FIBER PICARD OPERATORS THEOREM AND APPLICATIONS

IOAN A. RUS

Abstract. In this paper we study the following problem: Let (X_k, d_k) , $k = \overline{0, p}, p \ge 1$, be metric spaces and $A_k : X_0 \times \cdots \times X_k \to X_k, k = \overline{0, p}$ be operators. We suppose that

- (a) the operators A_k are continuous, $k = \overline{0, p}$;
- (b) the operators $A_0, A_k(x_0, \ldots, x_{k-1}, \cdot), k = \overline{1, p}$ are (weakly) Picard operators. Establish conditions which imply that the operator

$$B_p: X_0 \times \cdots \times X_p \to X_0 \times \cdots \times X_p$$
$$B_p(x_0, \ldots, x_p) := (A_0(x_0), A_1(x_0, x_1), \ldots, A_p(x_0, \ldots, x_p)),$$

is a (weakly) Picard operator.

1. Introduction

Ē

Let (X, d) be a metric space and $A : X \to X$ an operator. In this paper we shall use the following notations:

$$P(X) := \{Y \subset X | Y \neq \emptyset\},$$

$$F_A := \{x \in X | A(x) = x\} \text{ - the fixed point set of } A,$$

$$I(A) := \{Y \in P(X) | A(Y) \subset Y\}.$$

Definition 1.1 (Rus [9], [11]). An operator $A : X \to X$ is weakly Picard operator (WPO) if the sequence

$$(A^n(x))_{n\in N}$$

converges, for all $x \in X$, and the limit (which may depend on x) is a fixed point of A.

¹⁹⁹¹ Mathematics Subject Classification. 47H10, 45G15.

Definition 1.2 (Rus [9], [11]). If A is WPO, then we consider the operator A^{∞} defined by

$$A^{\infty}: X \to X, \quad A^{\infty}(x) := \lim_{n \to \infty} A^n(x).$$

We remark that, $A^{\infty}(X) = F_A$.

Definition 1.3 (Rus [9], [11]). If A is WPO and $F_A = \{x^*\}$, then by definition the operator A is a Picard operator.

Example 1.1. Let (X, d) be a complete metric space and $A: X \to X$ such that

$$d(A^{2}(x), A(x)) \leq ad(x, A(x))$$

for all $x \in X$ and for some $a \in]0, 1[$. Then A is weakly Picard operator (see [8], [9], [11]).

Example 1.2. Let (X, d) be a complete metric space and $A, B: X \to X$ such that

$$d(A(x), B(y)) \le a[d(x, A(x)) + d(y, B(y))]$$

for all $x, y \in X$ for some $a \in \left]0, \frac{1}{2}\right[$. Then A and B are Picard operators. Example 1.3. $X = C[0, 1], d(x, y) = ||x - y||_C$,

$$A(x)(t) = x(0) + \int_0^t K(t,s)x(s)ds, \quad t \in [0,1]$$

where $K \in C([0, 1] \times [0, 1])$. Then A is WPO.

For other examples see [13]. [10], [1], [2], [20],...

We have the following characterization theorem for WPO.

Theorem 1.1. Let (X, d) be a metric space and $A : X \to X$ an WPO. Then there exist $X_i \in I(A)$, $i \in I$, such that

(i)
$$X = \bigcup_{i \in I} X_i, X_i \cap X_j = \emptyset, i \neq j,$$

(ii) $A\Big|_{X_i}$ is a Picard operator, $i \in I.$

Proof. Let $x \in F_A$. Let X_x be the domain of attraction of x. It is clear that

$$X = \bigcup_{x \in F_A} X_x$$

is a partition of X and that $X_x \in I(A)$. By the definition of X_x , we have that

$$F_A \cap X_x = \{x\}.$$

In this paper we study the following problem:

Problem 1.1. Let (X, d) and (Y, ρ) be the metric spaces and $A = (B, C) : X \times Y \rightarrow X \times Y$ a triangular operator, i.e.

$$A(x, y) = (B(x), C(x, y)), \quad x \in X, \quad y \in Y.$$

We suppose that the operators $B: X \to X$, $C(x, \cdot): Y \to Y$, $x \in X$, are Picard operators. Establish conditions which imply that the operator A is Picard operator.

If the operators, $B: X \to X$, $C(x, \cdot): Y \to Y$, $x \in X$, are WPO, establish conditions which imply that the operator A is WPO.

