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F IB E R  ^ -C O N T R A C T IO N S

M A R C E L - A D R I A N  Ş E R B A N

Abstract. This paper containes some conditions for proving that if an 
operator is fiber Picard operator then this operator is Picard operator.
The result obtained is used for proving the differentiability with respect 
some parameters.

1. Introduction

Let X be a nonempty set and A : X —y X  an operator. We note by:

P(X)  : = { 7  C X | Y ^ 0 }

FA {x £ X  |A(æ) — æ } — the fixed point set of A.

Definition 1.1. (I.A. Rus [6]). Let (X,d) be a metric space. An operator A : X  -> X  
is (uniformly) Picard operator if there exists x* £ X  such that:

(a) Fa = {**},

(b) the sequence (An(x))neN converges (uniformly) to x*, for all x £ X.  

Definition 1.2. (I.A. Rus [6]). Let (X,d) be a metric space. An operator A : X —> X  

is (uniformly) weakly Picard operator if:

(a) the sequence (An(x))nqN converges (uniformly), for all x £ X ,

(b) the limit, (which may depend on x) is a fixed point of A.

If A is weakly Picard operator then we consider the following operator:

A°° : X - +  X,

A°°(x) =  lim An(x).
n —► oo
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In this paper we consider the following class of operators:

A : Xi  x ... x Xp X\ x ... x Xp

(x i ,..., Xp) I y (A i (x i ), A2 (x i , X2) , •••> Ap(# i,..., Xp)),

where (X\ , d,), / =  l,p , are metrical spaces and Ak : A”i x ... x Xk —>• A*, & =  l,p, 

are such that the operators

Aa-(x i , £*-ii •) : Ait -> Ait

are weakly Picard operators, for all Xi £ A,-, i — 1, A:, k — l,p.

The aim of this paper is to give an answer of Problem 4.2 from I. A. Rus [5]. 

We replace the condition that A^(x 1 , 1 , •) is a-contraction with Ak(x\,..., Xk-\, ) 

is ^ —contraction and we give the conditions for <pk to obtain that operator A is a 

Picard operator.

2. Com parison functions and (c)-com parison function

Definition 2.1.(1.A. Rus [5]). A function y? : is called comparison function

if:

(a) <p is monotone increasing: t\ <t\ = >  y?(<i) < y?(2o), tut\ € 5f?+.

(b) (y?” (/))n€yv converges to 0, as 7?. 0 0 , for each t.

We are interested in finding that comparison functions which satisfies the 

condition:
00

! > * ( * )  < ° ° -  ( o
0

V. Beri ride in [2] gave a necessary and sufficient result for the convergence of the series 

of decreasing positive terms.
00

Theorem  2.1.(V. Berinde [2]). A series ^  uk of decreasing positive terms converges
k = 0

00

if and only if there exists a convergent series of nonnegative terms ^  vu such that:
k =  0

—n'>~-  < a < 1, for n > n0, (2)
un T  vn

is satisfied.
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Using this result we obtain which comparison functions satisfy the condition (1). 

Corollary 2 .1 .(V. Berinde [3]) Let <p : 3î+ —y 3Î+ be a comparison function. The
oo

series 52 <^(2), i G 3?+, is convergent if and only if there exists a number a, 0 < 
fc=o

oo
a < 1, and there exists a convergent series of nonnegative terms 52 vk such that:

i= 0

<pk+l(t)
+ Vk

< a < 1, for k > fco- ( 3 )

OO
Remark 2.1 . If 52 vi ls a convergent series of nonnegative terms and 0 < o  then also 

*=o
oo
52 avi is a convergent series of nonnegative terms, so we can write the condition (3) 
i=o
in equivalent form:

Vk+1W<  » / ( < )  +  « * ,  ( 4 )
CO

where 0 < a < 1, 52 ^  *s a convergent series of nonnegative terms.
1=0

By Corollary 2.1 and Remark 2.1 we obtain a new class of comparison func­

tions.

Definition 2.2.(V. Berinde [1], [2]) A function <p : 5K+ —> 3?+ is called (c)-comparison 

function if the following condition hold:

(a) <p is monotone increasing: t\ < t\ = >  <p(t\) < ^{t-j), t\,t\ G 5i+.

(b) there exist two numbers fco, a, 0 < a < 1, and a convergent series of
oo

nonnegative terms 52 vk such that:
i=0

V?fc +  1 ( 0  <  Q<fik (t) +  Vk,

for each t and k > ko.

