A SUFFICIENT CONDITION FOR UNIVALENCE

PAULA CURT

Abstract

In this paper we obtain an univalence criterion for holomorphic mappings in the unit ball of \mathbb{C}^{n}.

1. Introduction

Let \mathbb{C}^{n} denote the space of n complex variables $z=\left(z_{1}, \ldots, z_{n}\right)$ with the usual inner product

$$
\langle z, w\rangle=\sum_{j=1}^{n} z_{j} \overline{w_{j}}
$$

and norm $\|z\|=\langle z, z\rangle^{\frac{1}{2}}$. The unit ball $\left\{z \in \mathbb{C}^{n}:\|z\|<1\right\}$ is denoted B^{n}.
We let $\mathcal{L}\left(\mathbb{C}^{n}\right)$ denote the space of continuous linear operators from \mathbb{C}^{n} into \mathbb{C}^{n}, i.e. the $n \times n$ complex matrices $A=\left(A_{j k}\right)$, with the standard operator norm

$$
\|A\|=\sup \{\|A z\|:\|z\|<1\}, \quad A \in \mathcal{L}\left(\mathbb{C}^{n}\right) .
$$

$I=\left(I_{j k}\right)$ denotes the identity in $\mathcal{L}\left(\mathbb{C}^{n}\right)$.
We denote by $H\left(B^{n}\right)$ the class of holomorphic mappings

$$
f(z)=\left(f_{1}(z), \ldots, f_{n}(z)\right), z \in B^{n}
$$

from B^{n} into \mathbb{C}^{n}. We say that $f \in H\left(B^{n}\right)$ is locally biholomorphic in B^{n} if f has a local inverse at each point in B^{n} or equivalently if the derivative

$$
D f(z)=\left(\frac{\partial f_{k}(z)}{\partial z_{j}}\right)_{1 \leq j, k \leq n}
$$

is nonsingular at each point $z \in B^{n}$.
The second derivative of a function $f \in H\left(B^{n}\right)$ is a symmetric bilinear operator $D^{2} f(z)(\cdot, \cdot)$ on $\mathbb{C}^{n} \times \mathbb{C}^{n} . D^{2} f(z)(z, \cdot)$ is the linear operator obtained by
restricting $D^{2} f(z)$ to $\{z\} \times \mathbb{C}^{n}$ and has the matrix representation

$$
D^{2} f(z)(z, \cdot)=\left(\sum_{m=1}^{n} \frac{\partial^{2} f_{k}(z)}{\partial z_{j} \partial z_{m}} z_{m}\right)_{1 \leq j, k \leq n}
$$

A mapping $v \in H\left(B^{n}\right)$ is called a Schwarz function if $\|v(z)\| \leq\|z\|, z \in B^{n}$. If $f, g \in H\left(B^{n}\right)$ we say that f is subordinate to $g(f \prec g)$ in B^{n}, if there exists a Schwarz function v such that $f(z)=g(v(z)), z \in B^{n}$.

A function $L: B^{n} \times[0, \infty) \rightarrow \mathbb{C}^{n}$ is an univalent subordination chain if $L(\cdot, t) \in H\left(B^{n}\right), L(\cdot, t)$ is univalent in B^{n} for all $t \in[0, \infty)$ and $L(\cdot, s) \prec L(\cdot, t)$, whenever $0 \leq s<t<\infty$.

We shall use only normalized functions in an univalent subordination chain, i.e $D L(0, t)=e^{t} I$, for all $t \geq 0$.

The following theorem is due to J.A. Pfaltzgraff and we shall use it to prove our results.

Theorem 1. [3] Let $L(z, t)=e^{t} z+\ldots$, be a function from $B^{n} \times[0, \infty)$ into \mathbb{C}^{n} such that:
(i) For each $t \geq 0, L(\cdot, t) \in H\left(B^{n}\right)$.
(ii) $L(z, t)$ is a locally absolutely continuous function of t, locally uniformly with respect to $z \in B^{n}$.

