
STUDIA UNIV. “ BABEŞ-BOLYAI” , MATHEM ATICA, Volume XLIV, Number 4, December 1999

AN E X TE N SIO N  OF TH E  B A N A C H  F IX E D -P O IN T  T H E O R E M  A N D  
SO M E A P P L IC A T IO N S  IN TH E TH E O R Y  OF D Y N A M IC A L

SY STE M S

D A N A  C O N S T A N T IN E S C U  A N D  M A R IA  P R E D O I

Abstract. In this paper we present an extension of the Banach Fixed- 

Point Theorem and we apply this new result to find the attractors of 

some classes of discrete dynamical proc esses. By associating a convergent 

sequence of Iterated Function Systems (1FS) to a dynamical process, we 

derive some applications in the approximation of (IFS) attractors.

1. In troduction

Let’s remember the celebrated Banach Fixed-Point, Theorem:

Theorem  1.1. Each contraction f  of a complete metric space (X }d) has an unique 

fixed-point.

It is well-known that this fixed-point, £, is the limit of the sequence (xn)neN> 

xn =  /(a?r>_ i) with an arbitrary xq E X  (Picard’s method) .

In Section 2 we propose an extension of this result: the contraction /  is 

replaced by a sequence of contractions, (/n )neN- We analyse three cases:

• the sequence ( /n)n€n *s convergent.

• all the applications f n , n E N have the same fixed-point.

• the sequence ( /n )„En ^-periodic.

In each case we obtain a similar result to Theorem 1.1. (Theorem 2.1., 2.2. and 2.3.).

Banach’s classical theorem has some important applications in the theory of 

Dynamical Systems, namely in the theory of Iterated Function Systems (IFS). The
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existence of (IFS) attractors and of the Hutchinson measure attached to an (IFS), for 

example, are consequences of Theorem 1.1. Let’s see more details.

If (Y\ d) is a metric space, one can consider distx ' V (-Y) x V (X) — > R+

by

distx (A, B) — sup inf d(x, y) . 
xeAVtn

This application is not quite a metric because distx (A, B) ^  distx (B, A) for 

many A y B (X ), but the celebrated Pompeiu-HausddorfT metric can be obtained 

by

h : V (X ) x V (-Y) — ¥ R+ , h (A , B) =  max{distx  (A , B ) , distx (B, A))

It is clear that h ({.t}, {?/}) =  d (x, y) .

(see [HS] for details)

Using this metric, one can see, by Picard’s method, that lim h ({#,*}, {£}) =
n —yoo

0 for the recurrent sequence xn+\ =  /  (æn) with arbitrary xo G X.

If we should consider the discrete dynamical system (X , / ) ,  the previous 

relation means that {£ } is the global attractor of the system.

The results presented in the second paragraph of our paper may be applied 

to the theory of dynamical processes (a kind of dynamical systems’ generalization).

One can consider that the pair (.Y, (fn)n€n ) may be thought of as a discrete 

dynamical process and the corresponding recurrent equation, xn =  f n (x*n_i), is used 

to define the process attractor (a good survey on this problem is [Vis]). If f n =  / ,  for 

all r? G N we obtain the classical case. Using the above mentioned results we obtain 

some characterisations of the dynamical processes’ attractors (Theorem 3.1., 3.2.).

This way, we extend to dynamical processes some well-known results.

One can obtain, as a particular case, some well-known results in (IFS) theory 

and some important applications in the approximation of an (IFS) attractor.

In order to approximate the attractor of an (IFS) using computer facilities, 

we associate the sequence of truncated (IFS) to a dynamical process and we prove 

that the initial (IFS) attractor, which is in fact the attractor of the associated process,
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is the limit of the truncated attractors (Theorem 3.4), so it may be approximated as 

deep as we want by choosing an appropriate number of decimals for the truncation 

operator.

2. Som e extensions o f  Banach ’s F ixed-Point Theorem

The next results are not generalizations of Banach’s Fixed-Point. Theorem, 

because we sometimes use the classical result in the proofs.

For punctually convergent generating sequences we can prove:

P roposition  2.1. Let (X, d) be a metric space and (/n )n€N a sequence ° f  s-contractions, 
punctually convergent on X  to / .  Then f  is an s-contraction.