Theorem 2.2. (V. Berinde [1], [3]) / f  <p : —> 5Î+ is a (c)-comparison function

then:

(i) <p(t) < t, for each / > 0;

(ii) <p is continuous in 0;
00

(iii) the series 52 ¥?*(*) converges for each t G 9Ï+;
k=0

(iv) the sum of the series (1), s(t), is monotone increasing and continuous in 0;
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(v) (*>"(*)) nţ N converges to 0, as n —> oo, for each t.

Example 2.1. The function p : —y R+, p(t) =  is a comparison function, but

is not a (c)-comparison function.

Example 2.2. The function <p : 3?+, <p(t) = at, 0 < a < 1, is a (c)-comparison

function.

Example 2.3. The function <p : —> 9?_j_,

comparison function.

Example 2.4. For the function from Example 2.3, if a. =  6 =  1, c =  — we obtain

a (c)-comparison function.

Definition 2.3. (I.A. Rus [8]) Let (X,d) be a metric space and <p : —y R+ is a

comparison function. A mapping f  : X -> A” is a ^ —contraction if:

for every x , y £ X .

3. F iber Picard operators problem

We’ll start, with a result which generalize Lemma 3.2 from I.A. Rus [5]. 

Lemma 3.1 .Le/ an £ 9?+, n £ AT, and <p : 3?+ —> 5?+ such that:

(l) Q'n —> 0 as n —y oo;

y? 25 a (c)~ comparison function.

at t £ [0; 2a]
, where 0 < a < l , a —~ < 6 < 1  and c < 0 is a

6/ +  c / > 2a

d(f(x)J(y))  < <p(d{x,y))

Then ^  0 as ?v —> oo.
k=o

Proof. We split the partial sum of the series in two parts:

n n

*» = = 2>n'*m  + E n̂"fc(afc).
^=° fc=riUi

For the first part of partial sum we have:

fc = 0 /c=0

[ f ]  [ * ]
E  Vn < £  v?n“*(maxofc) ->• 0n£N
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as n oo, because of the fact that p is a (c)-comparison function and the point (iii) 

from Theorem 2.2.

For the second part of the partial sum we have:
n

E  *
* = [*] + !

> * ) <  £  - c(m axa,) < s(m axa7).
Vj < n  ~  j < n

Using the continuity of s in 0. (Theorem 2.2, (iv)), and the fact that maxaj —> 0 asj<n
n —y oo we deduce that the second part also tends to 0 as n -> oo. □

Considering the open problem 3.1 from I.A. Rus [5], we’ll give the following 

result: Lemma 3.2 .Let (X,d) be a complete metric space, p : 9Î+ —» 9R+ a (c)- 

comparison function and An, A : X  —y X, n £ N, operators such that:

(i) p is subadditive: p(t[ -f to) < v?(U) 4- vih),  VU, U €

(ii) the sequence (A „)n€Ar pointwise converges to A;

(iii) An and A, n G N , are p—contractions.

Then the sequence (An o An_i o ... o Ao)n^N pointwise converges to A°°.

Proof. From (iii) we deduce that there exists a unique x* £ Fa , so i 4 ° ° ( x )  — x*, for 

all x £ X . Let x £ X. We have:

d((An o i o • • • o Aq) (x) ,x*) <

< d{{An O An- l  O . . . o Ao) (i’ )i (An o An-! o • • • o A0) (x*)) +

4* d((An o An_i o • • • o Aq) («r*), Afl(x*)) 4- d(An(x*), x*) < • • <

< pn+l(d(x,x*)) + pn(d(A0(x*),x')) + **)) + ••.+ rf(An(z*), **).

Let Qk •= d(Ak{x*),x*). It is obvious that cu- —>■ 0 as k —> oo and the proof of the 

theorem follows from Lemma 3.1. □

Lemma 3.3.Let (X,d) and (Y,p) be tivo metric spaces. xn,x* £ X, p : $1+ —>■ 9Î+ a

(c)-comparison function and f  : A” x Y —> Y an operator such that:

(i) xn -> x*as n —► oo;

(ii) p is subadditive;

(in) the operator f(-.y) : À" -> X is continuous for all y £ Y ;
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(iv) f(x,  •) : Y —> Y is p —contraction for all x £ X ;

(v) (Y,p) is a complete metric space.

