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AN EXTENSION OF THE BANACH FIXED-POINT THEOREM AND
SOME APPLICATIONS IN THE THEORY OF DYNAMICAL
SYSTEMS

" DANA CONSTANTINESCU AND MARIA PREDOI

Abstract. In this paper we present an extension of the Banach Fixed-
Point Theorem and we apply this new result to find the attractors of
some classes of discrete dynamical processes. By associating a convergent
sequence of Iterated Function Systems (IFS) to a dynamical process, we

derive some applications in the approximation of (IFS) attractors.

1. Introduction

Let’s remember the celebrated Banach Fixed-Point Theorem:

Theorem 1.1. Each contraction f of a complete metric space (X, d) has an unique

fired-point.

It is well-known that this fixed-point, £, is the limit of the sequence (z5)nenN,
zn = f(2n-1) with an arbitrary 2o € X (Picard’s method) .

In Section 2 we propose an extension of this result: the contraction f is
replaced by a sequence of contractions, (fu),cn- We analyse three cases:

e the sequence (fy),cn is convergent.

o all the applications f, , n € N have the same fixed-point.

o the sequence (f,), N is k-periodic.
In each case we obtain a similar result to Theorem 1.1. (Theorem 2.1.,2.2. and 2.3.).

Banach’s classical theorem has some important applications in the theory of

Dynamical Systems, namely in the theory of Iterated Function Systems (IFS). The
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existence of (IFS) attractors and of the Hutchinson measure attached to an (IFS), for
example, are consequences of Theorem 1.1. Let’s see more details.

If (X, d) is a metric space, one can consider distx : P (X) x P (X) — R,
by

distx (A, B) = sup inf d(z,y) .
c€AYEB

This application is not quite a metric because distx (A, B) # distx (B, A) for

many A, B € P(X), but the celebrated Pompeiu-Hausddorff metric can be obtained
by

h:P(X)xP(X)— Ry, h(A, B) =max(distx (A, B),distx (B, A))

It is clear that h ({z},{y}) =d(z,y).

(see [HS] for details)

Using this metric, one can see, by Picard’s method, that "li_'n:oh ({zn},{€}) =
0 for the recurrent sequence z,4+1 = f (z,) with arbitrary zp € X. ~

If we should consider the discrete dynamical system (X, f), the previous
relation means that {£} is the global attractor of the system.

The results presented in the second paragraph of our paper may be applied
to the theory of dynamical processes (a kind of dynamical systems’ generalization).

One can consider that the pair (X, (f")nEN) may be thought of as a discrete
dynamical process and the corresponding recurrent equation, £, = f,, (zn~1), is used
to define the process attractor (a good survey on this problem is [Vis]). If f, = f, for
all n € N we obtain the classical case. Using the above mentioned results we obtain
some characterisations of the dynamical processes’ attractors (Theorem 3.1., 3.2.).

This way, we extend to dynamical processes some well-known results.

One can obtain, as a particular case, some well-known results in (IFS) theory
and some important applications in the approximation of an (IFS) attractor.

In order to approximate the attractor of an (IFS) using computer facilities,
we associate the sequence of truncated (IFS) to a dynamical process and we prove
that the initial (IFS) attractor, which is in fact the attractor of the associated process,
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is the limit of the truncated attractors (Theorem 3.4), so it may be approximated as
deep as we want by choosing an appropriate number of decimals for the truncation
operator.

2. Some extensions of Banach’s Fixed-Point Theorem

The next results are not generalizations of Banach’s Fixed-Point Theorem,
because we sometimes use the classical result in the proofs.

For punctually convergent generating sequences we can prove:

Proposition 2.1. Let (X, d) be a metric space and (fn), <N @ sequence of s-contractions,

punctually convergent on X to f. Then f is an s-contraction.

Proof. Because the inequalities

d(f(z),f(y) < d(f(2),fa(@)+d(fa (@), fa (@) +d(fa(¥),f(¥) <
< sd(z,y)+d(fa(2), f(2)+d(fa(¥), [ ()

hold for every n € N and every z,y € X it is clear that

4(f (@), (¥)) < Jim [sd (2,9) +d(fn (2) , £ (&) + 4 (fo (1) . f (8))] = s (2,9) .