Proof Because the inequalities

d ( / ( * ) , /  (y)) < d ( f ( x ) , f n (x)) +  d { fn ( x ) , f n ( y ) ) + d { f n ( y ) , f ( y ) ) <

< sd (x, y) +  d ( / „  ( x ) , f  (x)) +  d ( / „  (y) , f {y ) )  

hold for every n E N and every x, y E X  it is clear that

d ( /  (ï ) , /  («/)) <  lim [sd (x, y) +  d ( / „  ( x ) , /  (x)) +  d ( /„  (y ) , /  (y))] =  sd (x, y ) .

□

P roposition  2.2. Let (X,d) be a complete metric spare, (fn)nen a ^Quence ° f  s~ 
contractions punctually convergent on X  to f  , ţn the fixed points of f n,n E N, and 

ţ  G X  . Then Çn ->■ £ if and only if f  (£) =

Proof “ 4 = "  From

<*(«»,€) =  d(fn( C n ) J ( 0 ) < d ( f n ( ^ n ) f n m  +  d(fn ( 0 J ( 0 ) <

< ^ K n ,0  +  ^ ( / n ( 0 , / ( 0 )

results that

<*(*»,*)< r ^ d ( / n ( O , / ( O ) - + 0
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so d (£n>£) —> 0. It is clear now that £n

” => ” d (/ K) , 0 < d (/ (0 , fn (0) + d (fn (0 , fn ««)) + d (/„ (&) , 0 <
< d ( / ( O i /n ( O )  +  (« +  l ) d K „ ,O “ >0.

Hence /  (£) =  £. □

The next Lemma (a classical result in mathematical analysis) will be used in the proof 

of Theorem 2.1.

Lemma 2.1. / /  (an)n€N and (^n)neN are sequences of positive numbers and there is 

s E  (0,1) sucft Ma£ an+i — san < bn for all n E N and lim bn =  0, Men lim an = 0.n-*oo n -+ o o

Theorem 2.1. Let (X , d) be a metric space, (/n )n€N a sequence of s-contraction of 
X, punctually convergent on X to f  and £ E  X . Lei a/so consider the recurrent 
sequence xn =  / n (xn_i), n E  N* with arbitrary Xo E X  . Then xn —> £ if and only 
if £ is Me fixed point of f .

Proof “= > ” From

d (/ (0, 0 < d (/ (0. A (0) + d (fn (0,0 <

< d (/ (0, A(0) + <* (A (0 , fn (*„-1)) + d (A (*n-l) ,0 < 
d ( /  (0  , A (0 )  +  «d (£, x „_ i) +  d (x „_ i ,0

for all n E N, it results that d ( / (£ ) ,£ )  < lim d ( /  (£), / n(0 )  -f sd(£, xn_ i ) +n—>-oo
d (iCn—I? 0  — 0*

So/(0 = £.
“< = ” Let us notice that

d (*„, 0  =  d (fn ( X n - l )  , f  (0) < d (fn (xn- l )  , fn (0) +  d (A (0 , /  (0) < 

< 8 -d(xn. Ut) + d(fn( t ) , f ( t ) ) ,

so d(;rn,£) — s • d (# „_ !,£ ) < d (/n(£), /  (£)). One can now apply Lemma 2.1. for 

an — d (a?n,£) and bn =  d ( /n (£) , /  (£)) . It results that lim d (#n,£) =  0, so lim =

É- □
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The previous result etablishes that lim /i(#n,£) =  0. It can be formulated in termsn->co
of dynamical systems theory:

C orollary 2.1. Let (X,d) be a complete metric space, (/n )nGn a sequence of s- 
contraction of X , punctually convergent on X  to f , and let be £ E Ar the unique 

fixed-point of f . Then {£ } is the global attractor of the dynamical process T  =

It is a natural result and it has some interesting applications.

For periodic generating sequences we can prove:

P roposition  2.3. If (X,d) is a complete metric space, ( / n)nGn 25 a k-periodic se­

quence (  /n+fe,= fn for alln e ’N) and £i ,£2, - 4k ore the fixed points o / / i , / 2, 

then is Lyapunov stable.

