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FIBER ¢—CONTRACTIONS

MARCEL-ADRIAN SERBAN

Abstract. This paper containes some conditions for proving that if an
operator is fiber Picard operator then this operator is Picard operator.
The result obtained is used for proving the differentiability with respect

some parameters.

1. Introduction
Let X be a nonempty set and A : X — X an operator. We note by:
P(X):={Y C X |V #0}
Fq:= {‘L'.E X|A(z) ==z} — the fixed point set of A.

Definition 1.1. (I.A. Rus [6]}). Let (X,d) be a metric space. An operator A: X — X
is (uniformly) Picard operator if there exists z* € X such that:

(a) Fa={z"},

(b) the sequence (A™(z)),n converges (uniformly) to z*, for all z € X.

Definition 1.2. (I.A. Rus [6]). Let (X,d) be a metric space. An operator A: X — X
is (uniformly) weakly Picard operator if:

(a) the sequence (A™(z)),cn converges (uniformly), for all z € X,

(b) the limit (which may depend on x) is a fixed point of A.

If A is weakly Picard operator then we consider the following operator:
A® X 2 X,

A% (z) = lim A™(z).

n-~-+0o
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In this paper we consider the following class of operators:

A X x ..o x Xp =2 X1 x...x Xp
(;El,.AA,J,‘p) — (141(1'1),142(131,.’132),4..,Ap(1)1,...,.’L'p)),

where (X,,d;), ¢ = 1, p, are metrical spaces and A : X; x ... x Xp = X, k = 1,p

are such that the operators
A/.;(Il‘ oy Thk—1, ) Xk = Xk

are weakly Picard operators, for all z; € X;, i =1,k, k =1,p.

The aim of this paper is to give an answer of Problem 4.2 from I. A. Rus [5].
We replace the condition that Ag(z1, ..., z4-1, -) is «—contraction with Ag(zq, ..., k-1, )
is ¢ —contraction and we give the conditions for @i to obtain that operator A 1s a

Picard operator.

2. Comparison functions and (c)-comparison function

Definition 2.1.(1.A. Rus [5]). A function  : 1 — Ry is called comparison function
if:
(a) ¢ is monotone increasing: t; <t; == ¢(1;) < p(t2), {1t € Ny
(b) (#™ (1)), en converges to 0, as n — oo, for each t.
We are interested in finding that comparison functions which satisfies the
condition:
—
D k() < oo (1)
k=0
V. Berinde in [2] gave a necessary and sufficient result for the convergence of the series
of decreasing positive terms.

(o]
Theorem 2.1.(V. Berinde [2]). A series ) ux of decreasing positive terms converges

k=0
o0
if and only if there exists a convergent series of nonnegative terms Y vy such that:
k=0
&H—<a<],for n > ng, (2)
Up + Up — -

s satisfied.
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Using this result we obtain which comparison functions satisfy the condition (1).
Corollary 2.1.(V. Berinde [3]) Let ¢ : Ry — R4 be a comparison function. The

00
series Y. ©*(t), t € Ry, is convergent if and only if there exists a number a, 0 <
k=0

o0
a < 1, and there exists a convergent series of nonnegative terms ) vx such that:
i=0

$0k+1(t)

O+ on <a<l, for k> ko (3)

[eo]
Remark 2.1. If 3 v; is a convergent series of nonnegative terms and 0 < a then also
1=0
® . . . . a, .
>~ awv; is a convergent series of nonnegative terms, so we can write the condition (3)
=0
in equivalent form:

PHt) < ap®(t) + vk, (4)

where 0 < a < 1, i ) 15 a convergent series of nonnegative terms.
By Coroll;(;l 2.1 and Remark 2.1 we obtain a new class of comparison func-
tions.
Definition 2.2.(V. Berinde [1], [2]) A function ¢ : R4 — R4 is called (c)-comparison
function if the following condition hold:
(a) ¢ is monotone increasing: t; < t; == (1) < p(ta), t1,t € Ry
(b) there exist two numbers ky, o, 0 < o < 1, and a convergent series of

o0
nonnegative terms y . vx such that:
1=0

PH(E) < o (1) + i,

for each t and k > ko.
Theorem 2.2. (V. Berinde (1], [3]) /T ¢ : ®4 — R4 is a (c)-comparison function
then:
(1
(i

) ¢(t) < t, for each t > 0;
) ¥

(ii1) the series Z @ (t) converges for each t € R ;
)

is contmuous in 0;

(iv) the sum of the series (1), s(t), is monotone increasing and continuous in 0;
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(v) (¢™(t)),en converges to 0, as n — oo, for each t.

Ezample 2.1. The function ¢ : Ry — Ry, ¢(t) = HLl is a comparison function, but
is not a (c)-comparison function.