Let $h(z, t)$ be a function from $B^{n} \times[0, \infty)$ into \mathbb{C}^{n} such that:
(iii) For each $t \geq 0, h(\cdot, t) \in H\left(B^{n}\right), h(0, t), h(0, t)=0, D h(0, t)=I$ and $\operatorname{Re}<h(z, t), z \geq 0, z \in B^{n}$.
(iv) For each $T>0$ and $r \in(0,1)$ there is a number $K=K(r, T)$ such that $\|h(z, t)\| \leq K(r, T)$, where $\|z\| \leq r$ and $t \in[0, T]$.
(v) For each $z \in B^{n}, h(z, t)$ is a measurable function of t on $[0, \infty)$.

Suppose $h(z, t)$ satisfies

$$
\begin{equation*}
\frac{\partial L(z, t)}{\partial t}=D L(z, t) h(z, t) \quad \text { a.e } \quad t \geq 0, \quad \text { for all } \quad z \in B^{n} \tag{1}
\end{equation*}
$$

Further, suppose there is a sequence $\left(t_{m}\right)_{m \geq 0}, t_{m}>0$ increasing to ∞ such that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} e^{-t_{m}} L\left(z, t_{m}\right)=F(z) \tag{2}
\end{equation*}
$$

locally uniformly in B^{n}.
Then for each $t \geq 0, L(\cdot, t)$ is univalent on B^{n}.

2. Main results

Theorem 2. Let $f, g \in H\left(B^{n}\right)$ such that $f(0)=g(0)=0, D f(0)=D g(0)=I$ and g is locally univalent in B^{n}. If

$$
\begin{equation*}
\left\|(D g(z))^{-1} D f(z)-I\right\|<1 \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\|z\|^{2}\left[(D g(z))^{-1} D f(z)-I\right]+\left(1-\|z\|^{2}\right)(D g(z))^{-1} D^{2} g(z)(z, \cdot)\right\|<1 \tag{4}
\end{equation*}
$$

for all $z \in B^{n}$, then f is an univalent function in B^{n}.
Proof. We define

$$
L(z, t)=f\left(e^{-t} z\right)+\left(e^{t}-e^{-t}\right) D g\left(e^{-t} z\right)(z), \quad(z, t) \in B^{n} \times[0, \infty)
$$

We shall prove that, $L(z, t)$ satisfies the conditions of Theorem 1 and hence $L(\cdot, t)$ is univalent in B^{n}, for all $t \in[0, \infty)$. Since $f(z)=L(z, 0)$ we obtain that f is an univalent function in B^{n}.

We have $L(z, t)=e^{t} z+$ (holomorphic term). Thus $\lim _{t \rightarrow \infty} e^{-t} L(z, t)=z$, locally uniformly with respect to B^{n} and hence (2) holds for $F(z)=z$.

Clearly $L(z, t)$ satisfies the absolute continuity requirements of Theorem 1.
From (5) we obtain

$$
\begin{equation*}
D L(z, t)=e^{t} D g\left(e^{-t} z\right)[I-E(z, t)] \tag{5}
\end{equation*}
$$

where, for all $(z, t) \in B^{n} \times[0, \infty), E(z, t)$ is the linear operator defined by

$$
\begin{align*}
E(z, t)= & e^{-2 t}\left[\left(D g\left(e^{-t} z\right)\right)^{-1} D f\left(e^{-t} z\right)-I\right]- \\
& -\left(1-e^{-2 t}\right)\left(D g\left(e^{-t} z\right)\right)^{-1} D^{2} g\left(e^{-t} z\right)\left(e^{-t} z, \cdot\right) \tag{6}
\end{align*}
$$

We consider

$$
\begin{aligned}
& A\left(e^{-t} z\right)=\left(D g\left(e^{-t} z\right)\right)^{-1} D f\left(e^{-t} z\right)-I \\
& B\left(e^{-t} z\right)=\left(D g\left(e^{-t} z\right)\right)^{-1} D^{2} g\left(e^{-t} z\right)\left(e^{-t} z, \cdot\right) \text { and } \\
& F(z, t, \lambda)=\lambda A\left(e^{-t} z\right)+(1-\lambda) B\left(e^{-t} z\right), \quad \lambda \in[0,1]
\end{aligned}
$$