Proof We must find U E V ({£i, •••&}) such that, for every x E X  there is nx E N 

with the property { f n {x) ,n >  nx} C U.

Let’s consider a =  m&x{d ({&,&),  <*(£>,&) ...d (6 - 1.6 ) , <*(&>&)}•
It is quite simple to see that

— «J. s

But £k+j =  Çj for all j  G N, so

d(xnk+j,£j) < snk^ d ( x i,£ i) 4- —-—a for all nE N and j  E N
l — s

We now choose U =  U^B

Because lim snk+i =  0 there is no E N such that, for all n > no the inequalityn—>oo
snkd(x\tţi)  <  j - -  should hold. Then

2
d(xnk+j,Çj) < -— -a  for all n > no and j  E {1 ,2 ,...,* }

If nx n=? 7i$ • k, then xn E U for all n > nx.

If ( fn )n € n a ’̂-periodic sequence of s-contraction on À" then the application 

fk o fk-\ o ... o fi is a sk- contraction on X  and has an unique fixed point, namely £.
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The sequence (# „)neN , xn (£) =  fa (æn_i), with x0 (£) =  £ is also k -periodic, 

so xn — xn mod k fo r  all w G N. D

T heorem  2.2. Let (X,d) be a complete metric space, (/n )nen a k-periodic sequence 
of s-cont ructions, £ the fixed point of fa o ... o fa and xn — f n (xn_ i) with arbitrary 

xq £ X . Then

lim h ( { * „ } ,  { / i  (0  . (h  ° fi)  (0  . - ,  (/fc o fk -i ° ••• ° A ) ( 0 } )  =n—>oc

Proof Because fa , fa,..., fa are s-contractions it is clear that

lim d (xn, (fn o ... o /x) (£)) -  0,
n-+oo 

SO

lim /> ( { * „ } , { ( / „  o /n -1 o —, / i )  (0  , n 6 N *}) =  0.
n —¥oo

We may use now the periodicity of (fa)nen to obtain that

lim h( {xn}, { / i  (0  , ( / 2 o /x ) ( £ ) , (fk o f k_ l o .. .o /x )  (£)}) =  0
n —¥ oo

□

C orollary  2.2. Let S =  (N ,X, / )  6e a contractive dynamical system on the complete 

metric space X  , Ç the fixed point of f  and xn — / (æ n_ i) with arbitrary xq E X. 
Then lim h ( {x n}, {£ }) =  0.n—)-oo

Proof In Theorem 2.2. we choose k = 1. □

Now let’s see what happens when all / n, n E N have the same fixed-point.

Theorem  2.3. Let (X, d) be a complete metric space, ( /n)neN sequences of s-con­

tractions of X  and xn =  fa (#n_i) with arbitrary x q  E X. If the applications fn,n £ 

N have the same fixed point £, then lim /?({æn} ,{£ } )  — 0 an(̂  each sphere centered
n —too

in {£ } is Lyapunov stable.

Proof Because d(xn,ţ)  <  snd(xo,£) and ft ({zn },{£ }) =  d(xn,ţ) we obtain imme­

diately the results of the Theorem.

8



AN EXTENSION OF BANACH THEOREM

Let’s notice that, even if fnin E  N have the same fixed point, we know 

nothing about the convergence or periodicity of (/n )n€N-

For example, the applications fn (x) =  ^x have the same fixed-point, 0, for 

all n E  N and / „  puncl$ ally q, still (fn)ne N is not periodic.

The applications gn (x) =  x have also the same fixed-point., 0, for

all n £ N, but the sequence ( ^ ) nÇN is punctually convergent only on {0 } and it is 

periodic (k =  2). □

It is clear now that the situations analyzed in the previous theorems are different.

3. Applications to the Theory of Dynamical Systems

We shall apply the previous results to the theory of Iterated Function Systems 

(IFS), which are classical examples of chaotic dynamical systems (in the sense of the 

Devaney definition) and whose attractors are fractals (see [Hut]).

An IFS on the complete metric space (A, d) is

5  — (X, u>i, wn) where ttfi, •••> : X  -*  X  are «-contractions of

X .

On the family of compact subsets of X  with H ( X ) , we consider h : % (X ) x % (X ) —y R + , Pompeiu-Hausdorff’s metric.