0

Proposition 2.2. Let (X,d) be a complete metric space, (fn),cn @ sequence of s-
contractions punctually convergent on X to f |, €, the fired points of f,,n € N, and
€€ X . Then &, — € if and only if f (€) =¢&.

Proof. “<=" From

d(&n€) = d(fal6n), (&) < d(fn(§n) Fn (§)) +d(fa (€) . f(§)) <
Sd(£n1€)+d(fﬂ (6)1f(€))

IA

results that

460, 6) S oA (1al€), 7€) 0
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so d(&n,&) — 0. It is clear now that &, — €.
? =" d(f(€),€) <d(f (&), fa(8) +d(fa (), fn(€n)) +d(fn (£n),€) <
<d(f(€), fn(€)+ (s+1)d(£n,€) = 0.
Hence f (€) =¢&. O

The next Lemma (a classical result in mathematical analysis) will be used in the proof

of Theorem 2.1.

Lemma 2.1. If (an),cn and (bn),cn are sequences of positive numbers and there is

s € (0,1) such that apy1 — san, < by for alln € N and lim b, = 0, then le a, =0.
n—>00 n 00

Theorem 2.1. Let (X,d) be a metric space, (fn),cn @ sequence of s-contraction of
X, punctually convergent on X to f and £ € X. Let also consider the recurrent
sequence Ty, = fy (zn-1), n € N* with arbitrary zo € X . Then z, — £ if and only
if € is the fized point of f.

Proof. “=" From

d(f(£),8) <d(f (&), fa(8) +d(fn(§),€) <
<d(f (&), fa(8) +d(fa(§), fa(za=1)) + d(fa (Tn-1),&) <
d(f (&), fn()) + sd (€, xn-1) +d(2a-1,§)
for all » € N, it results that d(f(¢£),£) < nl_i_)ngod(f(ﬁ),fn(ﬁ)) + sd(€,zn-1) +
d(l‘n_l,f) =0.
So f(&) =¢.
“<=" Let us notice that
d(xmﬁ) = d(fn (In—l) ’f(f)) S d(.fn (xn—-l) vfn (E)) + d(fn (6) vf(f)) S
S s d(zn—l)g) + d(fn(&)vf (6)))

so d(xn,€) — s - d(zn-1,&) < d(fu(€), f(€)). One can now apply Lemma 2.1. for
an = d(zn,8) and b, = d (fa (), F(€)) . It results that nan;od (zn,€) =0, s0 nlingoxn =
€. O
6
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The previous result etablishes that nl_i_}ngo h(z,,&) = 0. It can be formulated in terms

of dynamical systems theory:

Corollary 2.1. Let (X,d) be a complete metric space, (fn),en @ Sequence of s-
contraction of X, punctually convergent on X to f, and let be £ € X the unique
fired-point of f.  Then {£} is the global attractor of the dynamical process P =

(X, (fudnen)-

It is a natural result and it has some interesting applications.

For periodic generating sequences we can prove:

Proposition 2.3. If (X, d) is a complete metric space, (fu),en 5 @ k-periodic se-

quence ( fayk,= fa for alln € N) and &;,&,, ...&k are the fized points of fi, fa, ..., fk
then {&1,...&x} is Lyapunov stable.

Proof. We must find U € V ({£1, ...£x}) such that, for every z € X there is ny, € N
with the property {f, (z),n > n;} CU.

Let’s consider @ = max {d ({£1,&2),d (€2,€3) ...d (€x—1,&k) , d (€, 1)}

It is quite simple to see that

d(l’j,Ej) < de(:l,’l,f[) +

L a
1—s
But &4 = ¢ for all j € N, so

d (Tokt, &) < s™*Hd (z1,&) + 7 L4 for all ne N and j €N

— S

k
— . 2
We now choose I/ = jL=J1B (511 = ‘1) )

Because le s"¥+3 = ( there is ng € N such that, for all n > ng the inequality
n o0

s"kd (z1,61) < 725 should hold. Then

2
d(enk+j, &) < 1 afor alln > ng and j € {1,2,....k}

-8

If n, "2 ng - k, then @, € U for all n > n,,.