2. Fiber Picard operators theorem

The following result is given by M.W. Hirsch and C.C. Pugh ([5], 1970):

Theorem 2.1 (Fiber contraction theorem). Let (X, d) be a metric space and B: $X \to X$ be an operator having an attractive fixed point $p \in X$. Let (Y, ρ) be a metric space and $C: X \times Y \to Y$ an operator such that

(i) there exists $\lambda \in [0, 1[$, such that the operator $C(x, \cdot)$ is a λ -contraction for all $x \in X$;

(ii) the operator $A : X \times Y \to X \times Y$, A(x, y) := (B(x), C(x, y)) is continuous. Let $q \in Y$ be a fixed point for $C(p, \cdot)$.

Then (p,q) is an attractive fixed point for A.

For some generalization of this theorem see [10]-[15], [18] and [19].

We have

Theorem 2.2. Let (X, d) and (Y, ρ) be two metric space and A = (B, C) a triangular operator. We suppose that

(i) (Y, ρ) is a complete metric space;

(ii) the operator $B: X \rightarrow X$ is WPO;

(iii) there exists $\alpha \in [0, 1]$, such that $C(x, \cdot)$ is an α -contraction, for all $x \in X$;

(iv) if $(x^*, y^*) \in F_A$, then $C(\cdot, y^*)$ is continuous in x^* .

Then the operator A is WPO.

If B is Picard operator, then A is Picard operator.

Proof. Let $(x, y) \in X \times Y$. Let y^* the unique fixed point of $C(B^{\infty}(x), \cdot)$. We shall prove that $A^n(x, y) \to (B^{\infty}(x), y^*)$ as $n \to \infty$. Let $A^n(x, y) = (x_n, y_n)$. Then

$$x_n = B^n(x), \quad y_n = C(x_{n-1}, y_{n-1}).$$

The proof that $y_n \to y^*$ as $n \to \infty$ is similarly with the proof given in [5] for the Theorem 1.

Remark 2.1. The proof that $y_n \to y^*$ as $n \to \infty$ follows, also, from the following Lemma 2.1 (see [13]). Let (X, d) be a complete metric space and A_n , $A: X \to X$, $n \in N$, some operators. We suppose that

(a) the sequence $(A_n)_{n \in N}$ pointiwse converges to A;

(b) there exist $\alpha \in [0, 1[$ such that the operators A_n and $A, n \in N$, are α -contractions.

Then the sequence $(A_n \circ A_{n-1} \circ \cdots \circ A_0)_{n \in \mathbb{N}}$ poinwise converges to A^{∞} . Remark 2.2. In the proof of Lemma 2.2 on uses the following

Lemma 2.2 (see [13], [14] and [15]). Let $a_n, b_n \in \mathbb{R}_+$, $n \in \mathbb{N}$. We suppose that

(a)
$$a_n \to 0$$
 as $n \to \infty$;
(b) $\sum_{k=0}^{\infty} b_k < +\infty$.
Then
 $\sum_{k=0}^{n} a_k b_{n-k} \to 0$ as $n \to \infty$.

Remark 2.3. For to have a generalization of the Theorem 2.2, we need suitable generalization for Lemma 2.1 and Lemma 2.2. For some generalization of these Lemmas, see [15] and [19].

Remark 2.4. By induction, from the Theorem 2.2 we have

Theorem 2.3 (see [13]). Let (X_k, d_k) , $k = \overline{0, p}$, $p \ge 1$, be some metric spaces. Let

$$A_k: X_0 \times \cdots \times X_k \to X_k, \quad k = \overline{0, p}$$

be some operators. We suppose that:

(a) the spaces (X_k, d_k) , $k = \overline{1, p}$ are complete metric spaces;

(b) the operator A_0 is WPO;

(c) there exist $\alpha_k \in [0, 1[$ such that the operators $A_k(x_0, \ldots, x_{k-1}, \cdot)$ are

 α_k -contractions;

(d) if $(x_0^*, \ldots, x_p^*) \in F_{B_p}$, $B_p = (A_0, \ldots, A_p)$, then the operators $A_k(\cdot, \ldots, \cdot, x_k^*)$,

 $k = \overline{1, p}$, are continuous in $(x_0^*, x_1^*, \dots, x_{k-1}^*)$.

Then the operator B_p is WPO.

Remark 2.5. The next conjecture is in connection with our results.

Discrete Markus-Yamabe Conjecture (see [3], [6], [1]). Let A be a C^1 function from R^n into itself such that A(0) = 0 and for any $x \in R^n$, JA(x) (the Jacobian matrix of A at x) has all its eigenvalues with modulus less than one. Then A is a Picard function.

From the fiber Picard operators theorem we have

Theorem 2.4. Let $A : \mathbb{R}^n \to \mathbb{R}^n$ be a \mathbb{C}^1 triangular function, $A = (A_1, \ldots, A_n)$.

