ABSOLUTELY F / U-PURE MODULES

IULIU CRIVEI

Abstract

Let R be an associative ring with non-zero identity. A submodule A of a right R-module B is said to be F / U-pure if $f \otimes_{R} 1_{F / U}$ is a monomorphism for every free left R-module F and for every cyclic submodule U of F, where $f: A \rightarrow B$ is the inclusion monomorphism. A right R-module D is said to be absolutely F / U-pure if D is F / U-pure in every right R-module which contains it as a submodule. We characterize absolutely F / U-purity by injectivity with respect to a certain monomorphism. We also prove that the class of absolutely F / U-pure right R-modules is closed under taking direct products, direct sums and extensions. Moreover, we consider absolutely F / U-pure right modules over right noetherian rings and regular (von Neumann) rings.

1. Introduction

In this paper we denote by R an associative ring with non-zero identity and all R-modules are unital. By a homomorphism we understand an R-homomorphism. The category of right R-modules is denoted by $M o d-R$. The injective envelope of a right R-module A is denoted by $E(A)$.

Let

$$
\begin{equation*}
0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0 \tag{1}
\end{equation*}
$$

be a short exact sequence of right R-modules and homomorphisms. The monomorphism f is said to be F / U-pure if the tensor product $f \otimes 1_{F / U}: A \otimes_{R} F / U \rightarrow B \otimes_{R} F / U$ is a monomorphism for every free left R-module F and for every cyclic submodule U of F [1, Definition 2.1]. If f is F / U-pure, then the short exact sequence (1) is called
F / U-pure. If A is a submodule of B and f is the inclusion monomorphism, then A is said to be an F / U-pure submodule of B.

Let $M \in M o d-R$. Then M is said to be projective with respect to the short exact sequence (1) if the natural homomorphism $\operatorname{Hom}_{R}(M, B) \rightarrow \operatorname{Hom}_{R}(M, C)$ is surjective. The right R-module M is said to be injective with respect to the short exact sequence (1) (or with respect to the monomorphism f) if the natural homomorphism $\operatorname{Hom}_{R}(B, M) \rightarrow \operatorname{Hom}_{R}(A, M)$ is surjective.

Following Maddox [3], a right R-module M is said to be absolutely pure if M is pure in every right R-module which contains M as a submodule.

In the present paper we introduce the notion of absolutely F / U-pure right R-module and we establish some properties for such modules.

2. Basic results

We shall begin with two results which will be used later in the paper.
Theorem 2.1. [1, Theorem 2.8] Let A be a submodule of a right R-module B. Then the following statements are equivalent:
(i) A is F / U-pure in B;
(ii) If $a_{1}, \ldots, a_{n} \in R, r_{1}, \ldots, r_{n} \in R$ and the system of equations $a_{i}=x r_{i}$, $i=1, \ldots, n$ has a solution $b \in B$, then it has a solution $a \in A$.

Theorem 2.2. [2, Theorem 2.3] A short exact sequence (1) is F/U-pure if and only if for every finitely generated right ideal of R the right R-module R / I is projective with respect to the short exact sequence (1).

We shall give now the following definition.

Definition 2.3. A right R-module A is said to be absolutely F / U-pure if A is F / U pure in each right R-module which contains A as a submodule.

In the sequel we shail denote by \mathcal{A} the class of absolutely F / U-pure right modules.

Theorem 2.4. Let $A \in \operatorname{Mod}-R$. Then the following statements are equivalent:
(i) $A \in \mathcal{A}$;
(ii) A is F / U-pure in $E(A)$;
(iii) If A is a finitely generated right ideal of R and $i: I \rightarrow R$ is the inclusion monomorphism, then A is injective with respect to i.

Proof. Let I be a finitely generated right ideal of R and consider the short exact sequence of right R-modules

$$
\begin{equation*}
0 \longrightarrow I \xrightarrow{i} R \xrightarrow{p} R / I \longrightarrow 0 \tag{2}
\end{equation*}
$$

where i is the inclusion monomorphism and p the natural epimorphism. Since R is projective, we have $E x t_{R}^{1}(R, A)=0$. Hence the short exact sequence (2) induces the following short exact sequence of abelian groups:

$$
\begin{equation*}
\operatorname{Hom}_{R}(R, A) \xrightarrow{\operatorname{Hom}_{R}\left(i, 1_{A}\right)} \operatorname{Hom}_{R}(I, A) \longrightarrow E x t_{R}^{1}(R / I, A) \longrightarrow 0 \tag{3}
\end{equation*}
$$

