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AN ALYSIS OF SOM E N E U TR A L DELAY D IFFE R E N TIA L
EQU ATION S

R A D U  P R E C U P

A b stra c t. The paper is devoted to the study of the neutral differential 

equation with delay x' (t) =  f  (t, x ( t ) , x (0 ( t ) ) , x' (0 (t) ) ) . Our analysis is 

concerned with the existence, uniqueness and monotone iterative approx­

imation of the nondecreasing global solutions of the initial-value problem.

We use fixed point theorems (Schauder, Krasnoselskii, Leray-Schauder) 

and monotone iterative techniques.

I. Introduction

In this paper, we are concerned with the following nonlinear neutral delay 

equation

x'(t) = f ( t , x( t ) , x(G( t ) ) , x ' ( e  (<))), (1.1)

where — r < 0 ( t )  <  t for some r  >  0.

Equations o f this type arise when modelling biological, physical, etc., pro­

fesses whose growth rate at any m om ent of time t is determined not only by the 

present state, but also by past states and the past growth rate. For exam ple, such 

models are described by K. G opalsam y [4] and Y . Iuiang [8], from populat ion dynam ­

ics, and by R .D . Driver [3], in connection with the two-body problem.

Basic theory and much literature on differential equations with delay, includ­

ing the neutral ones, can be found in the monographs by V . Lakshm ikantham , L. 

Wen, B. Zhang [9], V . Kolm anovskii, A . M yshkis [7], D. Bainov, D .P . Mishev [1] and

J. Hale [5].

1991 Mathematics Subject Classification. 34K40, 34A45.
Key words and phrases, neutral differential equation, delay differential equation, initial-value problem , 

fixed point, m onotone iterations.
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Recently, T. A. Burton [2] established an analogue of the Peano local existence 

theorem for the Cauchy problem ( l . 1 )-( 1.2), where

x (t) =  (j) (/.) , —T < t <  0. (1.2)

Motivated by the above paper, this article deals with the global solvability (on a given 

interval [0 ,T]) of the Cauchy problem ( 1 .1 )- ( 1 .2 ).

We shall assume that /  is nonnegative and continuous, 0 is continuous, (j) E 

C 1 [—r, 0] and satisfies the sewing condition

0/ (O ) - /(O ,^ (O ) ,0 (^ (O ) )^ / ((?(O))). (1.3)

We shall look for nondecreasing solutions x E C l [0,T] with x (t) E [a, R] and x ' (0) = 

b, where a =  0  (0) , b =  <p/ (0) and a < R < oc. In case that R =  oo, all intervals of 

the form [c, /?] should be interpreted as [c, oo) and all inequalities of the form c < R, 
as r < oo.

Let

A' =  { . c g C 1 [0, T] ; a < x on [0,T]}

and

Kft — {x' E A'; x < R. on [0,T]} .

Clearly, K is a closed convex set of C 1 [0, T] and ( 1.1 )-( 1.2) is equivalent to the fixed 

point, problem A (x) — x for the map A : 7\/? —ï K,

A ( x ) ( t ) ~ a + [  f (s ,x [s ) ,x (0 (s ) ) ,x ' {0 (s ) ) )d s ,  0 < t < T ,  (1.4)
J 0

where x (t) — <j) (t) on [—r, 0) and x (t) =  x (t) on [0, 7"]. Obviously, each fixed point x 

of A also satisfies x (0 ) — a and xf (0 ) =  b and so, its prolongation by <j> is a function 

in C 1 [—r, T] .

