STUDIA UNIV. “BABES-BOLYAI", MATHEMATICA, Volume XLIV, Number 3, September 1999

GLOBAL EXISTENCE AND ESTIMATES FOR SOLUTIONS OF
CERTAIN HIGHER ORDER DIFFERENTIAL EQUATIONS

B.G. PACHPATTE

Abstract. In this paper results on the global existence and estimates for
solutions of general higher order differential equations are established. The
main tools employed in our analysis are based on the applications of the
Leray-Schauder alternative and certain integral inequalities which provide

explicit bounds on the unknown functions.

1. Introduction
Let ri(t) > 0, i=1,2,...,n =1 and z(t) be sufficiently smooth functions on

[ =[to.T]. to >0, T > 0. Then for x(f) the r-derivatives are defined as follows

Dﬁo)r =z,

D,(.n).‘l,' — (D,(,"_.l);l,')l.
In this paper we consider the n-th order (n > 1) differential equation of the

form

(P) DMy = (¢, Dy, Dy, .., D"~ y),
with the given initial conditions

(Po) Dﬁ"‘)y(to):cm, m=0,1,2,...,n—1,

where f : I x R* — R is a continuous function, R denotes the set of real numbers and

¢m are given real constants. We define B = C"~!(I) = C"~!(I, R) to be the Banach
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space of functions u such that D™Dy is continuous on I endowed with norm
llul| = max{|Dulo, | DM ulo, . .., D Dulo},

where |ulp = max{|u(t)| : t € I}. In the past two decades there has been a great
deal of interest in the study of oscillatory and asymptotic behavior of the solutions
of equations of the form (P) and its various special versions. We choose to refer here
the papers by Fink and Kusano [3], Kusano and Trench [4], Pachpatte [7,8], Philos
[14,15], Philos and Staikos [16] and Trench [17,18] and the references given therein.
As noied by Nusano aud Ticich [(4,p.081], it scoms that very little is known
about the global existence and various other properties of the solutions of such equa-
tions in the literature. The main purpose of this paper is to establish some results
concerning the global existence and estimates for solutions of (Py) which in turn con-
tains in the special cases a number of higher order differential equations studied by
many authors by using different techniques. The main tools employed in our aﬁalysis

are based on the applications of the Leray-Schauder alternative and certain integral

inequalities which provide explicit bounds on the unknown functions.

2. Global existence of solutions

In order to obtain our result on the global existence of solutions of (P)—(Py),
we need the following theorem, which is a version of the topological transversality
theorem given by A. Granas in [2,p.61].

Theorem G. Let B be a conver subset of a normed linear space E and

assume 0 € B. Let F' : B — B be a completely continuous operator and let
UF)={x € B: v=\Fx for some 0 < A < 1}.

Then either U(F) is unbounded or F has a fired point.
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For our purposes, for any integers m and & with 0 < m <k < n—1, we

introduce the function R which is defined on I by

(1, itm =k
/t= m 1 /8m+x 1 .
_ ...T
Rk (t) - to 7'm+1(sm+1) to 7'm+2(5m+2) (21)
Ly k
z ds), ... dspmyads L ifm < k.
L /zo re(zg) mimt

In particular, for any integer k& with 0 < k < n — 1, we put
Ri(t) = Rox(t), t>to.

The following theorem constitute the main result of this section.
Theorem 1. Supposc that there exists a function a € C(I, Ry), Ry = [0, 00)
such that

n-—-1
If(t, Dy, DMy, .., DI=Vy)| < a(VH (}: !Dim')yl) : (2:2)

m=0
where H : Ry — (0,00) is a conl'nuous nondecrcasing function. Then the problem
(P) — (Po) has a solution y in B provided that T satisfies

intT M(s)ds < e ds | (2.3)
o o H(s)

where

n-—1 n~1
c= Z ["'IHH' Z ICk|Rmk(T):| , (2.4)

m=0 k=m+1

in which Rk (T) is defined by takingt =T in (2.1) and

w=5 Lo [ L[ (25)
t) = —_ X 2.5
—0 rm+l(t) to 7'm+’_’(3m+2) /tn 7'm+3(sm+3)

m

Sn-2 1 Sa=-1
X [ r——————/ a(s)dsdsp—1 - X dspm 13dSmy2,
n—1
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Proof. First we establish the a-priori bounds for the problem (P)), -
(Po), A €(0,1), where

(P D™y = Af(t, Dy, DMy, ..., D"~ Vy).

