ON A SUBCLASS OF CERTAIN STARLIKE FUNCTIONS WITH NEGATIVE COEFFICIENTS

TÜNDE DOMOKOS

Abstract

This work presents the class of functions, note by $P(n, \lambda, \alpha)$, which contain univalent functions with negative coefficients, satisfying: $$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)+\lambda z^{2} f^{\prime \prime}(z)}{\lambda z f^{\prime}(z)+(1-\lambda) f(z)}\right\}>\alpha
$$

If $f_{j}(z) \in P(n, \lambda, \alpha), j=\overline{1, m}$, then the convolution of theese functions, $h(z)$, lies to the class $P(n, \lambda, \beta)$, where we have β.

The author obtain the order of starlikeness of a convex function of order α, with negative coefficients. The theorems $2,3,4$ and corrolaris $\mathbf{1 , 2 , 4 , 5}$ are original results of the author.

Let $A(n)$ denote the class of functions of the form

$$
f(z)=z-\sum_{k=n+1}^{\infty} a_{k} z^{k}
$$

$a_{k} \geq 0, n \in N=\{1,2, \ldots, n\}$, which are analytic in the unite disk:

$$
U=\{z \in C:|z|<1\} .
$$

The function $f(z) \in A(n)$ is said to be in the class $P(n, \lambda, \alpha)$ if it satisfies:

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)+\lambda z^{2} f^{\prime \prime}(z)}{\lambda z f^{\prime}(z)+(1-\lambda) f(z)}\right\}>\alpha
$$

for some $\alpha(0 \leq \alpha<1), \lambda(0 \leq \lambda \leq 1)$, and for all $z \in U$.
The classes $P(n, 0, \alpha) \equiv T_{\alpha}(n)$ and $P(n, 1, \alpha) \equiv C_{\alpha}(n)$ were studied by Srivastava, Owa and Chatterjea in [3], and the classes $P(1,0, \alpha) \equiv T^{\star}(\alpha)$ and $P(1,1, \alpha) \equiv$ $C(\alpha)$ by Silvermann in [2].

Theorem 1 ([1]). The function $f(z) \in A(n)$ is in the class $P(n, \lambda, \alpha)$ if and only if:

$$
\sum_{k=n+1}^{\infty}(k-\alpha)(\lambda k-\lambda+1) a_{k} \leq 1-\alpha
$$

For $\lambda=0$ and $\lambda=1$ we obtain two Lemmas in [3], and if $n=1$ too, we obtain two Lemmas in [2]. We have the following theorem :

Theorem 2. If the function $f \in C_{\alpha}(n)$, then $f \in P(n, \lambda, \beta)$, where:

$$
\beta=1-\frac{n(1-\alpha)(\alpha n+1)}{(n+1)(n+1-\alpha)-(1-\alpha)(\lambda n+1)}
$$

The result is sharp, the extremal function is:

$$
f(z)=z-\frac{1-\alpha}{(n+1)(n+1-\alpha)} z^{n+1}
$$

Proof. We know that:

$$
f \in C_{\alpha}(n) \Leftrightarrow \sum_{k=n+1}^{\infty} k(k-\alpha) a_{k} \leq 1-\alpha .
$$

and

$$
f \in P(n, \lambda, \beta) \Leftrightarrow \sum_{k=n+1}^{\infty}(k-\beta)(\lambda k-\lambda+1) a_{k} \leq 1-\beta .
$$

We have to find the largest β such that

$$
\begin{equation*}
\frac{(k-\beta)(\lambda k-\lambda+1)}{1-\beta} \leq \frac{k(k-\alpha)}{1-\alpha} . \tag{1}
\end{equation*}
$$

The inequality (1) is equivalent to

$$
\beta \leq \frac{k(k-\alpha)-k(1-\alpha)(\lambda k-\lambda+1)}{k(k-\alpha)-(1-\alpha)(\lambda k-\lambda+1)}=1-\frac{(k-1)(1-\alpha)(\lambda k-\lambda+1)}{k(k-\alpha)-(1-\alpha)(\lambda k-\lambda+1)} .
$$

We define the function $g(k)$ by:

$$
g(k)=1-\frac{(k-1)(1-\alpha)(\lambda k-\lambda+1)}{k(k-\alpha)-(1-\alpha)(\lambda k-\lambda+1)} .
$$

Therefore $g(k) \leq g(k+1)$ we have that the function $g(k)$ is an increasing function on $k, k \geq n+1$.