If there exists $\alpha \in]0, 1[$ such that

$$\left|\frac{\partial A_i}{\partial x_i}\right| \leq \alpha, \quad i = \overline{1, n}.$$

Then the function A is Picard function.

A. Cima, A. Gasull, F. Mañosas prove that the Discrete Markus-Yamabe Conjecture ([3], 1999) is a theorem for A provided

$$\left|\frac{\partial A_i}{\partial x_j}\right| < 1, \quad j = \overline{1, i}, \quad i = \overline{1, n}.$$

3. Applications

The fiber Picard operators theorem is very useful for proving solutions of operatorial equations to be differentiable with respect to parameters (see [17], [12], [13], [14], [15], [20], [18]). For example:

• (J. Sotomayor) differentiability with respect to initial data for the solution of differential equations

$$x'=f(t,x), \quad x(t_0)=x_0, \quad f:\Omega\to R^n, \quad \Omega\subset R^{n+1};$$

• (1.A. Rus [12]) differentiability with respect to λ for the solution of the integral equation

$$x(t) = 1 + \lambda \int_t^1 x(s)x(s-t)ds, \quad t \in [0,1],$$

where $\lambda \in R$;

• (A. Tămăşan) differentiability with respect to lag function for pantograph equation

$$x'(t) = f(t), x(t), x(\lambda t)), \quad t > 0; \quad 0 < \lambda < 1, \quad x(0) = 0.$$

In what follow we apply the fiber Picard operators theorem to study the following integral equations modelling population growth in a periodic environment (see [10], [7])

$$x(t) = \int_{t-\tau}^{t} f(s, x(s); \lambda) ds$$
(1)

where $f \in C(R \times [\alpha, \beta] \times J, [m, M])$, with $\tau, \alpha, \beta, m, M \in R_+^*$ and $J \subset R$ a compact interval.

Let

$$X_{\omega} := \{ x \in C(R \times J, [\alpha, \beta]) | x(t + \omega, \lambda) = x(t, \lambda),$$

for all $t \in R, \ \lambda \in J \}, \ \omega > 0.$

We consider on X_{ω} the metric $d(x, y) := ||x - y||_{C}$. We have

Theorem 3.1. We suppose that

(a) 0 < m < M, 0 < α < β; α ≤ mτ, β ≥ Mτ;
(b) m ≤ f(t, u; λ) ≤ M, for t ∈ R. u ∈ [α, β], λ ∈ J;
(c) f(t + ω, u; λ) = f(t, u; λ), t ∈ R, u ∈ [α, β], λ ∈ J;
(d) there exists l(t), such that

$$|f(t, u; \lambda) - f(t, v; \lambda)| \le l(t)|u - v|$$

for all $t \in R$, $u, v \in [\alpha, \beta]$;

(e) there exists $q \in]0, 1[$ such that

$$\int_{t-\tau}^t l(s)ds \le q, \text{ for all } t \in R.$$

Then

- (i) the equation (1) has in X_{ω} a unique solution x^* ;
- (ii) for all $x_0 \in X_{\omega}$, the sequence defined by

$$x_{n+1}(t,\lambda) = \int_{t-\tau}^t f(s,x_n(s,\lambda)) ds$$

converges uniformly to x^* ;

(iii) if
$$f(t, \cdot, \cdot) \in C^1$$
, then $x^*(t, \cdot) \in C^1(J)$.

Proof. (i)+(ii). We consider the operator

$$B: X_{\omega} \to C(R \times J), \quad B(x)(t, \lambda) := \int_{t-\tau}^{t} f(s, x(s, \lambda)) ds.$$

From (a) and (c) we have that $X_{\omega} \in I(B)$. From (d) it follows that B is a contraction.

- By the contraction principle we have that B is a Picard operator.
- (iii). Let we prove that there exists $\frac{\partial x^*}{\partial \lambda}$ and $\frac{\partial x^*}{\partial \lambda} \in C(R \times J)$. If we suppose that there exists $\frac{\partial x^*}{\partial \lambda}$, then from

$$x(t,\lambda) = \int_{t- au}^t f(s,x(s,\lambda);\lambda) ds$$

we have

$$\frac{\partial x(t,\lambda)}{\partial \lambda} = \int_{t-\tau}^t \frac{\partial f(s,x(s,\lambda);\lambda)}{\partial x} \cdot \frac{\partial x(s,\lambda)}{\partial \lambda} ds + \int_{t-\tau}^t \frac{\partial f(s,x(s,\lambda);\lambda)}{\partial \lambda} ds.$$

