta) > r(\delta), F_{qr}(\delta) > r(\delta)) \Rightarrow (F_{pq}(\delta_1) > 1 - \delta_1, F_{qr}(\delta_1) > 1 - \delta_1) \Rightarrow F_{pr}(\varepsilon_1) > 1 - \varepsilon_1 \Rightarrow F_{pr}(\varepsilon) > r(\varepsilon).$

The fact that the U_{K_r} uniformity is the \mathcal{F} uniformity immediately follows from b).

The lemma is proved.

The mapping d_{m_1,m_2} below has been introduced by V. Radu ([12]). Let \mathcal{M} be the family of all functions $m: [0,\infty) \to [0,\infty)$ such that

- m1) $m(t+s) \ge m(t) + m(s) \ (\forall)t, s \ge 0$
- m2) $m(t) = 0 \Leftrightarrow t = 0$
- m3) m is continous.

Let (S, \mathcal{F}) be a PSM space. If $f : [0, 1] \to \mathbf{R}$ is a continuous and strictly decreasing function with f(1) = 0 and $m_1, m_2 \in \mathcal{M}$, then d_{m_1,m_2} is the mapping defined on S^2 by

$$d_{m_1,m_2}(p,q) = \sup\{t \ge 0 | m_1(t) \le f \circ F_{pq}(m_2(t))\}.$$

Lemma 2.4. a) (\exists) $M > 0 : d_{m_1,m_2}(p,q) \le M$, (\forall) $p,q \in S$.

77

- b) d_{m_1,m_2} satisfies $\beta 1$, $\beta 2$).
- c) $d_{m_1,m_2}(p,q) < t \Leftrightarrow f \circ F_{pq}(m_2(t)) < m_1(t)$
- d) If (S, \mathcal{F}) is a H space, then $\beta = d_{m_1,m_2}$ satisfies β 3) and the uniformity U_{β} is the \mathcal{F} uniformity.

Proof. For a) let us observe that $\lim_{t\to\infty} m_1(t) = \infty$ and so there exists $t_0 > 0$ such that $m_1(t_0) > f(0)$. From this it follows that $d_{m_1,m_2}(p,q) < t_0 \ (\forall) p,q \in S$, because $f \circ F_{pq}(m_2(t_0) \leq f(0) < m_1(t_0)$.

b), c) and d) follows from [12, Theorem 1].

From Lemma 2.3 and Lemma2.4 it follows that if (S, \mathcal{F}) is a H - space, then (S, β) is a \mathcal{B} space (in the first case $\beta = K_r$ and $M = \alpha$ and in the second one $\beta = d_{m_1,m_2}$ and $M = t_0$), and the \mathcal{U}_{β} - uniformity is the \mathcal{F} - uniformity. Thus we can transpose the results from the previous paragraph to contractions on H - space.

Theorem 2.5. Let (S, \mathcal{F}) be a complete H - space and $f : S \to S$ be a continuous mapping with the property that there exists $p \in S$ such that $(\forall) p \in O_f(p)(\exists) n = n(q) \in \mathbb{N} : (t > 0, r \in O_f(q), F_{qr}(t) > 1 - t) \Rightarrow F_{f_q^n, f_r^n}(\varphi(t) > 1 - \varphi(t), where \varphi \in \Phi_1$. Then f has a fixed point.

The proof follows from Lemma 2.3 (r(t) = 1 - t) and Theorem 1.5. For $\varphi(t) = kt$ one obtains Theorem 1.2 from [11].

Theorem 2.6. Let (S, \mathcal{F}) be a complete H - space and $f : S \to S$ be a continuous mapping with the property that for every $p \in S$ there exist $n = n(p) \in \mathbb{N}$ such that, for every $q \in O_f(p)$, $(t > 0, F_{pq}(t) > 1 - t) \Rightarrow F_{f_p^n f_q^n}(\varphi(t)) > 1 - \varphi(t)$, where $\varphi \in \Phi_1$. Then f has a fixed point.