From (3) and (4) it results $\left\|A\left(e^{-t} z\right)\right\|<1$ and $\left\|F\left(z, t, \lambda_{z}\right)\right\|<1$, where $\lambda_{z}=e^{-2 t}\|z\|^{2}, z \in B^{n}, t \geq 0$. Since $1 \geq e^{-2 t}>\lambda_{z}$, for all $z \in B^{n}$ and $t \geq 0$ we can write $e^{-2 t}=u+(1-u) \lambda_{z}$, where $u \in[0,1)$. Then

$$
-E(z, t)=u A\left(e^{-t} z\right)+(1-u) F\left(z, t, \lambda_{z}\right), \quad u \in[0,1)
$$

We obtain

$$
\|E(z, t)\| \leq u\left\|A\left(e^{-t} z\right)\right\|+(1-u)\left\|F\left(z, t, \lambda_{z}\right)\right\|<1, \quad(z, t) \in B^{n} \times[0, \infty)
$$

and hence $I-E(z, t)$ is an invertible operator.
Further calculation shows that

$$
\begin{aligned}
\frac{\partial L(z, t)}{\partial t} & =e^{t} D g\left(e^{-t} z\right)[I+E(z, t)](z)= \\
& =D L(z, t)[I-E(z, t)]^{-1}[I+E(z, t)](z)
\end{aligned}
$$

It results that $L(z, t)$ satisfies the differential equation (1) for all $t \geq 0$ and $z \in B^{n}$, where

$$
\begin{equation*}
h(z, t)=[I-E(z, t)]^{-1}[I+E(z, t)](z) . \tag{7}
\end{equation*}
$$

We shall show that $h(z, t)$ satisfies the condition (iii), (iv) and (v) of 'Theorem 1. Clearly, $h(z, t)$ satisfies the holomorphy and measurability requirements, $h(0, t)=$ 0 and $D h(0, t)=I$. The inequality

$$
\|h(z, t)-z\|=\|E(z, t)(h(z, t)+z)\| \leq\|E(z, t)\| \cdot\|h(z, t)+z\| \leq\|h(z, t)+z\|
$$

implies $\operatorname{Re}\langle h(z, t), z\rangle \geq 0$, for $z \in B^{n}$ and $t \geq 0$.

For a fixed $t \geq 0, E(\cdot, t)$ defined by (7) is an holomorphic function from B^{n} into $\mathcal{L}\left(\mathbb{C}^{n}\right), E(0, t)=0$ and $\|E(z, t)\|<1, z \in B^{n}$.

By using Schwarz lemma for \mathbb{C}^{n} we obtain $\|E(z, t)\| \leq\|z\|, z \in B^{n}$.
It follows

$$
\|h(z, t)\| \leq\|z\| \frac{1+\|z\|}{1-\|z\|}, \quad \text { for all } \in B^{n} .
$$

The conditions of Theorem 1 being satisfied we obtain that the functions $L(z, t), t \geq 0$ are univalent in B^{n}. In particular $f(z)=L(z, 0)$ is univalent in B^{n}.

Remark. If $g=f$, then Theorem 2 becomes the n-dimensional version of Becker's univalence criterion [3].

References

[1] Becker, J., Loewnersche Differentialgleichung und Schichtheits-Kriterion, Math. Ann. 202 4(1973), 321-335.
[2] Hille, E., Phillips, R.S., Functional analysis and semigroups, Amer. Math. Soc. Colloq. Publ. 31(1957).
[3] Pfaltzgraff, J.A., Subordination chains and univalence of holomorphic mappings in \mathbb{C}^{n}, Math. Ann. 210(1974), 55-68.

Faculty of Mathematics and Computer Science, Kogălniceanu 1, 3400 Cluj-Napoca, România