Notice that the dependence of z) on the neutral variable z is the

cause that A is not completely continuous. This is why one tries to represent A as
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a sum of a completely continuous mapping and a contraction. This happens when /  

admits the decomposition

f ( t , x , y , z )  =  f 0 (t,x,y) + f\ (t,x,y,z),  (1.5)

with /o continuous and f\ satisfying the Lipschitz condition

|/i (t,x,y,z) - ţi (t,x,J7,?)| <  Q '| x -* |  +  /?| j /-y |  +  7 | z - I |  (1.6)

for o\ fi > 0 and 0 < 7 < 1. Then A can be represented as A = Aq -f A\, where

A0 (ar) (t) =  a +  [  fo (s, x (s) , x (0 (s))) ds 
Jo

and

(*)(<) = f  f i ( s , x ( s ) , x ( 0 (s) ) , x' {6 (s)))ds.
Jo

The mapping A q is completely continuous by the Ascoli-Arzelâ theorem, while A\ 

is a contraction with respect to a suitable norm on C l [0,T] as shows the following 

lemma.

Lemma 1.1. Suppose 0 < 7 < 1. Then, for each // > max{(a - f  p) /  (1 — 7 ) , a -f /? +  

7 }, A\ is a contraction on K r with respect to the norm

IMIl.t; =  max {iMIo.ij > Ikllo,^}

on C l [0, T] , where

IMIo,, =  max(|æ (t)\exp (-yt)). 

Proof. Let æ, y G Kr . Using 0 (/) < /, we obtain

k (s )  -  y(s)\ds

+ 0 2/ ( 0(s))|ds +  7 - S ' ( * ( « ) ) ! *

< n /  Ix ( s )  -  ;</ (s) I exp (-r/.s) exp (r /s ) ds
Jo
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+0 f \x(9(s))-y(9(s))\exp(-T)9(s))exp(i}9(s))ds 
J O

+ 7  Ï  \x' (9 (s)) - $ ( 9  (s))|exp (-7)9 (s)) exp (rfi («)) ds 
J O

< [ (« +  Æ) T)~l Ik -  3/lln,, +1T)-1 lk'  - î / l l o j e x p ^ / ) .

It. follows that

\ \ A y ( ï ) -  A i  (j/)||0iJJ <  ( a  +  (3 +  i )  T)~l |k  -  y| li,„  •

Similarly

|Ai (x)' (t) -  Ay (y ) '(0 | < û |ï  ( 0  -y(t)\

+ 0 k (9 (0) - y ( 0 (0)1 +  t k ' (0 (0) - y  (9 (0)|

f t  r H t )
< n  \ x ' ( s )  - y 1 ( s ) \ d s  +  0  \x'  ( s )  -  y'  (s )| ris

J 0 Jo

+ 1  \x'(9 (t)) -  y ' (0 (t))\ < (a + 0) f  \x'(s) -  y'(s)\ds
Jo

+ 7  \*(0(t)) — y  (<)) I <  [(or +  0) ï?_1 + 7] I k '  -  y ' l ! o , r ,eXP(»?0 •

Hence

||-‘k  (%)'  — A\ (y)'||M  < [ (o  +  P ) t) ~ 1 + 7 ] l k , - y | l i , , r

Therefore

\\Ai (x) -  Ai (y)!!! „ < L\\x -  y||j v , (1.7)

where

L — max { (a  +  0 +  7 ) rj~1, (a +  0) ij~l +  7 } . (1.8)

□
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There is a remarkable case when in spite of the neutral variable, we still can 

work with completely continuous mappings: the case when the step method applies. 

We are in this case if

0 ( t ) < t  on (0, T] and in f{f > 0 ; $ (t) > 0} > 0. (1.9)

By using the step method, the solving of (1.1)-(1.2) is reduced to that of a finite 

number of Cauchy problems for equations without deviated arguments. To explain 

this, let <o =  0 and

tn =  inf {< G {tn-uT\\ 9 ( t ) > t n- 1} ,  n =  1,2,..., (1.10)

where we set tn =  T in case that the infirnum is taken over the empty set. Obviously, 

(tn) is a bounded nondecreasing sequence and if tm — T for some m, then tn = T for 

all n > m. In addition, if tn < T, then

0 (tn) =  tn~i and 0 (t) < tn-1 for tn-1 < t < t u. (1.11)

The second inequality in (1.9) implies to < ti < T, while the first one assures the 

strict monotonicity tn-\ < tn whenever tn-\ < T, and also the existence of a k > 1 

with h -1 < tk =  T. Indeed, otherwise, we should have to < t\ < ... < tn < ... < T. 

