FIBER PICARD OPERATORS THEOREM AND APPLICATIONS

IOAN A. RUS

Abstract. In this paper we study the following problem: Let (X_{k}, d_{k}), $k=\overline{0 . p}, p \geq 1$, be metric spaces and $A_{k}: X_{0} \times \cdots \times X_{k} \rightarrow X_{k}, k=\overline{0, p}$ be operators. We suppose that
(a) the operators A_{k} are continuous, $k=\overline{0, p}$;
(b) the operators $A_{0}, A_{k}\left(x_{0}, \ldots, x_{k-1}, \cdot\right), k=\overline{1, p}$ are (weakly) Picard operators.

Establish conditions which imply that the operator

$$
\begin{gathered}
B_{p}: X_{0} \times \cdots \times X_{p} \rightarrow Y_{0} \times \cdots \times X_{p} \\
B_{p}\left(x_{0}, \ldots, x_{p}\right):=\left(A_{0}\left(x_{0}\right), A_{1}\left(x_{0}, x_{1}\right), \ldots, A_{p}\left(x_{0}, \ldots, x_{p}\right)\right),
\end{gathered}
$$

is a (weakly) Picard operator.

1. Introduction

Let (X, d) be a metric space and $A: X \rightarrow Y$ an operator. In this paper we shall use the following notations:
$P(\mathrm{X}):=\{\mathrm{Y} \subset \mathrm{X} \mid \mathrm{Y} \neq \emptyset\}$,
$F_{A}:=\{x \in X \mid A(x)=x\}$ - the fixed point set of A,
$I(A):=\{Y \in P(X) \mid A(Y) \subset Y\}$.
Definition 1.1 (Rus [9], [11]). An operator $A: X \rightarrow \mathcal{X}$ is weakly Picard operator (WPO) if the sequence

$$
\left(4^{n}(x)\right)_{n \in N}
$$

converges, for all $x \in \mathcal{Y}$, and the limit (which may depend on x) is a fixed point of A.

Definition 1.2 (Rus [9], [11]). If A is WPO, then we consider the operator A^{∞} defined by

$$
A^{\infty}: Y \rightarrow X, \quad A^{\infty}(x):=\lim _{n \rightarrow \infty} A^{n}(x)
$$

We remark that, $A^{\infty}(. Y)=F_{A}$.
Definition 1.3 (Rus [9], [11]). If A is WPO and $F_{A}=\left\{x^{*}\right\}$, then by definition the operator A is a Picard operator.

Example 1.1. Let (X, d) be a complete metric space and $A: X \rightarrow X$ such that

$$
d\left(A^{2}(x), A(x)\right) \leq a d(x, A(x))
$$

for all $x \in X$ and for some $a \in] 0,1[$. Then A is weakly Picard operator (see [8], [9], [11]).
Example 1.2. Let (X, d) be a complete metric space and $A, B: X \rightarrow X$ such that

$$
d(A(x), B(y)) \leq a[d(x, A(x))+d(y, B(y))]
$$

for all $x, y \in X$ for some $a \in] 0, \frac{1}{2}[$. Then A and B are Picard operators.
Example 1.3. $X=C[0,1], d(x, y)=\|x-y\|_{C}$,

$$
A(x)(t)=x(0)+\int_{0}^{t} K(t, s) x(s) d s, \quad t \in[0,1]
$$

where $K \in C([0,1] \times[0,1])$. Then A is WPO.
For other examples see [13]. [10], [1], [2], [20],...
We have the following characterization theorem for WPO.
Theorem 1.1. Let (X, d) be a metric space and $A: X \rightarrow X$ an WPO. Then there exist $X_{i} \in I(A), i \in I$, such that
(i) $X=\bigcup_{i \in I} X_{i}, X_{i} \cap X_{j}=\emptyset, i \neq j$.
(ii) $\left.A\right|_{X_{1}}$ is a Picard operator, $i \in I$.

