
STUDIA IJNIV. “B A BEŞ-BOLYAI" , MATHEMATIC A, Volume XLIV, Number 3, September 1999

GLOBAL E X ISTEN CE A N D  ESTIM ATES FO R  SOLU TIO N S OF 
CERTAIN H IG H E R  O R D E R  D IFFE R E N TIA L EQU ATION S

B . G . P A C H P A T T E

A bstract. In this paper results on the global existence and estimates for 

solutions of general higher order differential equations are established. The 

main tools employed in our analysis are based on the applications of the 

Leray-Schauder alternative and certain integral inequalities which provide 

explicit bounds on the unknown functions.

1. Introduction

Let r,(/) > 0 , * =  1 ,2 ,.. . ,  n — 1 and x(t) be sufficiently smooth functions on 

/ = [f0,T], to > 0 , T > 0. Then for x(t) the r-derivatives are defined as follows

D ^ x  = x ,

D ^ x  =  * =  1 ,2 ,..., ti— 1, ( ' = ^  =  D) -

Dln>x = (Din- » x y .

In this paper we consider the r?-th order (n > 1) differential equation of the

form

(P) D {rn)y =  f(t,  Dl0)y, Di l)y, . . . .  D ^ y ) ,

with the given initial conditions

(Po) Dim^y(to)=cm, m =  0 ,1 ,2 ,.. . ,  n — 1,

where f  : I x Rn —ï R is a continuous function, R. denotes the set of real numbers and 

cm are given real constants. We define B =  Cn~1(I) — Cn~l(I, R) to be the Banach
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space of functions il such that. Dln ^ a is continuous on I endowed with norm

H I =  max{|D<0)u|0, , \D{rn 1)ix|o}i

where |u|o =  max{|w(f)| : t E / } .  In the past two decades there has been a great 

deal of interest in the study of oscillatory and asymptotic behavior of the solutions 

of equations of the form (P) and its various special versions. We choose to refer here 

the papers by Fink and Kusano [3], Kusn.no and Trench [4], Pachpatte [7,8], Philos 

[14,15], Philos and Staikos [16] and Trench [17,18] and the references given therein.

as no tea uy ixusctnu cuiu Tirin ]i [4,[>.381], it seems that very little is known 

about the global existence and various other properties of the solutions of such equa

tions in the literature. The main purpose of this paper is to establish some results 

concerning the global existence and estimates for solutions of (Po) which in turn con

tains in the special cases a number of higher order differential equations studied by 

many authors by using different techniques. The main tools employed in our analysis 

are based on the applications of the Leray-Schauder alternative and certain integral 

inequalities which provide explicit, bounds on the unknown functions.

2. G lobal existence o f  solutions

In order to obtain our result on the global existence of solutions of (P) — (P0), 

we need the following theorem, which is a version of the topological transversality 

theorem given by A. Granas in [2,p.61].

Theorem  G. Let B be a convex subset of a normed linear space E and 
assume 0 E B. Let F : B —>■ B be a completely continuous operator and let

U ( F ) =  { x  £  B : x =  A Fx for some 0 <  A <  1 } .

Then either U(F ) is unbounded or F has a fixed point.
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For our purposes, for any integers m and k with 0 < m < k < n  — 1, we 

introduce the function Rmu which is defined on /  by

In particular, for any integer k with 0 < k < n — 1, we put

R k { t )  =  R o k ( t ) ,  t  > t o .

The following theorem constitute the main result of this section.

Theorem  1. Suppo.<t< that there exists a function a E C (/, #+), R +  =  [0, oo)

where H : R+ —► (0,oc>) is a cont nuous nondeacasing function. Then the problem 

(P ) — (P0) has a solution y in B provided that T satisfies

1, i f  777 =  k\

Rmk(t) =  < ^m+1 ( -s n ï -|-1 )
1 rsm +1

Jto r̂n+2 (‘Sm+2 )
1

(2 .1 )

such that

( 2 .2 )

(2.3)

where

(2.4)
m = 0 /c=m-f 1

in which Rmk{T) is defined by taking t — T in (2.1) and

m _ 0 r m +  l ( 0  J t0 J'm + 2 ( s m + 2 )  J t0 r m + 3 ( 5m + 3 )**m+2 (5m+2 ) f*m+3 ( 5m + 3 )
• • • X (2.5)
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Proof. First we establish the a-priori bounds for the problem (P)x -  

(Po), A e  (0,1), where

(^ )a D<n)y = \f(t, D<0)y, y.......