If we denote tm =  lim tn, then 0 < t+ < T and 6 (t+) — /*, which contradicts (1.9).
n —yoo

Thus, there exists a finite partition of [0,T], say

0 — to < ti < ... < tk—l < tk =  T.

A solution to ( 1.1 )-( 1.2) will be defined step by step, on each subinterval [— r, /n] , 

n = l, 2,..., k. Denote Xo =  <j) and let xn+i G C l [—rytn+1] be a prolongation of 

xn G Cl [—t, tji\ by a solution of the following problem

! ®, (0 =  / ( ^ a?( 0 i ®n ( ^ ( 0 ) i « n ( ^W) ) .  tn < t < t n  + U ^  ^
y x (tn) -  an,

where an =  xn (tn) , n =  0,1,..., k — 1. It is clear that Xk will represent a solution of 

( l . l ) - ( l .2). Thus, at each stop n, we have to solve (1.12), or equivalently, to find a
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fixed point of the completely continuous mapping An : C [£n, /n+i] —> C[tn,tn+1] ,

An (x){t) = an + [  f  {s,x{s) ,xn (0(s)) ,x'n (0{t)))ds. (1.13)
Jt n

Organization of the paper

In Section 2 , we discuss the initial value problem for ( 1 .1 ) in case that the 

step method applies. In Section 3, the same problem is studied when the step method 

does not apply. In Section 4, we obtain minimal and maximal solutions to the Cauchy 

problem. We use fixed point theorems (Schauder, Krasnoselskii, Leray-Schauder) and 

monotone iterative techniques.

Notice that by a somewhat similar approach, we discussed in [6] the initial 

value problem for a delay integral equation modelling infectious disease (see also [1 1 ]). 

The results are new and they improve and complement the existing literature (see [10] 

for example, for related topics).

We finish this introductory section by some abstract existence principles. 

Fixed point theory

Theorem 1 .2 . (Schauder) Let X be a Banach space and D C X nonempty bounded 
closed convex. Suppose A : D D is compact (i.e. continuous with A(D) relatively 
compact). Then A has at least one fixed point.

Theorem 1.3. (Krasnoselskii) Let X be a Banach space and D C À" nonempty 
bounded closed convex. Suppose A q : D —»■ X is compact, A\ : D —> X is a con­

traction and that Aq ( x ) + A\ (y) G D for all x,y  G D. Then Aq -f A\ has at least one 
fixed point.

Theorem 1.4. (Leray-Schauder) Let X be a Banach space, K  C X closed convex 
and U C I\ bounded open in K . Suppose A : Ü —¥ K is compact and

(1 — À) xq -f \A (a?) ^ x for all x G d U  and A G [0,1],

for some x0 G U. Then A has at least one fixed point in U.
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2. Existence via the step method

Let us list our assumptions:

(al) 9 £ C [0 ,T ], — t  < 9 and (1.9) (step condition) holds.

(a2) <j) £ C l [— r, 0] and (1.3) (sewing condition) is satisfied.

(a3) /  (/, x, y, z) is nonnegative and continuous on D — [0, T]x[a, i?.]x[m, A/]x[m ', oo), 

where a < R < oo, m =  min[_Tjo] <j> (/) , M =  max {/?, max[_r o] $ (0 }  a°d m/ — 

min { 0, min[_T)0] </>' (<)} •

( a4) / ( / , * , y ,  c) < a (/•) (3 (x) 7 (i/, 2) on D, where a, /?, 7 are continuous, a > 0, (3 > 0, 

7 > 0 and

sUP[m,Af]x[m',oo) 7 (.V- *) ' f  Ot (t) dt < f
Jo Jo

du
/?(«)

( 2 . 1 )

(IFmfner type condition).