Finaly we have :

$$
\beta=g(n+1)=1-\frac{n(1-\alpha)(\lambda n+1)}{(n+1)(n+1-\alpha)-(1-\alpha)(\lambda n+1)}
$$

which completes the proof of our theorem.

Convolution of functions

Let the functions $f_{j}(z)$ be defined by :

$$
f_{j}(z)=z-\sum_{k=n+1}^{\infty} a_{j, k} z^{k}
$$

$a_{j, k} \geq 0, j=1,2, \ldots, m$. Then we define the function $h(z)$ by:

$$
\begin{equation*}
h(z)=z-\sum_{k=n+1}^{\infty}\left(a_{1, k}^{2}+a_{2, k}^{2}+\cdots+a_{m, k}^{2}\right) z^{k} . \tag{2}
\end{equation*}
$$

Theorem 3. If $f_{j}(z) \in P(n, \lambda, \alpha), j=1,2, \ldots, m$, then the function $h(z)$ given by (2) is in the class $P(n, \lambda, \beta)$, where:

$$
\beta=1-\frac{m n(1-\alpha)^{2}}{(n+1-\alpha)^{2}(\lambda n+1)-m\left(1-\alpha^{2}\right)}
$$

The result is sharp, the extremal functions are:

$$
f_{j}(z)=z-\frac{1-\alpha}{(n+1-\alpha)(\lambda n+1)} z^{n+1}, \quad j=1,2, \ldots, m
$$

Proof. By using Theorem 1 we have

$$
\begin{equation*}
\sum_{k=n+1}^{\infty}\left[\frac{(k-\alpha)(\lambda k-\lambda+1)}{1-\alpha}\right]^{2} a_{j, k}^{2} \leq\left[\sum_{k=n+1}^{\infty} \frac{(k-\alpha)(\lambda k-\lambda+1}{1-\alpha)} a_{j, k}\right]^{2} \leq 1 \tag{3}
\end{equation*}
$$

$j=1,2, \ldots, m$. (3) implies:

$$
\frac{1}{m} \sum_{k=n+1}^{\infty}\left[\frac{(k-\alpha)(\lambda k-\lambda+1)}{1-\alpha}\right]^{2}\left(a_{1, k}^{2}+\cdots+a_{m, k}^{2}\right) \leq 1
$$

We have to find the largest β such that:

$$
\begin{equation*}
\frac{(k-\beta)(\lambda k-\lambda+1)}{(1-\beta)} \leq \frac{1}{m} \frac{(k-\alpha)^{2}(\lambda k-\lambda+1)^{2}}{(1-\alpha)^{2}} \tag{4}
\end{equation*}
$$

The inequality (4) is equivalent to

$$
\begin{aligned}
& \beta \leq \frac{(k-\alpha)^{2}(\lambda k-\lambda+1)-m k(1-\alpha)^{2}}{(k-\alpha)^{2}(\lambda k-\lambda+1)-m(1-\alpha)^{2}}= \\
& =1-\frac{m(k-1)(1-\alpha)^{2}}{(k-\alpha)^{2}(\lambda k-\lambda+1)-m(1-\alpha)^{2}}
\end{aligned}
$$

Let the function $s(k)$ be :

$$
s(k)=1-\frac{m(k-1)(1-\alpha)^{2}}{(k-\alpha)^{2}(\lambda k-\lambda+1)-m(1-\alpha)^{2}}
$$

We prove that $s(k) \leq s(k+1)$ for $k, k \geq n+1$, inequality wich is equivalent to

$$
g(k) \geq 0
$$

where

$$
g(k)=2 \lambda k^{3}+(1-\lambda-2 \alpha \lambda) k^{2}+(-1-\lambda+2 \alpha \lambda) k+(m-1)(1-\alpha)^{2} .
$$