If (fn),enis a k-periodic sequence of s-contraction on X then the application

k

frko fk—10...0 f1 is a s"- contraction on X and has an unique fixed point, namely £.

7
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The sequence (Zn),en > Tn (§) = fa (Tn-1), With zo (§) = £ is also k-periodic,

SO Tp = Tn mod & for all n € N. 0

Theorem 2.2. Let (X, d) be a complete metric space, (fr), N a k-periodic sequence
of s-contractions, & the fized point of fx o ...0 fi and £, = fn (£n—1) with arbitrary
zo € X. Then

Jim h ({2a}, {1 (§) , (fa 0 /1) (§) s s (S 0 fimr 00 1) (§)}) = 0.
Proof. Because f, fa, ..., fir are s-contractions it is clear that

nliglod (@n,(frno...o f1)(§)) =0,
SO
nliync}oh'({mn}: {(fn o fn—l O ..y fl) (&) R E N‘}) =0.

We may use now the periodicity of (f,),cn to obtain that
Tim b ({zn}, {1 (€) (F20 1) (€) - (fico fimr 0 o0 1) (€))) = 0
0

Corollary 2.2. Let S = (N, X, f) be a contractive dynamical system on the complete
metric space X , £ the fivred point of f and z, = f(zn—1) with arbitrary zo € X.
Then lim h({z,},{¢}) = 0.

7n—00

Proof. In Theorem 2.2. we choose k = 1. O

Now let’s see what happens when all f,,n € N have the same fixed-point.

Theorem 2.3. Let (X, d) be a complete metric space, (fn),cn sequences of s-con-
tractions of X and x, = f, (2n—1) with arbitrary zo € X. If the applications f,,n €
N have the same fized point €, then n‘i{{,‘o”‘({f"}’ {€}) = 0 and each sphere centered
in {€} is Lyapunov stable.

Proof. Because d(zn,€) < s"d(zo,€) and h ({z,}, {¢}) = d(zp,€) we obtain imme-

diately the results of the Theorem.

8
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Let’s notice that, even if f,,n € N have the same fixed point, we know
nothing about the convergence or periodicity of (fn),cn-

For example, the applications f, (v) = %:c have the same fixed-point, 0, for
alln € N and f, p“ml—;)“auy 0, still (fn), en is not periodic.

The applications g, (z) = 2i(;_11'_'_z have also the same fixed-point, 0, for
all n € N, but the sequence (g,),¢n is punctually convergent only on {0} and it is

periodic (k = 2). ' O
It is clear now that the situations analyzed in the previous theorems are different.

3. Applications to the Theory of Dynamical Systems

We shall apply the previous results to the theory of Iterated Function Systems
(IFS), which are classical examples of chaotic dynamical systems (in the sense of the
Devaney definition) and whose attractors are fractals (see [Hut]).

An IFS on the complete metric space (X,d) is

S = (X, w1, ws, ..., w,) where wy,wy,...,w, : X = X are s-contractions of

On the family of compact subsets of X with # (X), we consider

h:H(X)xH(X)— Ry , Pompeiu-Hausdorff’s metric.

It is well-known that (# (XX), k) is a complete metric space if (X, d) is so.

Using the s-contractions wy, wy, ..., w, one can obtain another s-contraction,
namely @ : # (.X) = H (X) , @ (B) = wy (B)Uws (B)U...Uw, (B) for each B € H (X)
which has (see Banach’s Fixed Point Theorem ) a single fixed point A € H (X), so
A =w (A)Uws (A)U...Uw, (4).

The Iterated Function System S is associated to the contractive dynamical
system S = (H (X),®).

The single fixed-point of @ , A € H (X), is in fact the global attractor of S
(it is a compact set and nli)lgoh (w" (z),A) = 0 for every & € X). It is called the
attractor of S and it is interesting to prove that S exhibits chaotic dynamics on A
(see [Ba] for details).