We make the convention that when the left side in (2.1) equals oo, then the 

right side is oo too.

Theorem 2.1. Suppose (al)-(aJt) are satisfied. Then (1.1)-(1.2) has at least one 

solution x £ C 1 [— r, T] with a < x < R and x' > 0 on [0 ,T ].

Proof First we prove that for each x £ C l [— r, tn] with a < x < R and satisfying 

(1.1) and (1.2) on there exists Rn £ [a, R) depending only on the restriction

of x to [—r, i] , such that x < R.n on [0, tn] .

Indeed, by (a4), we have

x' (t) <<y(t) (3 (x (/)) 7  (x (9 (/.)), *' (9 (t) ) ) , 0 < t < t n.

Divide by (3 (j (t)) and integrate from 0 to tn to obtain

r (tn) j v _  _  r
Ja 0 («) ~~ Jo

X' ( t ) ■dt < M,
ptn

n «
Jo

(t)dt,
p(x(t) )

whore Mn - max[0,(„_1]7 (.r (9 (t)) ,x' (6 (t))) .  By (2.1), this implies

e*(f ») 

J a
du

0 (u)
du

p («) ’
7.3
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Thus x (tn) < Rn < R, where

M"Camd,=C m  <“ >

Since x is nondecreasing on [(Mn] , we have x (t) < x (£n) < Rn for all t G [0,<n] , as 

claimed.

Now suppose we have already defined xn G C l [—r, tfn] , a solution of (1.1)-

(1.2) on [—r , w i t h  a < xn < R and x'n > 0 on [0,tn.]. Then xn < Rn < R 

and

where Rn is given by (2.2), with Mn =  max[0|<n_1] 7 (xn {0 ( t ) )  %x'n {0 (/))) .

Next we try to extend xn to a solution xn+\ G C l [— r, tn + \] satisfying a < 

xri.+i < R and x'n+l > 0 on [CMn+i] • Let Rn+\ be given by (2 .2 ), for Mn+i = 

max[o,/ri] 7  (xn (0 (t) ) , x'n (0 (/))) . It is clear that Mn < Mn + 1 and Rn < Rn+X < R. 

Choose a finite R! G (Rn+i, A] and define

An =  {x G C[tn,tn+i] ; a < æ} , Un -  {x G Kn\ x < /?/}

and

An : Un -»• I\ „, An (x) (t) = a„ + f  (s>x («) » *n {0 ( s ) ) , x'„ (0 (s))) ds.

Obviously, I\n C C[tn,tn+1] is closed and convex, Un C I\n is bounded and open 

in A'n, the constant function an belongs to Un (because an < Rn < /?/) and An is 

completely continuous. Also, if x is a fixed point of An, then x (tn) =  ^'(/n.) =

x'n (tn) and the prolongation x„ + i of xn by x will represent a solution of ( 1 . 1  )-( 1 .2 ) 

on [—r, t7)+\] satisfying a < x„ +1 < R and x*;i+ 1  > 0 on [0 , /n+ i ] .

The existence of a fixed point of An will follow by the Leray-Sehauder prin­

ciple if the boundary condition

^ / ( 1 - A )  an +  AAn (x) for all x G dUn, A G (0,1) (2.4)
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holds. To check it, suppose x G Un satisfies x =  (1 — A) an +  Â 4n (x) for some 

A G (0,1). Then, x (tn) =  an and

x' (t) =  A f ( t , x ( t ) , x n (0(t)),x'n (0(t))) for all t € [<n,*n+i] •

As above, we obtain

/*/ an

"X{t n + ‘ > dU rt

0(« )

f ln +1
I a(t)dt. 

J t n

Taking into account (2.3) and Mn < Mn+i, we deduce

rx(tn+i) £ u ptn+1/■*(*»+1) du /* n+1
I  “(*>dt.