This relation suggest us to consider the following operator

$$A: X_{\omega} \times Y_{\omega} \to X_{\omega} \times Y_{\omega}$$

defined by

$$A = (B,C), \quad A(x,y) = (B(x),C(x,y)),$$

where

$$C(x,y)(t,\lambda) := \int_{t-\tau}^{t} \frac{\partial f(s,x(s,\lambda);\lambda)}{\partial x} y(s,\lambda) ds + \int_{t-\tau}^{t} \frac{\partial f(s,x(s,\lambda);\lambda)}{\partial \lambda} ds$$

and $Y_{\omega} := \{ y \in C(R \times J) | \ y(t+\omega,\lambda) = y(t,\lambda), \ t \in R, \ \lambda \in J \}.$

Now we are in the condition of the fiber Picard operators theorem. From this theorem, the operator A is a Picard operator and the sequences

$$x_{n+1} = B(x_n)$$

and

$$y_{n+1} = C(x_n, y_n)$$

converge uniformly to $(x^*, y^*) \in F_A$, for all $x_0 \in X_\omega$, $y_0 \in Y_\omega$.

If we take $x_0 \in X_{\omega}$, $y_0 \in Y_{\omega}$ such that $y_0 = \frac{\partial x_0}{\partial \lambda}$, then we have that $y_n = \frac{\partial x_n}{\partial \lambda}$, for all $n \in N$.

So

$$\begin{array}{c} x_n \stackrel{unif.}{\longrightarrow} x^* \text{ as } n \to \infty, \\ \frac{\partial x_n}{\partial \lambda} \stackrel{unif.}{\longrightarrow} y^* \text{ as } n \to \infty. \end{array}$$

Using a Weierstrass argument we conclude that x^* is differentiable and $y^* =$

 $rac{\partial x^*}{\partial \lambda}$

References

- [1] G.R. Belitskii, Yu.I. Lyubich, Matrix Norms and their Applications, Birkhäuser, Basel, 1988.
- [2] A. Buică, Old and new Gronwall-type inequalities as consequences of an abstract lemma of Rus (to appear).
- [3] A. Cima, A. Gasul, F. Mañosas, The discrete Markus-Yamabe problem, Nonlinear Analysis, 35(1999), 343-354.
- [4] A. Domokos, On the continuity and differentiability of the implicit functions, Studia Univ. Babeş-Bolyai (to appear).
- [5] M.W. Hirsch, C.C. Pugh, Stable manifolds and hyperbolic sets, Proceed. of Symposia in pure mathematics, 14(1970), A.M.S., 1970, 133-143.
- [6] G. Meisters, A biography of the Markus-Yamabe conjecture, presented at the conference Aspects of Mathematics-Algebra, Geometry and Several Complex Variables, held June 10-13, 1996, at the University Hong Kong.
- [7] R. Precup, E. Kirr, Analysis of a nonlinear integral equation modelling infections diseases, Proc. Int. Conf., Timişoara, 1997, 178-195.
- [8] I.A. Rus, Metrical fixed point theorems, Univ. of Cluj-Napoca, 1979.
- [9] I.A. Rus, Generalized contractions, Seminar on Fixed Point Theory, Cluj-Napoca, 1983.
- [10] I.A. Rus, A delay integral equation from biomathematics, Seminar on Diff. Eq., Babeş-Bolyai Univ., Cluj-Napoca, 1989, 87-90.
- [11] I.A. Rus, Weakly Picard mappings, Comment. Math. Univ. Caroline, 34, 4(1993), 769-773.
- [12] I.A. Rus, An abstract point of view for some integral equations from applied mathematics, Proc. Int. Conf. on Analysis and Numerical Computation, Univ. of Timişoara, 1997, 256-270.
- [13] I.A. Rus, Fiber Picard operators and applications, Novi Sad J. Math. (to appear).
- 96

- [14] I.A. Rus, A Fiber generalized contraction theorem and applications, Mathematica (to appear).
- [15] I.A. Rus, Fiber Picard operator on generalized metric spaces and application, Scripta Scientiarum (to appear).
- [16] S. Smale, Mathematical problems for the next century, Math. Intelligencer, 20(1998), Nr.2, 7-15.
- [17] J. Sotomayor, Smooth dependence of solutions of differential equations on initial data: a simple proof, Bol. Soc. Bras. Mat., 4(1973), 55-59.
- [18] A. Tămăşan, Differentiability with respect to lag function for nonlinear pantograph equations (to appear).
- [19] M. Serban, Fiber φ -contraction theorem (to appear).
- [20] P. Ver Eecke, Application du calcul différentiel, Presses Univ. de France, Paris, 1985.

DEPARTMENT OF APPLIED MATHEMATICS, FACULTY OF MATHEMATICS AND INFORMATICS, UNIVERSITY "BABEŞ-BOLYAI", 3400 CLUJ, ROMANIA