Proof. Let $x \in F_{A}$. Let X_{x} be the domain of attraction of x. It is clear that

$$
X=\bigcup_{x \in F_{A}} X_{x}
$$

is a partition of X and that $Y_{x} \in I(A)$. By the definition of X_{x}, we have that

$$
F_{A} \cap Y_{x}=\{x\}
$$

In this paper we study the following problem:
Problem 1.1. Let (X, d) and (Y, ρ) be the metric spaces and $A=(B, C): X \times Y \rightarrow$ $X \times Y$ a triangular operator, i.e.

$$
A(x, y)=(B(x), C(x, y)), \quad x \in X, \quad y \in Y
$$

We suppose that the operators $B: X \rightarrow X, C(x, \cdot): Y \rightarrow Y, x \in X$, are Picard operators. Establish conditions which imply that the operator A is Picard operator.

If the operators, $B: Y \rightarrow Y, C(x, \cdot): Y \rightarrow Y, x \in X$, are WPO, establish conditions which imply that the operator A is WPO.

2. Fiber Picard operators theorem

The following result is given by M.W. Hirsch and C.C. Pugh ([5], 1970):
Theorem 2.1 (Fiber contraction theorem). Let (X, d) be a metric space and B : $X \rightarrow X$ be an operator having an atractive fixed point $p \in X$. Let (Y, ρ) be a metric space and $C: X \times Y \rightarrow Y$ an operator such that
(i) there exists $\lambda \in[0,1[$, such that the operator $C(x, \cdot)$ is a λ-contraction for all $x \in X$;
(ii) the operator $A: X \times Y \rightarrow X \times Y, A(x, y):=(B(x), C(x, y))$ is continuous.

Let $q \in Y$ be a fixed point for $C(p, \cdot)$.
Then (p, q) is an attractive fixed point for A.
For some generalization of this theorem see [10]-[15], [18] and [19].
We have
Theorem 2.2. Let (X, d) and (Y, ρ) be two metric space and $A=(B, C)$ a triangular operator. We suppose that
(i) (Y, ρ) is a complete metric space;
(ii) the operator $B: Y \rightarrow Y$ is $W P O$;
(iii) there exists $\alpha \in[0,1[$, such that $C(x, \cdot)$ is an α-contraction, for all $x \in X$;
(iv) if $\left(x^{*}, y^{*}\right) \in F_{A}$, then $C\left(\cdot, y^{*}\right)$ is continuous in x^{*}.

Then the operator A is WPO.

If B is Picard operator, then A is Picard operator.
Proof. Let $(x, y) \in X \times Y$. Let y^{*} the unique fixed point of $C\left(B^{\infty}(x), \cdot\right)$. We shall prove that $A^{n}(x, y) \rightarrow\left(B^{\infty}(x), y^{*}\right)$ as $n \rightarrow \infty$. Let $A^{n}(x, y)=\left(x_{n}, y_{n}\right)$. Then

$$
x_{n}=B^{n}(x), \quad y_{n}=C\left(x_{n-1}, y_{n-1}\right) .
$$

The proof that $y_{n} \rightarrow y^{*}$ as $n \rightarrow \infty$ is similarly with the proof given in [5] for the Theorem 1.

Remark 2.1. The proof that $y_{n} \rightarrow y^{*}$ as $n \rightarrow \infty$ follows, also, from the following Lemma 2.1 (see [13]). Let (X, d) be a complete metric space and $A_{n}, A: X \rightarrow X$, $n \in N$, some operators. We suppose that
(a) the sequence $\left(A_{n}\right)_{n \in N}$ pointiwse converges to A;
(b) there exist $\alpha \in\left[0,1\left[\right.\right.$ such that the operators A_{n} and $A, n \in N$, are α-contractions.

Then the sequence $\left(A_{n} \circ A_{n-1} \circ \cdots \circ A_{0}\right)_{n \in N}$ poinwise converges to A^{∞}.
Remark 2.2. In the proof of Lemma 2.2 on uses the following
Lemma 2.2 (see [13], [14] and [15]). Let $a_{n}, b_{n} \in R_{+}, n \in N$. We suppose that
(a) $a_{n} \rightarrow 0$ as $n \rightarrow \infty$;
(b) $\sum_{k=0}^{\infty} b_{k}<+\infty$.