Hence x (tn+i) < -ftn+i and consequently, x < /£n+i < #  on [£n,*n+i] • Thus, x £ dUn 
and (2.4) is proved. □

Remark 2.1. The conclusion of Theorem 2.1 remains true if instead of (aJt) the 
following condition is satisfied:

(a/f ') f  (/, x, y, z) < ft (x ) S (t, y, z) on D, where ft > 0, S > 0 and

T-gS11P[0 ,T]x[m,M]y.[i
st4 , r*  d«

i'.to) (t, y. ") < 0 ^  ■ (2.5)

R.emark 2 .2 . Suppose R =  oo and that in (a f ’), ft (u) — u -f c, where c > 0. In this 
case, (2.5) trivially holds since its right side equals to infinity. Moreover, a fixed point 

of An follows directly by Schauder’s fixed point theorem. Indeed, if R — oo, the map 
An can be defined on the entire Kn and An (Kn) C Kn. In addition, for rj > 0 and 

x G Kn i we have

0 < An (x) (t) < a n +  M„ /  (x (s) +  c) ds
Jtn

-  an +  cMn (t - t n) + Mn x (s) ds

< an +  Mnr) 1 ||aî||0 v exp (—qt), tn < t <  tn+l,
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where Mn — maxpn)tn+1] S (t , xn (0 ( t ) ) , xn (6 (£))) and an — an cMn (̂ n-i-i In) • hi 

consequence,

ll-̂ n (̂ Ollo.rj ^ an +  Mnq Iloilo,q (X ^ ^ n) '

Thus, if we choose q > Mn and R' > an/ 1̂ -  Mnq~l ĵ , then Sehauder’s theorem 

applies on {x E I\n\ IMIo.r, < # } .

Rem ark 2.3. Suppose R — oo and that a more restrictive condition than (a//) holds, 

namely

(«V )  1/ z) -  f  (t , x , y , s)| < I  (Ay, 2T) |æ -  æ| on £>,

where L is continuous and nonnegative.

From (alt”),

f  (t,x,y,  z) < L (t,y, z) (x — a) + /  (t,a,y, z) <6 ( t , y , z ) x ,

where S (/, y, z) =  max {L (t , y, z) , /  (/, a, y, /a } . Hence we are in the frame of Re­

mark 2.2. In addition, the initial value problem has a unique solution and at each step, 

the unique fired point of An can be obtained by means of the contraction principle. 
Indeed, for q > 0 and x,y  G An, we have

I An (x) {t) -  An (y) (<)| < f  L{s , xn (9(s)) (0 («))) I* (s) -  y(s)\ds

< Mn (  |i- («) -- y (•'>) I ds < M n T)~1 II J -  y||0i,( exp ( - y t ) , 

where Mn — max[(nî  + 1] L (/, xn (0 (/.)) , xln {9 (<))) . Now our claim follows if we choose

q > Mn-

3. Existence w ithout the step condition

The assumptions for this section are as follows:

(Al) 0 <G C [0, T\ and - r  < 0 (t) < i .

(A2) =  (a.2).
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(A3) /(t ,a r ,y ,z ) is nonnegative on D and admits the decomposition (1.5), where 

/ 0, / i  are continuous and f\ satisfies the Lipschitz condition (1.6) for some a,f3 > 0 

and 7  G [0,1).

(A4) /(< ,* , y, z) < a (/) ft (x) on D, where a,/? are continuous, a > 0, 0 > 0 and

<’ -I>

Theorem  3.1. Suppose (A1)-(A\) are satisfiedThen (1.1)-(1.2) has at least one 

solution x G C 1 [—r,T] with a < x < R and x' > 0 on [0,T]. Moreover, any such 

solution satisfies

x { t ) < R +, 0 < t < T , (3-2)

where R* < R is so that

f T  d ul °{,)dt = L WY ,3 '3)

Proof. With the notations of Section 1 , the mapping A : I\r —> K is the sum Aq + A i , 
where Aq is completely continuous and A\ is a contraction with respect to a suitable 

norm on C l [0, T ].