We have

$$
g(2)=6 \lambda+4 \lambda(1-\alpha)+2+(m-1)(1-\alpha)^{2} \geq 0
$$

By calculating the derivate of the $g(k)$, we obtain :

$$
g^{\prime}(k)=6 \lambda k^{2}+2(1-\lambda-2 \alpha \lambda) k-1-1+2 \alpha \lambda .
$$

We also have :

$$
\begin{align*}
& g^{\prime}(2)=13 \lambda+6 \lambda(1-\alpha)+3>0 \tag{5}\\
& g^{\prime \prime}(k)=12 \lambda k+2(1-\lambda-2 \alpha \lambda) \tag{6}\\
& g^{\prime \prime}(2)=18 \lambda+4 \lambda(1-\alpha)+2>0 \tag{7}\\
& g^{\prime \prime \prime}(k)=12 \lambda>0, \text { for } 0<\lambda \leq 1 \tag{8}
\end{align*}
$$

For $\lambda=0$ we have $g(k)=k(k-1)+(m-1)(1-\alpha)^{2} \geq 0$
So that (8) implies that the function $g^{\prime \prime}(k)$ is an increasing function on k , and by using (7) we have $g^{\prime \prime}(k)>0$. This implies that the function $g^{\prime}(k)$ is increasing on k. Using (5) we have $g^{\prime}(k)>0$ so that the function $g(k)$ is increasing on k. But $g(2) \geq 0$ so $g(k) \geq 0$ for $k \geq n+1$.
Therefore $s(k) \leq s(k+1)$, the function $s(k)$ is an increasing function in $k, k \geq n+1$, and this implies that :

$$
\beta \leq s(n+1)=1-\frac{m n(1-\alpha)^{2}}{(n+1-\alpha)^{2}(\lambda n+1)-m(1-\alpha)^{2}} .
$$

For the functions :

$$
f_{j}(z)=z-\frac{1-\alpha}{(n+1-\alpha)(\lambda n+1) .} z^{n+1}, \quad j=1,2, \ldots, m
$$

the result is sharp.

Corollary 1. If $f_{j}(z) \in P(n, \lambda, \alpha), j=1,2$, then the function :

$$
h(z)=z-\sum_{k=n+1}^{\infty}\left(a_{1, k}^{2}+a_{2, k}^{2}\right) z^{k}
$$

is in the class $P(n, \lambda, \beta)$, where:

$$
\beta=1-\frac{2 n(1-\alpha)^{2}}{\left.(n+1-\alpha)^{2}\right)(\lambda n+1)-2(1-\alpha)^{2}} .
$$

The result is sharp for the functions :

$$
f_{1}(z)=f_{2}(z)=z-\frac{1-\alpha}{(n+1-\alpha)(\lambda n+1)} z^{n+1}
$$

Corollary 2. Let $f_{j}(z) \in T_{\alpha}(n), j=1,2, \ldots, m$. Then the function $h(z)$ given by (2) is in the class $T_{\beta}(n)$, where

$$
\beta=1-\frac{m n(1-\alpha)^{2}}{(n+1-\alpha)^{2}-m(1-\alpha)^{2}} .
$$

The result is sharp, the extremal functions are :

$$
f_{j}(z)=z-\frac{1-\alpha}{n+1-\alpha} z^{n+1} \quad j=1,2, \ldots, m
$$

Corollary 3. Let $f_{j}(z) \in C_{\alpha}(n), j=1,2, \ldots, m$. Then the function $h(z)$ given by (2) lies to the class $C_{\beta}(n)$, where:

$$
\beta=1-\frac{m n(1-\alpha)^{2}}{(n+1)(n+1-\alpha)^{2}-m(1-\alpha)^{2}} .
$$

The result is sharp for the functions :

$$
f_{j}(z)=z-\frac{1-\alpha}{(n+1)(n+1-\alpha)} z^{n+1} \quad j=1,2, \ldots, m
$$

The order of starlikeness of a convex function of order α from the class $A(n)$

We know that the class $P(n, 1, \alpha) \equiv C_{\alpha}(n)$ contain convex functions of order α, with :

$$
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha, \quad z \in U
$$

and the class $P(n, 0, \beta) \equiv T_{\beta}(n)$ contain starlike functions of order β, with :

$$
\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>\beta, \quad z \in U
$$