Let $D \in M o d-R$ such that A is a submodule of D and consider the short exact sequence

$$
\begin{equation*}
0 \longrightarrow A \xrightarrow{j} E(D) \xrightarrow{q} E(D) / A \longrightarrow 0 \tag{4}
\end{equation*}
$$

where j is the inclusion monomorphism and q the natural epimorphism. By injectivity of $E(D)$, we have $E x t_{R}^{1}(R / I, E(D))=0$. Hence the short exact sequence (4) induces the following short exact sequence of abelian groups:

$$
\begin{gather*}
\operatorname{Hom}_{R}(R / I, E(D)) \xrightarrow{\operatorname{Hom}_{R}\left(1_{R / I}, q\right)} \operatorname{Hom}_{R}(R / I, E(D) / A) \rightarrow \\
 \tag{5}\\
\longrightarrow E x t_{R}^{1}(R / I, A) \longrightarrow 0
\end{gather*}
$$

$(i) \Longrightarrow(i i)$ This is clear.
(ii) \Longrightarrow (iii) Suppose that A is F / U-pure in $E(A)$ and consider $D=A$ in the short exact sequence (4). By Theorem 2.2, $\operatorname{Hom}_{R}\left(1_{R / I}, q\right)$ is surjective. Hence $E x t_{R}^{1}(R / I, A)=0$, because the sequence (5) is exact. By the exactness of the sequence
(3), it follows that $\operatorname{Hom}_{R}\left(i, 1_{A}\right)$ is surjective. Therefore A is injective with respect to i.
(iii) \Longrightarrow (i) Suppose that A is injective with respect to i. Then $\operatorname{Hom}_{R}\left(i, 1_{A}\right)$ is surjective. Since the short exact sequence (3) is exact, it follows that $\operatorname{Ext}_{R}^{1}(R / I, A)=0$. By the exactness of the sequence (5), $\operatorname{Hom}_{R}\left(1_{R / I}, q\right)$ is surjective. By Theorem 2.2, A is F / U-pure in $E(D)$. By Theorem 2.1, A is F / U-pure in D. Therefore $A \in \mathcal{A}$.

Remark. Every injective right R-module is absolutely F / U-pure.
Corollary 2.5. The class \mathcal{A} is closed under taking direct products and direct summands.

Lemma 2.6. The class \mathcal{A} is closed under taking direct sums.

Proof. Let $\left(A_{j}\right)_{j \in J}$ be a family of absolutely F / U-pure right R-modules and let $A=\oplus_{j \in J} A_{j}$. Let I be a finitely generated right ideal of $R, i: I \rightarrow R$ the inclusion monomorphism and $f: I \rightarrow A$ an homomorphism. Since $f(I)$ is finitely generated, there exists a finite subset $K \subseteq J$ such that $f(I) \subseteq \oplus_{k \in K} A_{k}=B$. By Corollary 2.5, $B \in \mathcal{A}$. Therefore by Theorem 2.4, there exists a homomorphism $g: R \rightarrow B$ such that $g i=v$, where $v: I \rightarrow B$ is the homomorphism defined by $v(r)=f(r)$ for every $r \in I$. Let $u: B \rightarrow A$ be the inclusion monomorphism. Then ugi=uv=f. By Theorem 2.4, $A \in \mathcal{A}$.

Theorem 2.7. Let (1) be a short exact sequence of right R-modules and let $A, C \in \mathcal{A}$. Then $B \in \mathcal{A}$.

Proof. Let I be a right ideal of $R, i: I \rightarrow R$ the inclusion monomorphism and $h: I \rightarrow B$ a homomorphism. Consider the following diagram of right R-modules with exact rows:

where u, v, w, s are homomorphisms which will be defined. Since $C \in \mathcal{A}$, by Theorem 2.4 there exists a homomorphism $s: R \rightarrow C$ such that $s i=g h$. By projectivity of R, there exists a homomorphism $w: R \rightarrow B$ such that $g w=s$. We have $g w i=s i=g h$, hence $g(w i-h)=0$. Let $r \in I$. Then $g((w i-h)(r))=0$, therefore $(w i-h)(r) \in$ $\operatorname{Ker} g=\operatorname{Im} f$. Since f is a monomorphism, there exists a unique element $a \in A$ such that $(w i-h)(r)=f(a)$. Hence we can define a homomorphism $u: I \rightarrow A$ by $u(r)=a$. We have also $h(r)=(w i)(r)-f(a)$. Since $A \in \mathcal{A}$, there exists a homomorphism $v: R \rightarrow A$ such that $v i=u$. Then

$$
((w-f v) i)(r)=(w i)(r)-(f u)(r)=(w i)(r)-f(a)=h(r) .
$$

Hence there exists the homomorphism $w-f v: R \rightarrow B$ such that $(w-f v) i=h$. By Theorem 2.4, $B \in \mathcal{A}$.