We claim that (3.2) holds for each solution x G Kr to

ar =  (1 — A) a +  XA(x) (A G [0,1]) . (3.4)

Once the claim is satisfied the result follows from the Leray-Schaucler principle applied 

to A : U K , where U -- {x £ K\ x < R‘ on [0,T]} and R' is any number such that 

/?., < R! < R.

To prove the claim, let x G Kr be any solution of (3.4). Then 

^ ( / ) - A / ( / , æ ( / ) , x ( ^ ( 0 ) ,x '(^ ( 0 ) ) < a ( 0 ^ (.r (0 ) on [0 ,T ].

It follows that

rz{t) du r ‘ * '(« )
/  ĂTT =  /  a"( ( \\ds -  /  <*(s) ds-Ja  /?(«) Jo l H z ( s ) )  Jo

This together with (3.3) implies (3.2). □
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Suppose now that instead of (A4), the following condition holds.

(A4’) |/o(*,a-,y)| < ao# T 0o |î/| -f S on D, where ao,0o and S are nonnegative 

constants.

Theorem  3.2. Suppose (Aî)-(A3), (A\') are satisfied and R — 0 0 . Then (1.1)-(1.2) 
has at least one solution x 6  C 1 [— r, T] such that a < x and x' > 0 on [0 ,T ] .

Proof. Since R — 0 0 , we may define A : K —y K and, as above, A = Aq + Au where 

Ao is completely continuous and A\ is a contraction with respect to the norm ||.||j 

on C 1 [0, T] , for 17 > m ax{(o +  0) /  ( 1 -  7 ) , a + 0 +  7 }.

We claim that there exists q sufficiently large and a finite R' > 0 such that

Once the claim is proved the result is a consequence of the Krasnoselskii fixed point 

theorem.

To establish (3.5) we need the following estimates:

K, 11*11,., < R\ IMI,., < R! imply \\A0 (*) +  -4, (y)\\l v < R1. (3.5)

= (i •+ »o

< a  + (a0 +Po)n  1 Ik’ llo.T? exP (?/0  +Po Iloilo T + 8T

=  (<*o +  fio) y 1 ||*||0i, exp (îjt) +  Cq.

Also

|/lo(a’ )' (t)\ < no x(t) +0ox(0 (t)) + 8

< ( » 0 + Po)n 1 Har'llo., exp {rjt) +  Ş0 ||<£'||0 T + (at0 + 0o) a + 8

= (a0 + Po)r] 1 Ik'llo,, exp (ijt) + c\Jt o •
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Thus

Mo (*)||M < ( « 0  + Po)  V 1 N il,, + Co- 

This together with (1.7) yields

Mo (*) + A i  (î/)||liTÏ < (a0 + P o ) r )  111*11!,, + L  ||;v||1>rj + c,

where L is given by (1.8). It is clear that if r] is sufficiently large, then (rvo -f fio) f]~l + 

L < 1 and we may find R! > 0 such that (3.5) holds. □

4. M inim al and maximal solutions

Theorem  4.1. Suppose (al)-(a3) are satisfied and w E C l [0,T], a < w < R , is an 
upper solution, i.e.

{t) > f  (t,w (t) ,w (0 {t)) ,w' (0 (t))), 0 < / < T. (4.1)

In addition assume that

f  < /  (̂ , 2/2 i - 2) (4.2)

for x\ < xn < w (/.) , yi < y2 < w (0 (t)) and z\ < z2 < w' (9 (/)) . Then we may define 
X0 = Xq = <t>,

£n + l (0  “
xn (t) on [ T, tn\ 

lim U n j  (t) on [tni/ n+i]

a n d

*n+i (t) =
xn (t) on [—r, tn] 

lim vnj (/) on [tn,.<«+i],j-* 00

W„o (0 - a, t>„0 (<) =  (<) , «»j -  An («n j-l)  , Vnj = Àn (l’n j-l) ,

An (*)(*) =  Xn (tn) +  f  f  (s,x(s) ,xn (9(s)) ,x!n (0(s)))ds,
Jtn

An (*) (<) =  (tn) + J  f  (». * («) , *n (<? (*)) . *n (# («))) Ps

(4.3)