Then

$$
\sum_{k=0}^{n} a_{k} b_{n-k} \rightarrow 0 \text { as } n \rightarrow \infty
$$

Remark 2.3. For to have a generalization of the Theorem 2.2, we need suitable generalization for Lemma 2.1 and Lemma 2.2. For some generalization of these Lemmas, see [15] and [19].
Remark 2.4. By induction, from the Theorem 2.2 we have
Theorem 2.3 (see [13]). Let $\left(X_{k}, d_{k}\right), k=\overline{0, p}, p \geq 1$, be some metric spaces. Let

$$
A_{k}: X_{0} \times \cdots \times X_{k} \rightarrow X_{k}, \quad k=\overline{0, p}
$$

be some operators. We suppose that:
(a) the spaces $\left(X_{k}, d_{k}\right), k=\overline{1, p}$ are complete metric spaces;
(b) the operator A_{0} is WPO;
(c) there exist $\alpha_{k} \in\left[0,1\left[\right.\right.$ such that the operators $A_{k}\left(x_{0}, \ldots, x_{k-1}, \cdot\right)$ are α_{k}-contractions;
(d) if $\left(x_{0}^{*}, \ldots, x_{p}^{*}\right) \in F_{B_{p}}, B_{p}=\left(A_{0}, \ldots, A_{p}\right)$, then the operators $A_{k}\left(\cdot, \ldots, \cdot, x_{k}^{*}\right)$,
$k=\overline{1, p}$, are continuous in $\left(x_{0}^{*}, x_{1}^{*}, \ldots, x_{k-1}^{*}\right)$.
Then the operator B_{p} is WPO.
Remark 2.5. The next conjecture is in connection with our results.
Discrete Markus-Yamabe Conjecture (see [3], [6], [1]). Let A be a C^{1} function from R^{n} into itself such that $A(0)=0$ and for any $x \in R^{n}, J A(x)$ (the Jacobian matrix of A at x) has all its eigenvalues with modulus less than one. Then A is a Picard function.

From the fiber Picard operators theorem we have
Theorem 2.4. Let $A: R^{n} \rightarrow R^{n}$ be a C^{1} triangular function, $A=\left(A_{1}, \ldots, A_{n}\right)$.
If there exists $\alpha \in] 0,1[$ such that

$$
\left|\frac{\partial A_{i}}{\partial x_{i}}\right| \leq \alpha, \quad i=\overline{1, n} .
$$

Then the function A is Picard function.
A. Cima, A. Gasull, F. Mañosas prove that the Discrete Markus-Yamabe Conjecture ($[3], 1999$) is a theorem for A provided

$$
\left|\frac{\partial A_{i}}{\partial x_{j}}\right|<1, \quad j=\overline{1, i}, \quad i=\overline{1, n} .
$$

3. Applications

The fiber Picard operators theorem is very useful for proving solutions of operatorial equations to be differentiable with respect to parameters (see [17], [12], [13], [14], [15], [20], [18]). For example:

- (J. Sotomayor) differentiability with respect to initial data for the solution of differential equations

$$
x \prime=f(t, x), \quad x\left(t_{0}\right)=x_{0}, \quad f: \Omega \rightarrow R^{n}, \quad \Omega \subset R^{n+1}
$$

- (l.A. Rus [12]) differentiability with respect to λ for the solution of the integral equation

$$
x(t)=1+\lambda \int_{t}^{1} x(s) x(s-t) d s, \quad t \in[0,1]
$$

where $\lambda \in R$;

- (A. Tămăşan) differentiability with respect to lag function for pantograph equation

$$
x t(t)=f(t), x(t), x(\lambda t)), \quad t>0 ; \quad 0<\lambda<1, \quad x(0)=0 .
$$

In what follow we apply the fiber Picard operators theorem to study the following integral equations modelling population growth in a periodic environment (see [10], [7])

$$
\begin{equation*}
x(t)=\int_{t-\tau}^{t} f(s, x(s) ; \lambda) d s \tag{1}
\end{equation*}
$$

where $f \in C\left(R \times[\alpha, \beta] \times J,[m, M]\right.$, with $\tau, \alpha, \beta, m, M \in R_{+}^{*}$ and $J \subset R$ a compact interval.