We associate now an (IFS) sequence to a discrete dynamical process.
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Definition 3.1. Let’s consider k € N and (Sn),eny Sn = (X, win, w20, ..., Wk 5)a
sequence of s-IFS . @, : H (.X) = H (X) is defined by

Wp (B) = w10 (B)Uwapn (B)U...Uwg 5 (B)

for all B € H (X) then P = (H(X), (Wn)nen) is the contractive dynamical process

associated to the sequence (Sn),en-

Let’s notice that, if S, = S for all n € N, then P = (H(X),®@) is the
contractive dynamical system associated to S.

We shall study the properties of the dynamical process’ attractor if (S,), cn
is a convergent or a periodic sequence.

Proposition 3.1. Let (wy),c be a sequence of s-contractions of the compact metric

 (X,d). Then wa 5 wifand only ifw, 5 .
space ( ) en w o w if and only if wy, (H(X),h)w

Proof. “=" From the previous definitions, it results that

Il

d(w, (B),w (B)) max ( min d(y,2)) =

YEW,(B) z€W(B)

: ’
max(mind (w, (z), w (z))

Suppose that d (@, (B) ,w(B)) /0. Then there is € > 0 and ng — oo so
that d (W, (B) ,w (B)) > e. For this ¢ > 0 and for every k € N there is #,,, € B such
that

d(wny, (2n,) , w (Tny)) > €.

But (2, ),en C B and B is a compact set, so it has a convergent subsequence, equally
denoted by (mn*)kEN for the simplicity of writing.
So there are € > 0, a sequence of natural numbers (ng),cn tending to oo

and a sequence (n, ),y C X convergent to & € X such that

d (Wny (Zn,) , w (Tn,)) > ¢,

W91
10
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for all £ € N. Then

e < d(wy, (zn,),w(zn,)) <
< d(wn, (2n,) , wny (7)) +d (wn, (2),w (2)) +d(w(z),w(2n,)) <
< sd(zn,,z)+d(wn, (2),w(2)) + sd(zn,, )
This is a contradiction, because

nli_rg()d (Tne, ) =0

and

lim d(wn, (2),w(z)) =0.

N —>00

It results that d (@, (B) ,@w(B)) — 0. In the same way we can prove that
d(w(B),w, (B)) — 0.
We may now see that

lim h (@, (B) ,@(B)) = 0

n—o0
for every B € # (X). Tt means that @, '~ 5 .
(H(X),h)
“«<” Because {¢} € H (X) for every z € X and W, ({z}) = w ({}) it results

that
nl-l-)nolod (wn (z),w(z)) = nl'if.‘oh (@n (), w(x))=0

sowp, B w. O
(X,d)

Corollary 3.1. Let (X,d) be a compact metric space and

(S")nEN = ((X, Win,W2ny ... wk,n)),,eN

a sequence of s-(I.F.S.) such that w;n % u; for everyi € {1,2,...k} and let’s denote

S = (X, uy,ug,...,ur). Then the sequence of the associated contractive dynamical
systems S, = (H (:X),@n), n € N is convergent to S = (H (X),u) in the Pompeiu-
Hausdorff metric.

Using this result and a previous theorem we can prove

11
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Theorem 3.1. Let (X,d) be a compact metric space and

(Sn)nEN = ((X’u)i,n)u’z,ns ""wkt"’))nGN

a sequence of s-(L.F.S.) such that w;y, 7’;) u; for every i € {1,2,..k} and let’s
note S = (X, uy,us,...,ux). Then the attractor of the contractive dynamical process

associated to (Sp)nen s the very attractor of S.