(4.4)
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(/ e  [/n,f„+ i]) , j  -  1,2,..., n — O, 1. Moreover, x - x k and x — xk are the

minimal and maximal solutions of (l.l)-(l.S ) satisfying a. < x < w on [0 ,T ] ,

a < x <  x < w, O < P  < x' < iuf on [O, T ] ,

WfiO 5  ̂ ^ ••• ^ 5: •••

VnO ^ 1 ̂  ^ hij ^ ••• [^n^n + l]

and

Unj (t) -> £(<) , Vnj (O “ > * (O as j  -> OO 

uniformly on [tfn , £n+i] (n =  0 , 1 , ..., Ar — 1 /

Proof Suppose we have already defined æn and such that

a < xn < xn < tv and 0 < xn < x'n < w' on [0, tn] . (4.5)

First we prove that

a unj ^ vnj w on \tn,tn.pi] , (4.6)

by induction after j. For j  — 0, (4.6) trivially holds. Assume (4.6) is true for some j. 
Then, using also (4.2), we easily see that

a- <  A n  (a ) <  A n  («ni) <  A n  (Vnj)  <  À n (vnJ) <  À n (w) <  W ,

which shows that. (4.6) also holds for j-f-1. Thus (4.6) is true for all j  > 0. Since An and 

An are completely continuous, the sequences (anj ) j>0 and (vnj ) j>0 will contain con­

vergent subsequences. Due to their monotonicity, the entire sequences will converge 

on [£n, / n+i] i which justifies (4.3) and (4.4). Also, by (4.6), a < xn+1 < xn + \ < w on 

[0,<n+i] • Then

° < £ n  + l(*) =  / ( < > * n +  1 (<)•£» (<? (<)) . (6 (<)))

<  /  (t, x „ + i  ( t ) , x „ (6 ( < ) ) ,  x'„ (0 ( / ) ) )  =  x'n+l (t)

<  /  (t, w ( < ) ,  w (0 ( / ) ) ,  w1 [9 ( / ) ) )  <  iv' ( t ) .
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Hence (4.5) also holds for j  +  1. □

The next result is about the equality x =  x in Theorem 3.1.

T h e o r e m  4 .2 . Suppose the assumptions of Theorem 3.1 are satisfied. In addition as­

sume a >  0 and that there exists a function \ : [aw, 1) —y R , where axu =  a minţo.T] 1 /w  (t) , 

such that for all p G [au, , l ) ,  t G [0,7"], x G [a ,u ;(< )], y G [m, M] and z G {m ',o o ) ,  

one has

l > x ( p ) > P  ™d f ( t , p x , y , z ) > x ( p ) f ( t , x , y , z ) .  (4.7)

Then x =  x is the unique solution of (1.1)-(1.2) satisfying a <  x <  w on [0,7"].

Proof. We show succesively that xn =  xn for n =  0 ,1 ,.. ., k. For n =  0, this trivially 

holds. Assume xn — xn for some n. Then An = Ăn. Clearly, the restrictions o f 

xn+1 , xn+iio  [fn^n+i] represent, the minimal and maximal fixed point o f Bn := An 

satisfying a < x < w on [tn,tn+1] . To show that xn+1 =  xn+\ on [* „ , /n+ i] ,  let 

po =  min[tnitB+1](x u+1 {t)/xn+i (t)). We have p0 G [aw,l]. W e claim that p0 =  1. 