It is well-known that {% (X ) , h) is a complete metric space if (Ar, d) is so. 

Using the «-contractions w\, •••, wn one can obtain another «-contraction,

namely w : % (X) -> % (X ) ,w{B)  =  wx (B)Uw2 (B)U...Uu»„ {B) for each B E U (X ) 

which has (see Banach’s Fixed Point Theorem ) a single fixed point A E Ti (X ), so 

A =  w\ (A) U wo (A) U ... U wn (A).

The Iterated Function System S is associated to the contractive dynamical 

system S — (H (X ) ,w).

The single fixed-point of w  , A E %  (X ) , is in fact the global attractor of S 

(it is a compact set and lim h (w” (æ), A) =  0 for every x E X ). It is called the
n—>oo

attractor of S and it is interesting to prove that S exhibits chaotic dynamics on A 

(see [Ba] for details).

We associate now an (IFS) sequence to a discrete dynamical process.
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D efinition  3.1. Let’s consider k £ N and (Sn)neN, Sn =  (X, u>i>n, W2,n,...»Wfc,n)a 

sequence of s-IFS . (X ) —> (X ) is defined by

üJn (5 ) =  wi>n(B) U w2)n (B) U ... U wk}n (B)

for all B £ % (X ) then V =  ('H(X), (wn)nen ) is the contractive dynamical process 

associated to the sequence (5,n)n€N.

Let’s notice that, if Sn = S for all n £ N, then V — (7i(X),w) is the 

contractive dynamical system associated to S.

We shall study the properties of the dynamical process’ attractor if (Sn)nÇN 

is a convergent or a periodic sequence.

Proposition 3.1. Let (wn)n€N be a sequence of s-contractions of the compact metric

space (X.d). Then wn A  w if and only ifwn A  w.
(X,d) mx),h)

Proof “=>” From the previous definitions, it results that

d (wn (B ) , w(B))  =  max ( min d(yyz)) =
y £ w n(B) z£ w (B)

=  max(mind (wn (a:), w (æ'))
x £ B  x ’ C.B

Suppose that d(wn (B) yw (B )) /->0. Then there is e > 0 and nk -> oo so 

that d (wnk (B ) , w (B)) >  e. For this e >  0 and for every k £ N there is xnk £ B such 

that

d{u>nk ( * n j  , « >  ( * » * ) )  >  «•

But ^  & and B is a com pact set, so it has a convergent subsequence, equally

denoted by (ff-mAeN for the sim plicity o f  writing.

So there are e >  0 , a sequence o f natural numbers (nk)k€N tending to oo 

and a sequence (zn fc)* eN ^  ^  convergent to x £ X  such that

d{wnk {xnk),w (a?„J) >  e,
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for all k g N. Then

e <  d{wnk (xnh) ,w  (a?nJ )  <

<  d (w„k (x„k) , w„k (x)) +  d (wnk (a:), w (a;)) +  d (u> (a:), w (a:„fc)) <

<  sd (xnk, x) +  d (w„k (a;), w (a:)) +  sd (xnk, x)

This is a contradiction, because

lim d(xn. ,x)  =  0
oo

and

lim d (wnk (x) , w(x)) =  0.
n * —h x >

It results that d (wn (B) }w(B))  -> 0. In the same way we can prove that

d(w{B) }wn (B)) 0.

We may now see that

lim h (wn (B) , w (B)) — 0
n —)-oo

for every B E 7/ (X ). It means that wn A w.
m x ) th)

“<ţ=” Because {æ} G % (X ) for every x G X  and wn ({# }) —> w ({a?}) it results

that

lim d (wn (æ), w (x)) =  lim h (wn (x) , w (x)) =  0
n —>oo n-+  oo

SO W n  A W .  □
(*>d)

C orollary  3.1. Let (X,d) be a compact metric space and

N  ”  ( ( ^ >  w i,n ^ 2 , n j  •••j w k ,n))n ^

a sequence of s-(I.F.S.) such that Wj)U A  Uj for every i G {1,2,.../?} and let’s denote 

S =  (X , « 1, « 2, Uk)-' Then the sequence of the associated contractive dynamical 
systems Sn =  {% (X ) ,wn), n G N is convergent to S =  (% (À") , w) in the Pompeiu- 

Hausdorff metric.