Proof. Let :S'V,, = (K (X),w,) be the contractive dynamical system associated to S,.
In the theorem’s hypothesis it is clear that A,, the attractor of .g’n, is the
fixed point of the s-contraction @, : H(X) = H (X).
From Proposition 3.1. it results that w, (‘H(—)%)),h) % (here S = (H(X),7) is
the contractive dynamical system associated to S). Let’s notice that A is the fixed

point of T and Corollary 2.1. shows that A is the attractor of P = (H(.X), (@n)nen),

the contractive dynamical process associated to (Sn),cn- a

A direct method to obtain the attractor A is the following:

e we choose Ag € H (X) (usually with a single element).
e we construct the sequence A,, = W, (A,—1) and we see that nlLrggA,, =A,
so A may be approximated by A, for n € N large enough.
One may say that the attractor of the approximating system is the approximation of
the attractor. The random procedure presented in [Ba] can be easily adapted to this
situation.
If (Wn),en is a periodic sequence we may apply Theorem 2.3. in order to

prove:

Theorem 3.2. If (Sp)nen = ((X, Wi n, Wan, ..., Wkn))neN 5 a k-periodic sequence
of s-iterated function systems (so w; n = Wiptk for alli € {1,2,...,k} and alln € N)
and Wy, : H(X) = H(X) isTp = W1, nUW2n,U...UWk 5 then the contractive dynamical

process assoctated to (Sp),cn » namely P = (H (X), (Wn),en) ts k-periodic and its

attractlor is the orbit of the unique fized point of the application W o ... o Wy.
More precisely there is an unique set A € H (X) such that {w, (A4), (W, o
wy) (A), ..., (W o ... oﬁl) (A)} is the attractor of P.

12
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For k = 1 this is a well known result in the theory of iterated function systems.

Theorem 3.1. also contains the basic ideas of the approximation of an IFS
attractor using computer facilities. In this case, the repeated truncations can dra-
matically modify the attractor’s properties.

If Tk is a 10~*-truncation operator on the metric space (X, d) then

d(Ti (), Tk (y)) < 2-107% if d (z,y) < 10~* and kﬁ'xooTk (z) =z forall z,y
in X.

Let’s consider S = (X, w1, ws,...wp) an IFS and T a 10~*-truncation oper-
ator on X.

Let’s denote Sy = (N, X, Tk o wy, ..., Ty, 0 wy).

Simple computations show that T} o w; ;’? w;. Unfortunately, the previous
result may not be applied, because Tjow; is not a contraction but, using the mentioned

properties of Tk, we can easily obtain a result similar to Theorem 3.1.

Theorem 3.3. Let w be an s-contraction in the compact metric space (X,d) and
(Tk)ren @ sequence of 107%,k € N truncation operators on X,

Then Ty ow B w if and only if T, 5w
kow v dandonly fTiow o B

Using this result we can prove

Theorem 3.4. Let’s consider S = (X, w1, ws, ...w,) an IFS on the complete metric
space (X,d) and (Ti)ren a sequence of (10~%)-truncation operators on X. If Ax,

A are the attractors of Sp = (N,X,Tj owy,..., Ty o w,) and S,respectively, then, in
(% (X),h), we have

lim A, = A
k—o0

From Theorem 3.4. it results that A can be well approximated, by choosing

an appropriate number of decimals for the truncation operator.

It is very important, because there are no general relations between the real

attractor and the truncated one.

References

(1] Barnsley M.: Fractals everywhere, Academic Press, 1988.

13



14

DANA CONSTANTINESCU AND MARIA PREDOI

[2] Hutchinson J.E.: Fractals and Self Similarity, Indiana University Journal, vol. 30,
1981.

[3] Hewit E., Stromberg K. : Real and Abstract Analysis, Springer Verlag, 1969.

[4

] Vishik M. I.: Asymptotic Behaviour of Evolutionary Equations, Cambridge University
Press, 1995.

E-mail address: dconsta@central.ucv.ro

FacuLty oF MATHEMATICS, UNIVERSITY OF CRAIOVA, 13 A. I. CuzA STREET,
1100 CRAIOVA, ROMANIA

E-mail address: Mpred@udjmathl.sfos.ro.

FacuLty oF MATHEMATICS, UNIVERSITY OF CRAIOVA, 13 A. I. CuzA STREET,
1100 CraIiova, ROMANIA