Assume p0 <  1. Since xn+1 (t) >  max {a , p0Æn+i ( 0 }  =  Po max {a /p 0, + i (t ) }  >  a

on \tn , / T/ _j_ i ] , we get

£n+i =  Bn (x n+1) >  Bn (p0 m a x {a /p o , in4.i } )

>  X  (Po)  B n ( m a x { a / p o , « n + i } )  >  x { p o )  B n (;cn + i )  =  x  (po)  * n + 1 ,

on + . It follows po >  x (po) , a contradiction. Therefore po =  1 and so æn + 1 =

+  l ^ n  [Cii^n +  l ] *  —̂1

R e m a r k  4 .1 . For example, we may take \{p)  =  pa , where a G (0 ,1 ) , in case that

f ( t . , x ,y ,z)  is of the form xag (t, y, >:). Also, \ (p) =  log ( 1 T- ap) /  log ( 1 -h a) for

f  (/, .r, y, z ) - g  (/, y, z) log (1 +  x) .

T h e o r e m  4 .3 . Suppose (A1)-(A3) are satisfied and that w G C l [0,7"], a <  w < R, 

is an upper solution. In addition assume that (4-2) holds. Denote

UQ(t) =  a, Vo ( t ) = w ( t ) ,  Un+i =  A(Un) and Vn+i =  A(Vn)
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( t e  [O, T\), n =  0,1,.... Then

a — Uo < f/i < .. .<  Un < .. . <  Vn < ... < Vi < Vo =  w, (4.8)

0 < U [<  ... < Un < ■■ < K <  ... < v? < u>' (4.9)

on [0,T], Also, the following limits exist

x(t) =  lim Un (t ) ,n—hx>
x (t) =  lim Vn (t)

n—>oo
(4.10)

uniformly on [0,7"]. Moreover, x, x are the minimal and maximal solutions to (1.1)-

( 1.2) in Kf{ satisfying x < w on [0 ,T ].

Proof From a < w we see that a < A (a) < A (w) < w and 0 < A (a)' < A (iv)‘ < 

w', i.e. Uo < U\ < V\ < Vo and 0 < U[ < V{ < wf. Further, (4.8) and (4.9) 

follow succesively. Let a be the Kuratowski measure of noncompactness on the space 

C l [0,T] endowed with the norm | | . Since

(Un)n>, = A (((/n)n>0) ,

Ao is completely continuous and Ai is a contraction, we have

«  ( ( f y n> ,) =  «  (/i  ( ( [ '„ ) „ > „ ) )  < «  (^o ( ( c „ ) n>0) )

+ «  (^ i  ((Un)n>o ))  =  a (-4; ((£ /„ )„> „)) < La ((C „)„> o) ,

where L is given by (1.8). Recall that L < 1. In consequence, o ({Un)n> ĵ =  0. 

Thus (Un)n>o contains a convergent subsequence. By the monotonicity, the entire 

sequence (Un) will converge. Similarly, (Ki) is convergent. □

Rem ark 4.2. Let (A1)-(A2) be satisfied. In addition assume that the folloiving con­

dition holds instead of (A3):

(A3’) f { t , x , y ,  z) is nonnegative and continuous on D.

Then Theorem 3.2 is still true with the meaning that x and x are weak so­

lutions of (1.1), i.e. x , x £ AC[Q,T] (are absolutely continuous) and satisfy (1.1)
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almost everywhere on [0 ,T ] . Indeed, by (4-8), (4-9) and the Beppo-Levi theorem, there 

exist x, y G Ll (0, T) with

U n ( t ) 3i { t ) , U fn (t) —> y (t) on [0 ,T ] ,

Un x and U„ -*> y in Ll (0, T ) .

F r o m

I dsUn{t) =  a +  f  U9n(s)*
Jo

we then derive

x ( t ) - a +  y(s) ds,
Jo

which shows that x G AC [0, T] and x* (t) =  y (t) for a.e. t G [0 ,T ]. Letting n —> oo

we obtain

K + X  (0  =  /  (t.Vn ( O  , U n  (0 ( * ) )  , U ' n  ( 6 ( < ) ) )  ,

y(t) =  /  , 1 ( 0 ( 0 )  - y ( 0 ( O ) )  f°r al11 e  [ o , T ] ,

z '(0  = /(*,*(0 > 1 (0(0 ) 11' (0(0 )) ae- <€[0,T].
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