Let y(t) be a solution of (P)x — (Py). Then y(t) and its derivatives can be

written as

n~1

t
. 1
Dﬁm) t)=cm + E cp Roe(t +A/ —_—X 2.6
y( ) ’ A( ) 0 7’m+1(9m+l) ( )

k=m+1
Sm41 1 Sn-2 1 Sn-1 __
x / - .. / S — / fly(s))dsdsn—y ... dsmyodsmyr,
to T‘m+2(5m+2) to 7'17—1(511—1) to

for 0 <m <n—1, where

Fly) = £(t. DOy(t), DDVy(t), ... D= Ny(t)), (2.7)

and Rmk(t) 1s defined by (2.1). From (2.6) and using the condition (2.2) we have

n-—1 Sm41 1
DIMy(t)] < e+ / / - X 2.8
Z I )I Z to 7'm+l -5m+1 Tm+2(5m+2) ( )
Sn-2 1 Sn—1 (
X —_— « x H D; m) dsds,, _1...ds;p4ads ,
/;0 rn—l(sn—l)/t; ( ';)l 1- n+ m+1
where ¢ 1s defined by (2.4). Define a function wu(t) by the right side of (2.8). Then
n—1
ST DI ()] < ut). w(to) =
m={
and
n—1 t
1 1 m+2 1
u'(t) < / / — X 2.9
< m=0 Tm1(t) Jiy Pmea(sSme2) Ji, Tm+3(Sm+3) 29)
.. / / S)H (n(s))dsdsn_1 X dsmyadsmes < M(0)H (u(t)),
to Pn-1(Sn— l) -
for t € I. From (2.9) it follows that
w'(t)
—— < M(t). 2.
H(u(t)) — ® (2.10)
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The integration of (2.10) from #; to ¢ and the use of the change of variable
and the condition (2.3) give
u(®) ds / w'(s) / T ® ds
- ——ds < M(s)ds < / M(s)ds < —_ 2.11
; H(u(s) Wi < J, M&b< | gy 1Y

From (2.1 1) it follows that «(t) must be bounded on I, i.e. there is a positive
n—1

constant « independent of A € (0, 1) such that u(t) < o and hence Z IDI™y(t)] < a
m=0

for t € I. Thus we have IDim)y(t)l <a,t€lfor0<m<n-1,and consequently

llyll < e
In the next step we rewrite the problem (P) — (P;) as follows. If y(t) =

n-1

z(t) + e(t), where e(t) = co + Z("'R"‘(()‘ t € I, then it is easy to see that z(tp) =

o) - elto) = 0, -

¢ 1 S1 1 Sn-2 1
A0 = /ro ri(s1) /to ra(52) /to Tao1(6n1) x (2.12)

x / " fr(z(s) + e(s))dsdsn— . ..dsadsy,
to

if and only if y(¢) satisfies (P)— (Py), where we have used the notation f*(z(s)+e(s))

for
F(5, DO (=(s5) + e(5)), DV (2(s) + e(s)), ..., DLV (=(s) + e(s)))-

Define F : By — By, Bo={z € B: :z(tg) = 0} by

Fz(t) = /' L / ! /_ L (2.13)
T i mils) Ji, rals2) Sy maci(sn-n) '
x/ " F7(z(s) + e(s))dsdsp—1 . .. dsadsy, -
to

for t € I. Then F is clearly continuous. Now we shall prove that F is completely
continuous.

Let {wx} be a bounded sequence in By, i.e. ||wi]| < @ for all k, where 3 is a
positive constant. From (2.13) and using condition (2.2) and setting M* = sup{M(t) :
tel}ande* = sup{]D,(nm)e(t)| :tel, 0<m<n-—1}, we have

D Emo < [ s [T
ty Tt (Sm41) to Tmy2(Sm+2)
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Sn-2 Sn-1
X / —————1 / [£* (wr(s) + e(s))|dsdsn—1 . ..dSmi2dSm41 <
to r"-l(sn—l) to
<M*(Hn(B+e )T —-t) =1L,

for ) < m < n—1, where L > 0 is a constant. Hence from (2.14) we obtain || Fwl|| < L.
This means that { Fw} is uniformly bounded.