Then the sequence defined by: yn+i — f(xn.yn), Vi — Vi n € N converges to y*, the 
unique fixed point of f ( x* , •), for all y E Y.

Proof. The proof is a simple application of Lemma 3.3 with An : Y —> Y, An(y) — 

f ( xn, y ) , A : Y - > Y , A ( y ) = f ( x \ y ) .  □

The main result of this paper is related to the open problem 4.1, (I.A. Rus

[5]). This result is an answer of open problem 4.2, (I.A. Rus [5]), which generalize the 

Theorem 4.1.

Theorem  3.1 .Let (Xk.dk), k — 0,p, p > 1, be some metric spaces. Let

Ak : X q x ... x Xk -> X k, k =  0,p,

be some operators such that:

(i) the spaces (Xk.dk), k — 1 ,p, are complete metric spaces;

(ii) the operator Ao is (weakly) Picard operator;

(iii) there exist pk : subadditive (c)-comparison functions such that

the operators A/J.ro, . . . , X k -  i. •) arc pk —contractions, k = i,p ;

(tv) the operator's Ak are continuous with respect to (xo, for all Xk (E

Xk , k -  1, p .

Then the operator Bp — (T o ,. Ap) is ( weakly) Picard operator. Moreover if Aq is a 
Picard operator and

Fa* =  FAl{t. r) =  {xt>.

then

Fbp =  .....

Proof. We prove this theorem by induction respect to p E N*. First we consider the 
case of p — 1.
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Let xq E X q and x\ G X\. We show that

B” (x0, x i) -»• (y l§ °(^ o ),(^ o ))

as n ->• oo, where x^(xo) is a unique fixed point of ^ (^ ^ (x o ) ,  ) It si easy to check 

that

where y0 =  * i, yi =  ^ijxoij/o), ---i îfo+i =  M (A^(x0),yn), ...

Using again Lemma 3.3 we obtain the proof in the case p =  1.

Now we suppose that the statemant of the theorem is true for the p < k and 

we prove the theorem for the p =  k -f 1. We remark that Bk + i =  (Bk,Ak+ i), where 

Bk is (weakly) Picard operator, so we are in the case p =  1 and thus the proof is 

complete. □

Remark 3.1.The Lemma 3.2, Lemma 3.3, Theorem 4.1 from I.A. Rus [5] can be 

obtained using as in Example 2.2.

4. A pplication

We consider the folowing integral equation:

6

Theorem ţ.l. Suppose that the following conditions hold:

(i) 9 E C[a\ 6], À’ G C([a\6] x [a; b] x 3?);

(ii) there exists Lk > 0 such that: \K(t,s, u) — K(t,s,v)\ < Lk \u — v|, for all 

t , s G  [ a ; 6], w , v  E 3?;

(iii) A0Ljv'(6- a) < 1, where A0 G -

(a) the equation (5) has a unique solution x*(',\) in C([a;6]), for all À G

£ r(*0 ,* l) =  (^ (* o )^ n )

t G [a;b\. ( 5 )
a

Then

[—Ao ; Ao] ;
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(b) for all 2o £ C([a;6]) the sequence (æn)nçN defined by

b
*n+i(<; A) =  g(t) +  A • J K(i ,s ,xn(s))ds,

a

converges uniformly to x* f or  all t,s G [a; 6], À G [—Ao; Ao];

(c) we have the estimation:

an
I k n  -  r * \ \ c  <  — -  • 11*1 -  X o l lc  -

where a — AoLx(b — a);

(d) the function x* : [a; 6] x [-Ao: Ao] —> 5 f t  (£, A) i— >• £*(£; A) is continuous;

(e) if K(t, s, •) G (71(3?), for all /, .s G [a; 6], then

* “ («; ■) S C 'a -A oiA o])

for all t G [a; 6].

Proof. We consider the Banach space À' := (C([a;6] x [—Ao ; Ao]), IMIc ), where ||-||c 

is Chebyshev norm, and the operator defined by

Aq : X  -> X,

b
Ao(x)(t\A) = g(t) + A • J K(t, s,x(s\ \))ds,

for all t,$ G [a; 6], A G [—Ao ; Ao].