Let

$$
\begin{gathered}
X_{\omega}:=\{x \in C(R \times J,[\alpha, \beta]) \mid x(t+\omega, \lambda)=x(t, \lambda), \\
\text { for all } t \in R, \lambda \in J\}, \omega>0 .
\end{gathered}
$$

We consider on X_{ω} the metric $d(x, y):=\|x-y\|_{C}$. We have
Theorem 3.1. We suppose that
(a) $0<m<M, 0<\alpha<\beta ; \alpha \leq m \tau, \beta \geq M \tau$;
(b) $m \leq f(t, u ; \lambda) \leq M$, for $t \in R, u \in[\alpha, \beta], \lambda \in J$;
(c) $f(t+\omega, u ; \lambda)=f(t, u ; \lambda), t \in R, u \in[\alpha, \beta], \lambda \in J$;
(d) there exists $l(t)$, such that

$$
|f(t, u ; \lambda)-f(t, v ; \lambda)| \leq l(t)|u-v|
$$

for all $t \in R, u, v \in[\alpha, \beta]$;
(e) there exists $q \in] 0,1[$ such that

$$
\int_{t-\tau}^{t} l(s) d s \leq q, \text { for all } t \in R
$$

Then

(i) the equation (1) has in X_{ω} a unique solution x^{*};
(ii) for all $x_{0} \in X_{\omega}$, the sequence defined by

$$
x_{n+1}(t, \lambda)=\int_{t-\tau}^{t} f\left(s, x_{n}(s, \lambda)\right) d s
$$

converges uniformly to \boldsymbol{x}^{*};
(iii) if $f(t, \cdot, \cdot) \in C^{1}$, then $x^{*}(t, \cdot) \in C^{1}(J)$.

Proof. (i)+(ii). We consider the operator

$$
B: X_{\omega} \rightarrow C(R \times J), \quad B(x)(t, \lambda):=\int_{t-\tau}^{t} f(s, x(s, \lambda)) d s
$$

From (a) and (c) we have that $X_{\omega} \in I(B)$. From (d) it follows that B is a contraction.

By the contraction principle we have that B is a Picard operator.
(iii). Let we prove that there exists $\frac{\partial x^{*}}{\partial \lambda}$ and $\frac{\partial x^{*}}{\partial \lambda} \in C(R \times J)$.

If we suppose that there exists $\frac{\partial x^{*}}{\partial \lambda}$, then from

$$
x(t, \lambda)=\int_{t-\tau}^{t} f(s, x(s, \lambda) ; \lambda) d s
$$

we have

$$
\frac{\partial x(t, \lambda)}{\partial \lambda}=\int_{t-\tau}^{t} \frac{\partial f(s, x(s, \lambda) ; \lambda)}{\partial x} \cdot \frac{\partial x(s, \lambda)}{\partial \lambda} d s+\int_{t-\tau}^{t} \frac{\partial f(s, x(s, \lambda) ; \lambda)}{\partial \lambda} d s
$$

This relation suggest us to consider the following operator

$$
A: X_{\omega} \times Y_{\omega} \rightarrow X_{\omega} \times Y_{\omega}
$$

defined by

$$
A=(B, C), \quad A(x, y)=(B(x), C(x, y))
$$

where

$$
C(x, y)(t, \lambda):=\int_{t-\tau}^{t} \frac{\partial f(s, x(s, \lambda) ; \lambda)}{\partial x} y(s, \lambda) d s+\int_{t-\tau}^{t} \frac{\partial f(s, x(s, \lambda) ; \lambda)}{\partial \lambda} d s
$$

and $Y_{\omega}:=\{y \in C(R \times J) \mid y(t+\omega, \lambda)=y(t, \lambda), t \in R, \lambda \in J\}$.