Let y(t) be a solution of (P)\ — (Po)- Then y(t) and its derivatives can be 

written as
7 7 - 1

Dim)y(t) =  cm + V  r*/?„,*(/) + A f ------- j- .
__ . 1 Jt0 rm +1 \Sm+1 )

r Sm + l

J tn

1

k  —  777 -}■ 1 

C s  n - 2

(2 .6)

n0 rm+2(s m + 2) Jto
for 0 < m < n — 1, where

ps n-2 ţ pSn- 1  
/  -------;------- - /  /(y(s))dsr/sn_i .. .dsm+2dsm+l,

Jt0 rn- 1 (*̂ n — 1 ) J t0

/(y(<)) = / ( ' .  ^ 0)»(<), £>iny(0. ■ • •. (2.7)

and is defined by (2.1). From (2.6) and using the condition (2.2) we have

n  - 1  77. — 1 X, £_ _  " ~ 1 rt -I /»
E  i^ m)̂ ) i < c + E  / — r— ï /

, ^ 0  “ „ A ,  '•,n +  l ( S m + l ) i t ,

" + 1 1
to 'Vn + 2 (^m + 2 )

(2 .8 )

• T ' 2 -------ï̂— T «(-) X H ( e  l ^ v M l )  dsc
Jto 'n - l U 'n - l )  Jto \m=0 /

dscls7l _ i . . . diSm + 2^m+l , 

where c is defined by (2.4). Define a function ?/.(/) by the right side of (2.8). Then

77 — 1

E  IA(m).</(0l < »(<). «(M = c,
777 — (J

and

u'(<) < e  — -—  f  — ------  f
m —Q r m +  \(t) Ji n ''ni +  2 ( s ni +  2 ) Jt,

"+2 1
(2.9)

/to '*ni+3 (^m+3)

x  f --------- r --------- r /  a ( s ) H ( u ( s ) ) d f i d s n --[ x d s m + 3 ( /s m + 2  <  M ( t ) H ( u ( t . ) ) ,
Jto rn - l l sn - l  J 7t0

for t G /.  From (2.9) it follows that

« '(0
H(u(t)) < M(t). ( 2 . 1 0 )
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The integration of (2.10) from /0 to t and the use of the change of variable 

and the condition (2.3) give

r  *  = r  j p i u  < /■ hH, ¥ s  < r  m W</s < r  *
Jc Jto # ( « ( * ) )  Jto Jto Jc H (S)

From (2.11) it follows that u(t) must be bounded on /, i.e. there is a positive
n — 1

constant, a independent of A E (0,1) such that. u(t) < <y and hence ^  \Dlm^y(t) | < a
m=0

for t E I. Thus we have |Dr ;y(2)| < a, t E /  for 0 < m < n — 1, and consequently

Ml < «•
In the next step we rewrite the problem (P) — (Po) as follows. If y(t) =

n — 1
z(0 + e(Z), where e(<) =  c0 +  CkfikU)’ t € /, then it is easy to see that z(<o) =

fc=i
y(t0) -  e(<0) = 0,

1:(t) / ‘ _ j _  r _ i _ x p - \L  r i ( . i )y t0 r2(.s2) 7t„
r$n- 1
/  /* (r (s ) +  e(.s))f/sc?sn_ j . . .ds2dsi,

Jto

(2 .1 2)

'to
if and only if t/(J) satisfies (P) -  (Po), where we have used the notation /* (z(s) +  e(s)) 

for

/(* . A (0)(~(s) +  « (*)). (-'(•■>) + <?(*)), • • •, +  *(«)))•

Define F : Bq Po, 5 0 =  { :  E B : ~(/-o) — 0} by

1 (2.13)
f'n — 1 ( $77. — 1 )

pSn- 1
x /  f* (z(s) +  c(s))d.sr/6r,_i . . .dsndsi,

Jto

for t E /• Then P is clearly continuous. Now we shall prove that F is completely 

continuous.