Theorem 4. If $f \in C_{\alpha}(n)$, then $f \in T_{\beta}(n)$, where :

$$
\beta=\frac{n(n+1)}{(n+1)(n+1-\alpha)-(1-\alpha)}
$$

The result is sharp for the function :

$$
f(z)=z-\frac{1-\alpha}{(n+1)(n+1-\alpha)} z^{n+1} .
$$

Proof. Using the Theorem 1. for $\lambda=1$ we have:

$$
\begin{equation*}
\sum_{k=n+1}^{\infty} k(k-\alpha) a_{k} \leq 1-\alpha \tag{9}
\end{equation*}
$$

From the Theorm 1. for $\lambda=0$ we have:

$$
\begin{equation*}
f \in T_{\beta}(n) \Leftrightarrow \sum_{k=n+1}^{\infty}(k-\beta) a_{k} \leq 1-\beta \tag{10}
\end{equation*}
$$

We have to find the largest β such that:

$$
\begin{equation*}
\frac{k-\beta}{1-\beta} \leq \frac{k(k-\alpha)}{1-\alpha} . \tag{11}
\end{equation*}
$$

The inequality (11) is equivalent to:

$$
\beta \leq \frac{k(k-1)}{k(k-\alpha)-(1-\alpha)} .
$$

Let the function $g(k)$ be:

$$
g(k)=\frac{k(k-1)}{k(k-\alpha)-(1-\alpha)} .
$$

Therefore $g^{\prime}(k) \geq 0$ for $k, k \geq n+1$, the function $g(k)$ is an increasing function on k, $k \geq n+1$, we have :

$$
\beta \leq g(n+1)=\frac{n(n+1)}{(n+1)(n+1-\alpha)-(1-\alpha)},
$$

which completes the proof of our theorem.
The inequality in (9) and (10) are attained for the function:

$$
f(z)=z-\frac{1-\alpha}{(n+1)(n+1-\alpha)} z^{n+1} .
$$

Corollary 4. For $\alpha=0$ we obtain $\beta=\frac{n+1}{n+2}$. Thus a convex function from class $A(n)$ is starlike of order $\beta=\frac{n+1}{n+2}$.

Corollary 5. For $n=1$ we have $\beta=\frac{2}{3-\alpha}$. If $\alpha=0$, then we have $\beta=\frac{2}{3}$, so a convex function of the form:

$$
f(z)=z-\sum_{k=2}^{\infty} a_{k} z^{k}
$$

is starlike of order $\frac{2}{3}$, and $\frac{2}{3}>\frac{1}{2}$.
We know, that in case of the functions of the form :

$$
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}
$$

not necessary with negative coefficients, the theorem of Marx and Strohhacker tell us that a convex function is starlike of order $\frac{1}{2}$.

The same theorem, for $n=2$, tell us that a convex function of the form

$$
f(z)=z+\sum_{k=3}^{\infty} a_{k} z^{k}
$$

is starlike of order $\frac{2}{\pi}$.
From Theorem 4., for $n=2$ we have $\beta=\frac{3}{4-\alpha}$, and if $\alpha=0$, we obtain $\beta=\frac{3}{4}$.
Finally, a convex function of the form :

$$
f(z)=z-\sum_{k=3}^{\infty} a_{k} z^{k}
$$

is starlike of order $\frac{3}{4}$, and $\frac{3}{4}>\frac{2}{\pi}$.

Acknowledgements

I am gratefull to conf. dr. Gr. Şt Sălăgean for discussion about the subject matter of this paper.

References

[1] O. Altintas : On a subclass of certain starlike functions with negative coefficients, Math. Japon. 36(1991), 489-495.
[2] H. Silvermann : Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51(1975), 109-116.
[3] H.M. Srivastava, S. Owa, S. K. Chatterjea : A note of certain classes of starlike functions, Rend. Sem. Math. Univ. Padova, 77(1987), 115-124.
"Babeģ-Bclyai" University, str. Kogălniceanu, nr. 1, 3400 Cluj-Napoca