Now we are in the condition of the fiber Picard operators theorem. From this theorem, the operator A is a Picard operator and the sequences

$$
x_{n+1}=B\left(x_{n}\right)
$$

and

$$
y_{n+1}=C\left(x_{n}, y_{n}\right)
$$

converge uniformly to $\left(x^{*}, y^{*}\right) \in F_{A}$, for all $x_{0} \in X_{\omega}, y_{0} \in Y_{\omega}$.
If we take $x_{0} \in X_{\omega}, y_{0} \in Y_{\omega}$ such that $y_{0}=\frac{\partial x_{0}}{\partial \lambda}$, then we have that $y_{n}=\frac{\partial x_{n}}{\partial \lambda}$, for all $n \in N$.

So

$$
\begin{gathered}
x_{n} \xrightarrow{\text { unif. }} x^{*} \text { as } n \rightarrow \infty, \\
\frac{\partial x_{n}}{\partial \lambda} \xrightarrow{\text { unif. }} y^{*} \text { as } n \rightarrow \infty .
\end{gathered}
$$

Using a Weierstrass argument we conclude that x^{*} is differentiable and $y^{*}=$ $\frac{\partial x^{*}}{\partial \lambda}$.

References

[1] G.R. Belitskii, Yu.I. Lyubich, Matrix Norms and their Applications, Birkhäuser, Basel, 1988.
[2] A. Buică, Old and new Gronwall-type inequalities as consequences of an abstract lemma of Rus (to appear).
[3] A. Cima, A. Gasul, F. Mañosas, The discrete Markus-Yamabe problem, Nonlinear Analysis, 35(1999), 343-354.
[4] A. Domokos, On the continuity and differentiability of the implicit functions, Studia Univ. Babes-Bolyai (to appear).
[5] M.W. Hirsch, C.C. Pugh, Stable manifolds and hyperbolic sets, Proceed. of Symposia in pure mathematics, 14(1970), A.M.S., 1970, 133-143.
[6] G. Meisters, A biography of the Markus- Yamabe conjecture, presented at the conference Aspects of Mathematics-Algebra, Geometry and Several Complex Variables, held June 10-13, 1996, at the University Hong Kong.
[7] R. Precup, E. Kirr, Analysis of a nonlinear integral equation modelling infections diseases, Proc. Int. Conf., Timişoara, 1997, 178-195.
[8] I.A. Rus, Metrical fixed point theorems, Univ. of Cluj-Napoca, 1979.
[9] I.A. Rus, Generalized contractions, Seminar on Fixed Point Theory, Cluj-Napoca, 1983.
[10] I.A. Rus, A delay integral equation from biomathematics, Seminar on Diff. Eq., BabeşBolyai Univ., Cluj-Napoca, 1989, 87-90.
[11] I.A. Rus, Weakly Picard mappings, Comment. Math. Univ. Caroline, 34, 4(1993), 769773.
[12] I.A. Rus, An abstract point of view for some integral equations from applied mathematics, Proc. Int. Conf. on Analysis and Numerical Computation, Univ. of Timişoara, 1997, 256-270.
[13] I.A. Rus, Fiber Picard operators and applications, Novi Sad J. Math. (to appear).
[14] I.A. Rus, A Fiber generalized contraction theorem and applications, Mathematica (to appear).
[15] I.A. Rus, Fiber Picard operator on generalized metric spaces and application, Scripta Scientiarum (to appear).
[16] S. Smale, Mathematical problems for the next century, Math. Intelligencer, 20(1998), Nr.2, 7-15.
[17] J. Sotomayor, Smooth dependence of solutions of differential equations on initial data: a simple proof, Bol. Soc. Bras. Mat., 4(1973), 55-59.
[18] A. Tămăşan, Differentiability with respect to lag function for nonlinear pantograph equations (to appear).
[19] M. Serban, Fiber φ-contraction theorem (to appear).
[20] P. Ver Eecke, Application du calcul différentiel, Presses Univ. de France, Paris, 1985.
Department of Applied Mathematics, Faculty of Mathematics and Informatics, University "Babeş-Bolyai", 3400 Cluj, Romania