Using (ii) we obtain:

||v40(c) -  A0(y)\\c < A0LK (b -  a) ■ \\x -  y\\c  (6)

for all x,y  G X , so Ao is a ^—contraction, where <p(t) =  at is a (c)-comparison 

function because of (iii). From Theorem 3, (V. Berinde, [2]) we conclude (a), (b), (c),

(d).
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Ox*
W e’ll prove that there exists -rrr-- If we formally derivate the relation (5)UA

respect to A we obtain:

dx(t; A) 
OX

f  Tr t . / xxx, x [  0K{t,s,x{s\X))  x (s ;A )
=  I h(t,s,x(s\X))ds + X- I --------- —--------------- d \ ds'

This relation sugest. to consider the following operator:

A i : X  x X - >  X,
b b

Ai(x,  y)(t; A) =  J K(t,s,  x(s\X))ds +  A • J y(s ;\)ds.
a a

We estimate that:

M i(* > î/i )  -  4 i(* .y 2 )H c  <  *oLk (b - a ) • ||2/! -  y2\\c  , 

for all x E X . If we take the operator

B : X x X -> X x X, B = (A0,Ai)

then we are in the conditions o f Theorem 3.1, thus B is a Picard operator and the 

sequences

b

x „+i(t;\) :=  g(t) +  A J K(t ,s,x„(s) )ds
a

U W f  T',4 , n u  , 1  f  dK{ t , s , xn(s;\))yn+i(t\X) :=  / I\ (t,s ,xn(s\X))ds +  X ■ ----------- — ------------- yn(s;X)ds
a a

converges uniformly (with respect to t E [a; 6], A E [—A0; Ao]) to (x*,y*)  E Fb , for
Ox i

all x’o, yo G X.  But for fixed x0, Vo G Ar we have that yi =  --y - and by induction we
O' ^^

prove that yn — — so we have:
OX

uni f. *xn - »  x as n ->  00,

0xn unif.

~ox

as n —> 00.
Ox* Ox*

These imply that there exists and —  =  y*.
OX a X

□
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Remark 4. LU K( t , s , •) G C'm(» )  then x*(t\ •) G Cm([-A 0; A0]).

Remark 4.2. For other examples of integral equations where Theorem 3.1 is used see 

I. A. Rus [4], [5], M. A. Şerban [9].

References
[1] V. Berinde, E r r o r  e s t i m a t e s  f o r  a c la ss  o f  ( 8 ,  < p ) -c o n tr a c tio n s , Preprint Nr.3, 1994, 3-9.
[2] V.Berinde, E r r o r  e s t i m a t e s  in  th e  a p p r o x im a tio n  o f  th e  f ix e d  p o in ts  f o r  th e  c la ss  o f  

< p -c o n tr a c tio n s , Studia Univ. ’’ Babeş-Bolyai” , Mathematica, XXXV,  2, 1990, 86-89.
[3] V. Berinde, G e n e r a l iz e d  c o n tr a c t io n  a n d  a p p lic a tio n s  (Romanian), Ph. D. Thesis, Univ. 

” Babeş-Bolyai” Cluj-Napoca, 1993.
[4] 1. A. Rus, A n  a b s tr a c t  p o in t  o f  m e w  f o r  s o m e  in teg r a l e q u a tio n s  f r o m  a p p lied  m a th e m a t ­

ic s , Proceed. Int. Conf., Timişoara, 1997, 256-270.
5] 1. A. Rus, F i b e r  P ic a r d  o p e r a to r s  a n d  a p p lic a tio n s , Mathematica, Oluj-Napoca, 1999.
6] I. A. Rus, P ic a r d  o p e r a to r s  a n d  a p p lic a tio n s , ” Babeş-Bolyai” Univ., Cluj-Napoca, 1996.
7] l. A. Rus, G e n e r a l iz e d  q>— c o n tr a c t io n , Mathematica, 24(1982), 175-178.
8] I. A. Rus, G e n e r a l iz e d  c o n tr a c t i o n , Preprint Nr.3, 1983, 1-130.
9] M. A. Şerban, E x i s t e n c e  a n d  u n iq u e n e s s  th e o r e m s  f o r  th e  C h a n d r a s e k h a r 's  eq u a tio n , to 

appear in Mathematica, Cluj-Napoca.

“Babeş-B olyai” University, str. Kogalniceanu, nr. 1, 3400 Cluj-Napoca
E -m a i l  a d d r e s s : mserbanemath.ubbcluj.ro

108