Now we shall that the sequence {Fuwy} is equicontinuous. Let tp < t; <
ty < T. Then from (2.13) and using the condition (2.2), and letting {wx}, M", e" as

defined above, we ohserve that

IDI™ (Fun(t2)) = D™ (Fux(th))] < (2.15)

ta 1 S 1 *Sp—2 1
[t e L
t Tma1(Sme1) Jeg Pma2(Smt2)  Jig Ta-1{8n-1)

x/ " | £ (wi(s) + e(s))|dsdsn=1 ... dsmyodsmyr <
to

t2 1 Sm+41 1 Sn-2 1
s
—Jun Tm+1(Sm41) to Pm42(Smy2) to rn-1(sn-1)

Sn—1 n-—1
X / a(s)H (Z [| D™ wy (s)] + |D,(.'"‘)e(s)|]> dsds,_1...dsmi2dsmyr <
to m=0

t2 1 /8m+1 1 /"n—Z 1
< —_— ——— .. _—_—x
- /t, rm+1(5rn+l) to 7'm+'l(3m+‘2) to rn—l(sn—l)

PSn—1 t2
X / M*H(n(B + e*))dsds, -\ ... dspmiadsyppr < / M H(n(3 + e"))ds.
Jeo t

A

From (2.15) we conclude that { Fiy} is equicontinuous and hence by Arzela-
Ascoli theorem the operator F' i1s completely continuous.

Moreover, the set U(F) = {: € Bg: z=AFz, A€ (0,1)} is bounded. Since |
for every z in U(F) the function y(t) = z(t) + e(t) is a solution of (P)y — (Py), for
which we have proved that ||y|| < o and hence ||z|| < ai. By applying Theorem G,
the operator F' has a fixed point in By. This means that the problem (P) — (Fp) has
a solution y(t) in B. The proof is complete.

Remark 1. We note that our Theorem 1 extends the well known theorem
of Wintner [20] on the global existence of solution of Cauchy problem for first order
differential equation, to higher order differential equations (P)—(P,). For some recent
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extensions of Wintuer’s theorem, see [1,5-10,12,13]. Further we note that out Theo-
rem 1 contains in the special cases the global existence of solutions of the following
differential equations

(P)  (r(@)y=D@) = f(t, 7(O)y(t). 7)Y (), 7(O)" (1), . .., r(t)y" =D (2)),

(P) (r@)y ()1 = f(t.y(). #(Oy (). (r(NY (1)), ... (»(1)Y/ (1)) =),

(P3) y™(t) = f(t.y(), ¥ (2),...,y" (1)),

with some suitahl given initial conditions, and studied by many authors in the liter-

ature with different viewpoints, see [3,4,14-19].

3. Estimates on tie solutions

In this section we obtain estimates on the solutions of (P) — (Py) which can
be used to study the various properties of the solutions of equations (P) — (Po), by
using the integral inequalities given in {11, Theorem 3.3.1, p.222 and Theorem 1.3.2,
p.13].

The following theorem deals with the estimates on the solution and their
derivatives of the problem (P) — (Py).

Theorem 2. Suppose that the function f in (P) satisfies

n-1
17t D0y, DMy, ... DMy < L (z, > IDﬁ"‘)yl) , (3.1)
m=0
fort € I, where L : I x Ry — R4 be a continuous function such that
(L) 0 < L(t,u) = L(t,v) <w(t,v)(u—v),

fort €I and w> v >0, where w: I x Ry — Ry is a continuous function. If y(t) is

a solution of (P) — (%) on I, then

n-1 t t
IDIMy(t)] < a(t) +b(t) [ L(s,a(s)) exp (e,a(0))b(0)do ) ds,  (3.2)

to
where
n—1 n-—1
"(t) = Z [lcml + Z IckRmk(t)l] ’ (33)
m=0 k=m+1
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n-1 .t 1 Sm41 1 S$n—2 1 (‘; )
N ey U G T
( ) Z=:0 to Tmt1(Sm+1) to Tm+2(Sm42) to Tn—1(Sn—-1)

m

XdSp—1...dSmy2dSmi1,

fort € I and Rmk(t) ts defined by (2.1).
Proof. If y(t) is a solution of (P) — (Ps), then y(t) and its derivatives can

be written as

n-1

t
1
DIMy(t) = em+ Y ckRmk(tH/ — (3.5)
to Tm+1

Sm+1 1 Sn-2 1 Sn—1 __
% - . [ — f(y(s))dsdsp—1 ...dsmyodsmyr,
~/to Tnt+2(STR+3) v/to rn_l(s"‘l) ‘/'0 ) i "t "

for 0 < m < n—1, where Ry« (t) and f(y(t)) are defined by (2.1) and (2.7) respectively.
From (3.5), (3.1), (3.3) and (3.4) we observe that

Z|D<m> |<a()+1)/ <Z|D"" ) (3.6)

Now an application of Theorem 3.2.1 given in [11,p.222] to (3.6) yields the
desired inequality in (3.2). The proof is complete.