The proof follows from Lemma 2.3 with r(t) = 1 - t and Corollary 1.7

Corollary 2.7 ([7, Theorem 1.a)]). If (S, \mathcal{F}, T) is a complete Menger space under the t - norm T satisfying $\sup_{a<1} T(a, a) = 1$ and $f: S \to S$ is a continuous mapping with the property that for every $x \in S$ there exists $n(x) \in \mathbb{N}$ such that, for every $v \in O_f(x)$,

$$(r > 0, F_{xv}(r) > 1 - r) \Rightarrow F_{f^{n(x)}xf^{n(x)}v}(g(r)) > 1 - g(r)$$

where $g : [0, \infty) \to [0, \infty)$ is a mapping which satisfies $\lim_{n\to\infty} g^n(r) = 0$ for every r > 0 and g(u) < u $(\forall)u > 0$, then f has a fixed point.

The proof follows from *Theorem 2.6* and *Example 2.2*.

If T=Min and g satisfies stronger conditions of Browder type, then one obtains *Theorem 3.3* from [3].

Theorem 2.8. Let (S, \mathcal{F}) be a complete H - space and $f : S \to S$ be a continuous mapping with the property that there exists $p \in S$ such that

 $(\forall)q \in O_f(p) \ (\exists)n = n(q) \in \mathbf{N} : (t > 0, r \in O_f(q), f \circ F_{pq}(m_2(t)) < m_1(t)) \Rightarrow f_\circ F_{f_n^n f_n^n}(m_2(\varphi(t)) < m_1(\varphi(t))$

 $(m_1, m_2 \text{ are like in Lemma 2.4 and } \varphi \in \Phi_{t_0})$, then f has a fixed point which is the limit of the successive approximations, starting from an arbitrary point of $O_f(p)$.

The proof follows from Lemma 2.4 and Theorem 2.6.

If (S, \mathcal{F}) is a H - space of the type (S, \mathcal{F}, T) - Menger space under the t norm T with $\sup_{a<1} T(a, a) = 1$, then from the above theorem we obtain Theorem 1

from [8].

References

- [1] Bourbaki N., Elements de Mathematique, Livre 3, Cap IX, §1, Ex.2.
- [2] Cain C.L., Kasriel R.H, Fixed and periodic Points of Local Contraction Mappings on PM spaces, Math. Syst. Theory Vol. 9, Nr.4 (1976), 289 - 297.
- [3] Chang S sen, The metrization of probabilistic metric spaces with applications, Univ. Novi Sad, Zb Radova Prir. Mat. Fak. Ser. Mat, 15, 1(1985), 107-117.
- [4] Constantin Gh., Istrăţescu I., Elements of Probabilistic Analysis with Applications, Ed. Acad. R.S.R. and Kluwer Academic Publishers, 1989
- [5] Constantin Gh., On some class of contraction mappings in Menger spaces, STPA Nr. 76, Univ. Timisoara, 1985.
- [6] Hadzic O., Fixed point theory in topological vector spaces, Novi Sad, 1984.

- [7] Hadzic O., Some fixed point theorems in probabilistic metric spaces, Univ. u Novom Sadu, Zb. Radova Prir. -mat. Fak, Ser. Mat 15, 1(1985), 23-25.
- [8] Hadzic O., On (n,f,g) locally contractions in probabilistic metric spaces, Univ.Novi Sad, Zb. Radova Prir. mat. Fak, Ser. Mat 23, 1(1992) 1-10.
- [9] Hicks T.L., Fixed point theory in PM spaces, Zb. Radova (Novi Sad), 13 (1983), 63 72.
- [10] Hicks T.L., Sharma P.L, Probabilistic metric structures; Topological classification, Univ.Novi Sad, Zb. Radova Prir. Mat. Fak, 14 (1984), 35-42.
- [11] Mihet D., A fixed point theorem for mappings with contractive iterate in H space, Analele Univ. Timişoara, Vol XXXI 2, 1993, 217-222.
- [12] Radu V., A family of deterministic metrics on Menger spaces, STPA Nr. 78 (1985), Univ. of Timişoara.
- [13] Radu V., On some contraction type mappings in Menger spaces, Analele Univ. Timişoara, XXIII (1985), 61-65.
- [14] Radu V., Lectures on Probabilistic Analysis, Univ. of Timişoara, 1994.
- [15] Schweizer B, Sklar A, Probabilistic metric spaces, North Holland Series in Probability and Appl. Math, 1983.

West University of Timişoara, Fac. of Mathematics, B-dul V. Pârvan 4, 1900 Timişoara, Romania