3. Absolutely F / U-pure modules over particular rings

In this section we shall consider absolutely F / U-pure R-modules over right noetherian rings and regular(von Neumann) rings.

Theorem 3.1. The following statements are equivalent:
(i) R is right noetherian;
(ii) If $A \in \mathcal{A}$, then A is injective.

Proof. (i) \Longrightarrow (ii) Suppose that R is noetherian. Let $A \in \mathcal{A}$, let I be a right ideal of R and let $i: I \rightarrow R$ be the inclusion monomorphism. Since R is noetherian, I is finitely generated. By Theorem 2.4, A is injective with respect to i.Therefore by Baer's criterion, A is injective.
$(i i) \Longrightarrow(i)$ Suppose that every absolutely F / U-pure right R-module is injective. Let $\left(A_{j}\right)_{j \in J}$ be a family of injective right R-modules and let $A=\oplus_{j \in J} A_{j}$. Then $A_{j} \in \mathcal{A}$ for every $j \in J$. By Lemma $2.6, A \in \mathcal{A}$, hence A is injective. Since every direct sum of injective right R-modules is injective, it follows that R is right noetherian [5, Chapter 4, Theorem 4.1].

Remark. If R is not right noetherian, there exist absolutely F / U-pure right R-modules which are not injective.

Lemma 3.2. Let I be a finitely generated right ideal of R. If $I \in \mathcal{A}$, then I is a direct summand of R.

Proof. Suppose that $I \in \mathcal{A}$ and let $i: I \rightarrow R$ be the inclusion monomorphism. By Theorem 2.4, there exists a homomorphism $p: R \rightarrow I$ such that $p i=1_{I}$ Therefore I is a direct summand of R.

Theorem 3.3. The following statements are equivalent:
(i) $A \in \mathcal{A}$ for every $A \in \operatorname{Mod}-R$;
(ii) $I \in \mathcal{A}$ for every finitely generated right ideal I of R;
(iii) R is regular (von Neumann).

Proof. $(i) \Longrightarrow(i i)$ This is clear.
$(i i) \Longrightarrow(i i i)$ It follows by Lemma 3.2, because R is regular if and only if every finitely generated right ideal I of R is a direct summand of $R[4$, Chapter I, Theorem 14.7.8 and Proposition 4.6.1].
$(i i i) \Longrightarrow(i)$ Suppose that R is regular. Let $A \in M o d-R$, let I be a finitely generated right ideal of R and let $f: I \rightarrow A$ be a homomorphism. Then I is a direct summand of R. Hence there exists a finitely generated right ideal J of R such that $R=I \oplus J$. Then there exist a unique $r \in I$ and a unique $s \in J$ such that $1=r+s$. Therefore we can define a unique homomorphism $h: R \rightarrow A$ such that $h(1)=f(r)$. It follows that $h i=f$. By Theorem $2.4, A \in \mathcal{A}$.

Corollary 3.4. Let R be regular (von Neumann) and let I be a right ideal of R which is not finitely generated. Then $I \in \mathcal{A}$, but I is not injective.

Example 3.5. Let \mathbb{Z} be the ring of integers and let \mathcal{P} be the set of all primes. Then $R=\prod_{p \in \mathcal{P}} \mathbb{Z} / p \mathbb{Z}$ is a commutative regular (von Neumann) ring and $R=\oplus_{p \in \mathcal{P}} \mathbb{Z} / p \mathbb{Z}$ is an ideal of R. Since I is not finitely generated, it follows that $I \in \mathcal{A}$, but I is not injective.

References

[1.] 1. Crivei, F / U-pure submodules, Automat. Comput. Appl. Math., 2(2) (1993), 113-118.
[2] I. Crivei, F / U-projective modules, Automat. Comput. Appl. Math., 3(2) (1994), 61-64.
[3] B. Maddox, Absolutely pure modules, Proc. Amer. Math. Soc., 18 (1967), 207-234.
[4] C. Năstăsescu, Inele. Module. C'ategorii, Ed. Academiei, Bucureşti, 1976.
[5] D.W. Sharpe and P. Vámos, Injective modules, Cambridge Univ. Press, 1972.

Technical University, Department of Matiematics,
Str. C. Daicoviciu 15, 3400 Cluj-Napoca, Romania