Our next theorem deals with a slight variant of Theorem 2 which can be used
niore conveniently in certain applications.

Theorem 3. Suppose that the function f in (P) satisfies the condition (3.1).
If y(t) s a solution of (P) — (Py) existing on I, then

n-—1

DI y() = ¢m(e)] < (3.7)

m=0

< gq(t)+0(t) (/ Jw ( Z [0 (5 )eq) (/ b(o u'( 2 |1/’ ) ) 9),
m=0

fort € I, where

n—1

YU (t) = e + Z ek Rk (t), (3.8)
k=mn+1

a(t) = b / ( ZIW‘ ) (3.9)
m=0
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fort € I, Ryk(t) and b(t) are defined by (2.1) and (3.4) respectively.
Proof. If y(t) is a solution of (P) — (Py), then y(t) and its derivatives can

be written as

t 1 Sm+1 1
——-—/ — ..x (3.10)
o Tmat(Smy1) S, Tma2(Sm+2)

Dy(t) = ¢ () + /
t

- (Sn-—l

Spn=-2 1 Sn—1 .
x / T < / f(y(s))deSn-l - ~d5m+2d5m+1y
to Pn-1 ) 0

where f(y(t)) is defined by (2.7). From (3.10), (3.1), (3.9), and the condition (L) we

observe that

= pim s < S S 1
Jole m)(4)] < / ox (311
Z I y( - Z= Tm+1 5m+1) "m+2 ( )

m=0 -(sm.+2)

~1(sn-1

t n-1
< b(1) / L ( 3 |D£"”y(s)|) ds <
to m=0
t n-1 n—1
<b / [L ( IDE™ y(s) = 4™ () + S Iu"’"’(s)l) -
to

m=0 m=0

n—1
(z) (z_ow )i

n-—1
< q(t) +b(t f ( Zw»m )ZID(’" — (™) (s)|zds.

m=0 m=0

Sn-2 1 Spn—1 _
% j ;——:—_——_)/ {f(y(S))dsdsn_l o dSmypadsmyr <
to n o

Now an application of Theorem 1.3.2 given in [11,p.13] yields the required
inequality in (3.7). The proof is complete.

Another useful variant of Theorem 2 which deals with the bounds on the
solution y(t) of (P) — (Po) and its derivatives is given in the following theorem.

Theorem 4. Suppose that the function f in (P) satisfies the condition

|£(t, DDy, DMy, ..., DI~ Vy)| < h(2) (Zln‘m yl) (3.12)
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fort € I, where h : I — R, is a continuous function. If y(t) is a solution of
(P) — (Po), then

nﬁlwﬁm) (t)] < a(t) + b(t) th(s)a(s)ex th.(a)b(a)da ds, (3.13)
L IRCEEVRCIED

fort € I, where a(t) and b(t) are defined by (3.3) and (3.4) respectively.
Proof. Let y(t) be a solution of (P) — (Py) for t € I, then the solution y(t)
and its derivatives can be written as in (3.5). From (3.5), (3.12), (3.3) and (3.4) we

have
n—1 t n—1
21D y(0)] < alt) + b(t) / h(s) ( > tDﬁ'"-)y(sn) ds. (3.14)
m=0 to m=0

Now an application of Theorem 1.3.2 given in [11,p.13] yields the desired
bound in (3.13). The proof is complete.

Our next result deals with the depondéncy of solutions of equations (P) on
initial values.

Theorem 5. Let y1(y) and y.(t) be the solutions of (P)—(Py) with the given

initial conditions

D™y (to) = ¢, (3.15)
and

D™ ys(tg) = dom, (3.16)
respectively, form = 0,1,2,...,n =1, where ¢,,,. dy, are given real constants. Suppose

that the function f in (P) saltisfies the condition

[£(t, Dy, DMy, DI Dyy) = f(t. D yy, DMy, ..., DI~ V)| < (3.17)

n—1
< h(t) (Z |DMy, — Dﬁ”")yzl> :

m=0

fort €I, where h : I — R, 1s a continuous function. Then

n—1
D DMy (1) — DM ya(t)] < (3.18)
m=0
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< A(t) + b(t) /t h(s)A(s) exp (/: h(a)b(a‘)da’) ds,

to
where

n-1 n-1
Alty=Y" {km —dnl+ Y ek -dklRmk(t)} , (3.19)
m=0 k=m+1
fort € I, Rmk(t) and b(t) are defined by (2.1) and (3.4) respectively.
Proof. In view of the facts that y;(t) and ya(t) are the solutions of (P) with