Using this result and a previous theorem we can prove
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T heorem  3.1. Let (A , d) be a compact metric space and

(‘S'nJneN — ((A , Witni w2tn, •••> wk>n))nej$

a sequence of s-(I.F.S.) such that Wi}Tl A  U{ for every i £ { 1 ,2 , . . . fc} and leVs 

note S =  (A , ui, ur2, Then the attractor of the contractive dynamical process

associated to (5n)neN is the very attractor of S.

Proof Let Sn =  {H (Ar) ,w n) be the contractive dynamical system associated to Sn.

In the theorem’s hypothesis it is clear that An, the attractor of 5n, is the

fixed point of the s-contraction wn : %(X) —» % (A ).

From Proposition 3.1. it results that wn A  ü (here S =  (% (Y ) ,u) is
mx),h)

the contractive dynamical system associated to 5). Let’s notice that A is the fixed 

point of ïï and Corollary 2.1. shows that A is the attractor of V  =  (ïün)neN),

the contractive dynamical process associated to (Sn^N * Q

A direct method to obtain the attractor A is the following:

• we choose Aq G % (A ) (usually with a single element).

• we construct the sequence An = wn (An_i) and we see that lim An = A,n-*oo
so A may be approximated by An for n G N large enough.

One may say that the attractor of the approximating system is the approximation of 

the attractor. The random procedure presented in [Ba] can be easily adapted to this 

situation.

If (ïür,.)neN is a periodic sequence we may apply Theorem 2.3. in order to

prove:

T heorem  3.2. If (Sn)nen =  ((A , wi>n, W2,n, • ^,n))neN is a k-periodic sequence 

of s-iterated function systems (so Wi)U =  Wi)U+k for all i G {1, 2, ...,&} and all n £ N) 

andwn : 'H(X) —> H (A) isw n = tïïi)nUtÏÏ2inU...UûJ/C)n then the contractive dynamical 

process associated to (Sn)n -̂N , namely V  =  (H (Ar) , (Tën)nÇN) is k-periodic and its 
attractor is the orbit of the unique fixed point of the application Wk o ... o w\.

More precisely there is an unique set A £ % (A ) such that {!7q ( A ) , (7ÏÏ2 o 

w i)  ( A ) ,. .. , (Wk o ...ow i)  (A ) }  is the attractor o fV .
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For k =  1 this is a well known result in the theory of iterated function systems. 

Theorem 3.1. also contains the basic ideas of the approximation of an IFS 

attractor using computer facilities. In this case, the repeated truncations can dra­

matically modify the attractor’s properties.

If Th is a 10“ *-truncation operator on the metric space (X , d) then 

d (Tk (x) ,Tk (y ) )<  2 • 10“ * if d (x , y) <  10“ * and liinT* (x) =  x for all x, y

in X.
Let’s consider S =  (X,wi,W2, ...w„) an IFS and Tk a 10"*-truncation oper- 

ator on X.

Let’s denote Sk =  (N,JY,7* o ...,ï*  o

Simple computations show that Tk o Wi A  tu,*. Unfortunately, the previous 

result may not be applied, because TkOWi is not a contraction but, using the mentioned 

properties of T*, we can easily obtain a result similar to Theorem 3.1.

Theorem  3.3. Let w be an s-contraction in the compact metric space (-Y, d) and

C^*)*€N a secluence °f 10~k,k 6 N truncation operators on X.
Then Tk o w A  w if and only ifTkOw A  w.

(X,d) mx),h)
Using this result we can prove

Theorem  3.4. Let9s consider S =  (X,wi,W2, - ..wn) an IFS on the complete metric 

space (X,d) and (Tk)ken a sequence of (I0~k)-truncation operators on X . If Ak, 
A are the attractors of Sk =  (N,.Y, Tk o ivi,..., Tk o wn) and S.respectively, then, in 
(H (-Y ), h), we have

lim Ak =  Ak-+oo

From Theorem 3.4. it results that A can be well approximated, by choosing 

an appropriate number of decimals for the truncation operator.

It is very important, because there are no general relations between the real 

attractor and the truncated one.
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