Ezample 2.2. The function ¢ : ®4 = N4, ¢(t) = of, 0 < a < 1, is a (c)-comparison
function.

Lrample 2.3. The function ¢ : Ry — N4,

at t € [0;2d] .
o(t) = ,where 0 <a<l,a~-35 <b<lande<0isa
bt+c t>2a

comparison function.

b=1c¢c= -1 we obtain

Erample 2.4. For the function from Example 2.3, if a = 3

L
2’
a (c)-comparison function.

Definition 2.3. (I.A. Rus [8]) Let (X,d) be a metric space and ¢ : Ry — R} isa

comparison function. A mapping f:.X — X is a p—contraction if:

d(f(x}, f(y)) < p(d(z,9)),

for every z,y € X.

3. Fiber Picard operators problem

We'll start with a result which generalize Lemma 3.2 from I.A. Rus [5].
Lemma 3.1.Let o, ERyp, n € N, and v : Ry — Ry such that:
(i) an = 0 as n = ¢,
(1) ¢ is a (c)-comparison function.

(&9}
Then 5" " *(agx) = 0 as n — oo,
k=0

Proof. We split the partial sum of the series in two parts:

n (3] n
=Y = Y @+ Y (e
k=0 k=0

k=[2]+1
For the first part of partial sum we have:
n—k : n—-k
Z " T () < " " (maxag) - 0
T« neN
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as n — 00, because of the fact that ¢ is a (c)-comparison function and the point (iii)
from Theorem 2.2.

For the second part of the partial sum we have:

n n
n—-k n—k
< xa.:) < .
" F(ak) < E @ (I}lsa’icaj) < s(ljnsarzc a;)
k=[2]+1 k=[2]+1

Using the continuity of s in 0, (Theorem 2.2, (iv)), and the fact that maxa; — 0 as
sn

n — oo we deduce that the second part also tends to 0 as n — oo. O

Considering the open problem 3.1 from L.A. Rus [5], we’ll give the following
result: Lemma 3.2.Let (X,d) be a complete metric space, v : Ry — Ry a (c)-

comparison function and A,, A: X = X, n € N, operators such that:

(1) » s subadditive: p(t; +1ta2) < p(t1) + p(t2), Vi1, ta € Ry,
(ii) the sequence (A,,)neN pointwise converges lo A;

(iii) A, and A, n € N, are p—contractions.

Then the sequence (Ap 0 An_10...0 AO)n.eN pointwise converges to A®.

Proof. From (iii) we deduce that there exists a unique z* € Fy4, so A®(z) = z*, for
all z € X. Let z € X. We have:
d((An 0 An_1 00 Ag) (¢),27) <
<d((AnoAn_10---0Ag)(2), (ApoAp_yo---0Ao) (7)) +
+d((AnoAn_10:--0Ag) (), An(x")) +d(An(2%),2") < -+ <
< "HHd(e, 2%)) + 9" (d(Ao(2™), 27)) + " d(Ar(27), 2%) + - - + d(Aa(2), 2°).

Let ak := d(Ak(x*),z*). It is obvious that ax — 0 as k — oo and the proof of the

theorem follows from Lemma 3.1. O

Lemma 3.3.Let (X,d) and (Y,p) be two metric spaces, r,,,z* € X, ¢ Ry = R} a
(c)-comparison function and f: X xY — Y an operator such that:
(i) zn — z*as n = oo;
(ii) ¢ is subadditive;
(iit) the operator f(-.y) : X = X is continuous for ally €Y,
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(iv) f(z,-):Y =Y is p—contraction for all z € X;

(v) (Y.p) is a complete metric space.
Then the sequence defined by: yn41 = f(Tn,Yn), Y1 =y, n € N converges to y*, the
unique fized point of f(z*,:), forally €Y.

Proof. The proof is a simple application of Lemma 3.3 with 4, : Y = Y, A.(y) =
flzn,y), ALY =2 Y, Ay) = f(27,y). 0

The main result of this paper is related to the open problem 4.1, (I.A. Rus
[8]). This result is an answer of open problem 4.2, (I.A. Rus [5]), which generalize the
Theorem 4.1.

Theorem 3.1.Let (Xy,di), k=0,p, p> 1. be some metric spaces. Let
AkZ/\'nX...XXk—)Xk, k:(],—p,

be some operators such that:
(1) the spaces (Xk,dy), k = 1,p, are complete metric spaces;
(i) the operator Ao is (weakly) Picard operator,
(11) there exist gy : R4 — Ny subadditive (c)-comparison functions such that
the operators Ag(xq. ..., x_1.") are pp—contractions, k =1, p;
(wv) the operators Ay are continuous with respect to (ry, ..., xk—1) for all ) €
X, k=T1p.
Then the operator B, = (Ag, ..., A,) s (weakly) Picard operator. Moreover if Ag 1s a

Picard operator and
Fa, = {z3}, Fa,gy = {21} s Fayes, €)= {ap}

then

Proof. We prove this theorem by induction respect to p € N*. First we consider the
case of p = 1.
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Let £9 € Xo and z; € X,. We show that
Bf (zo, 21) = (AF (20), 21(z0))

as n — 0o, where z}(x¢) is a unique fixed point of A;(Ag°(z¢),-) It si easy to check

that
B?(;l?(),.l'l) = (Ag(‘r()))yn))

where yo = 21, 1 = A1(Z0,Y0), v Ynt1 = AL(AG(20), Yn), -

Using again Lemma 3.3 we obtain the proof in the case p = 1.