the given initial conditions (3.15) and (3.16) respectively, we have

n-—1
Dv‘rm)yl (t) - Dim)y'-’(t) = (e —dpm) + (ex — di) Rk (t) + (3.20)
k=m+1

t 1 Sm41 1 Sp-2 1
T
to 7'm+1(3m+1) to T'm+'_>(3m+2) to Tn.—l(sn—l)

x / ” (Fwi(s)) — Fly2(s))dsdsnwy ... dsmyadsmyr,

]

where Rnyx(t) and f(y(t)) are defined by (2.1) and (2.7) respectively. From (3.20),
(3.17), (3.19) and (3.4) we observe that

n—1

D IDIMyi(t) = DM ya(t)] < (3.21)

m=0

t n-1
< A(t) + b(t) / h(s) (Z DIy (s) - Di"”y-_»(sn) ds.
to m=0

Now an application of Theorem 1.3.2 given in [11,p.13] yields the required
inequality in (3.18) and hence the proof is complete.

We next consider the following differential equations

(@1) DMy = f(t, Dy, DMy, ..., D=y, ),

(@2) DMy = f(t, D%, DMy, ..., D"~ Ny, po),

with the given initial conditions in (Py), where f : I x R® x R — R is a continuous
function and ¢, po are real parameters.
The following theorem shows the dependency of solutions of equations (Q1) —

(Po) and (Q2) — (Po) on pure parameters.
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Theorem 6. Suppose that

1£(t, Dy, DMy, ... D"~ Ny, o — f(t, DOF, DV, ..., D Vg p)| < (3.22)

n—-1
< (1) (z Dy Dimm) |

m=0
|f(t, Dy, DMy, ..., D" Vy, p) — (3.23)
—f(t. DOy, DMy, .., DIy, o) < g(t)|p — prol-

where h,g - [ — Ry are continuous functions. If yi(t) and ya(t) are solutions of

(Q1) — (Po) and (Q2) — (Fy), then

3100y (1) — DEM (0] < (3.24)
m=0 °
At) +b tl.Zse th b(e)do | ds,
<A+ (t)[o () (s) “’(./s (a)()a) ;
fort € I, where
) = = molb(t) [ a(sias, (3.25)

fort € I and b(t) is defined by (3.4).
Proof. Let z(¢t) = y1(t) —y-(¢) for t € I. As i the proof of Theorem 5, from

the hypothesis we observe that

D™ 3(t) = DMy (t) — DI ya(t) = (3.26)

4 1 Sm41 1 Sn-2 1
[t e [ e
to rm+1(3m+1) to T'm+2(5m+2) to Tn—l(sn—].)

x/ {f(s, Dy (s), DDy (s). ..., DOV (s), )~
to
—f(s, D ys(s), DM ya(s), ..., DI Nya(s), )+
+f(s, DO ys(s). DM ya(s), ..., DI Vya(s), p)—

—f(5, DPys(s), DM ys(s), ..., D Vya(s), o) Ydsdsn_y . .. dsmi2dsmyr.
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From (3.26), (3.22), (3.23), (3.25) and (3.4) we observe that

n—1 (m) t 1 Sm41 1
|szt)</—_—~/ Y 3.97
mzz:o r ( ' “ i rm+1(3m+1) to T'm+2($m+2) ( )
Sn—2 1 Spn=1 n—1 ( ) ( )
X T h(s Drm _ Drm +
/to rn—l(sn-l) /t; ( ) r:L:JOI g (S) yz(s)l)

+g(8)|pe — ;1.U|}dsdsn_1 codsmyads;myr <
t n—1
< b(t) / {h(s) (Z |D£"”:(s)|) +9(s)ln - Mol} ds =
to m=0
t n—1
= A(t) +b(t)/ h(s) (Z |D£’"-)z(s)|) ds
to m=0

Now an application of Theorem 1.3.2 given in [11,p.13] yields the required
inequality in (3.24) and the proof is complete.
Remark 2. We note that the results obtained in this paper can be very

easily extended to the more general integrodifferential equation of the form
@ DMy = f(t, Dy, DMy, ..., D[Py,

t
/ o(t, 5. DOVy(s), DU y(s). ..., D=y(s))ds),

to
with the given initial conditions in (Py), under some suitable conditions on the func-

tions involved in (Q) and by using the suitable general versions of the inequalities

given in Chapters 1 and 3 in [11]. For similar results, see references [7-10,12,13].
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