Now we suppose that the statemant of the theorem is true for the p < k and
we prove the theorem for the p = k + 1. We remark that By4y = (B, Ak41), where
By is (weakly) Picard operator, so we are in the case p = 1 and thus the proof is

complete. O

Remark 3.1.The Lemima 3.2, Lemma 3.3, Theorem 4.1 from [.A. Rus [5] can be

obtained using ¢ as in Example 2.2.

4. Application

We consider the folowing integral equation:

b
z(t) =g(t) + X / K(t,s. z(s))ds, t € [a:b]. (5)

Theorem 4.1. Suppose that the following conditions hold:
(i) g € Cla;b], K € C([a;b] x [a; ] x R);
(i) there exists Lx > 0 such that: |K (¢, s, u) — K(t,s,v)| < Lg |u — v|, for all
t,s € [a;b], u,v e N;
(iii) AgLg (b—a) <1, where Ao € R7.
Then
(a) the equation (5) has a unique solution z*(-,A) in C([a;b]), for all A €
[=X0: Ao);
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(b) for all 2o € C([a;b]) the sequence (z,), ¢, defined by

b
Tor1(GA) =g(t) + A / K(t,s,z,(s))ds,

converges uniformly to a*, for all t,s € [a;b], A € [—Ao; Ag);

{c) we have the estimation:

an
lfzn —*lc < T—a llz1 — zollc

where a = AL (b — a);
(d) the function &* : [a;b] x [=Xg: Ag) = R (t,A) —> £~ (t; A) is continuous;
(e) if K(t,s,-) € CY(R), for all t, s € [a;b], then

z™(t;) € CH{[~Ao; Mo))
for all ¢t € [a;b].

Proof. We consider the Banach space X := (C([a:b] x [=Ao; X)), ||-||c), where |||~

1s Chebyshev norm, and the operator defined by

Ao X o X,
b
Ag(2)(L; ) = g(t) + A /Ix'(t, s, z(s; A))ds,
for all t,s € [a;b], A € [=Ao; Ad].
Using (11) we obtain:
140(x) = Ao (Wl < Aol (b= a)-llz—yllc (6)

for all 2,y € X, so Ap is a p—contraction, where ©(t) = at is a (c¢)-comparison
function because of (iii). From Theorem 3, (V. Berinde, [2]) we conclude (a), (b), (c),
(d).
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»*

XN

We’ll prove that there exists . If we formally derivate the relation (5)

respect to A we obtain:

b b
Oz(t: \) =/I\'(t,s,x(s;/\))ds+z\-/6[\ (t’zz(S;A)) 2 g

oA A 1)

a

This relation sugest to consider the following operator:

Al Z‘YX.}(—))&',
/ / oK A
Az, y) (5 A) = / K(t,s,2(s;A))ds+ X - / —l%ﬂ -y(s; A)ds.

We estimate that:

|A1(z, 1) — Ai(z,y2)llc < AoLk (b—a) |ly1 — v2llc,
for all z € X. If we take the operator
B: X xX—-X«xJX, B = (Ao, A1)

then we are in the conditions of Theorem 3.1, thus B is a Picard operator and the

sequences
b
Tppr(t;A) :=g(t)+ A / K(t,s,z,(s))ds

b b
Yn41(t; A) ::/I\'(t,S.J:n(.S':/\))ds+,\ / oK (t'séi"(S;/\))
a a

~Yn(s; \)ds

converges uniformly (with respect to t € [a;b], A € [—Xo; Ao]) to (z*,y*) € Fp, for

0 . .
all 2o, yo € X. But for fixed zo,yp € X we have that y; = —5{;\1 and by induction we
Or,
prove that y, = ———, so we have:
oA
unif. .
z, — &' as n— oo,
Oz, unif.
oA
as n — 00.
These imply that there exists 2% and 0% = y* o
1€S¢e al Lne XIstS —— and — = .
Py E3) ox Y
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Remark 4.1.1f K(t,s,-) € C™(R) then z*(t;-) € C™([—Ao; Ao))-
Remark 4.2. For other examples of integral equations where Theorem 3.1 is used see

I. A. Rus [4], [6], M. A. Serban [9].
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