Let {w/c} be a bounded sequence in Po, i.e. \\wk\\ < P for all k, where (3 is a 

positive constant. From (2.13) and using condition (2.2) and setting M* =  sup{M (/) : 

t E 1} and e* =  sup{|Drm^e(/)| : * € /, 0 < rn < n — 1}, we have
rJm + l ţ

l ^ ( C m .( / ) ) |  < f  --------------- : r
J t 0  r r 7 ) - l - l  ( *s r n - f - 1 )  < / t o P77+2 («S »-f-2 )

( 2 . 1 4 )
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rSn-2 2 r*n- 1
x /  ---------------- /  \f*(u>k(s) + e(s))\dsdsn-i  .. .dsm+2<lsm+1 <

J to r n - l ( 5n - l )  Jt0

<M*(H{n(/} + e ' ) ) ( T - t 0) = L,

for 0 < m < n—1, where L > 0 is a constant. Hence from (2.14) we obtain ||FtUfc|| < L. 

This means that {Fit»*} is uniformly bounded.

Now we shall that the sequence { Fw*.} is equicontinuous. Let to < 11 < 

t2 < T. Then from (2.13) and using the condition (2.2), and letting {«>*}, M*,e* as 

defined above, we observe that

IDim)(Fm (h)) ~ Dim\ F w k(h))\< (2.15)

J /*Srr + 1

Jti rm +l(* 'm  + l )  JtQ
. ________! _
Jto rn - l ( S n - l )f*m+2(*Sm + 2 ) Jt0 r n— l ( sn — l)

Ç $ n. — 1
I \f*(u>k(s)+e(s))\d$ds„-i .. .dsm+2dsm+i <

Jto

ÇÏ2 I rSm-fl

Jtx r m + l ( s m +  l )  Jto

1
f*m + 2 (5m-{-2 )

[  a(s)H £[|D<>">ti.*(s)| +  \Di’n)e(s)\]
\ m= 0

rt3 l r,m+i l
— Jti  rm +  l(* ’m +  l ) J t „  ^ m + 2 (^ m + 2 )

fJto

1
t'n — 1 ( 5n — l)

dsdsn — i . . .  dsm+2dsm+i 5̂  

1
/Jt0 rn -  1 ($n— 1 )

x /  n~\rH(n(/3 + e*))dsds„-l ...dsm+2dsm+l < ( \  /* # (* (/?  + e*))cfa.
Jto Jt i

From (2.15) we conclude that {Fwk} is equicontinuous and hence by Arzela-

Ascoli theorem the operator F is completely continuous.

Moreover, the set U(F)  =  { :  E Bo : z — XFz, À G (0,1)} is bounded. Since 

for every 2 in U(F)  the function y(t) =  r(/) -f e(t) is a solution of (P)\ -  (Pq), for 

which we have proved that \\y\\ < a and hence \\z\\ < a*. By applying Theorem G, 

the operator F has a fixed point in Bq. This means that the problem (P) — ( P q) has 

a solution y(t) in B. The proof is complete.

Rem ark 1. We note that our Theorem 1 extends the well known theorem 

of Wintner [20] on the global existence of solution of Cauchy problem for first order 

differential equation, to higher order differential equations (P ) - (P q). For some recent
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extensions of Wint ner’s theorem, see [1,5-10,12,13]. Further we note that out Theo

rem 1 contains in the special cases the global existence of solutions of the following 
differential equations

(Pi) (rMy^-'Ht))'  =  / ( / ,  r(1) !/ ( t ) , r ( t ) y " ( t ) , r ( t ) y (n-V(t)),
(P2) ( r ( t W m n~V =  f(t. y(t). r(t)y'(t). ( r (% '( / ) ) ' .......

(Pz) y(n)(t) = /(hy(0>y'(<)---.y(n_1)(0).
with some suitah/*' given initial conditions, and studied by many authors in the liter

ature with different viewpoints, see [3,4,14-19].

3. Estimates on the solutions

In this section we obtain estimates on the solutions of ( P )  — ( P o )  which can 

be used to study the various properties of the solutions of equations (P) — ( P o ) ,  by 

using the integral inequalities given in [11, Theorem 3.3.1, p.222 and Theorem 1.3.2, 

P 13].
The following theorem deals with the estimates on the solution and their 

derivatives of the problem (P) — ( P o ) .

Theorem  2 .  Suppose that the function f  in ( P )  satisfies

77 — 1

|/(<, D ^y, D ^ y ....... A (" " 1)y| < L /, £  |£<m)y| , (3.1)
777 = 0

for t G I, where L : /  x /?.+ —» P + be a continuous function such that

(£) 0 < L(t, u) — L(t, v) < w(t, ?;)(u — v),

fort G I and u > r ^ 0, where w : /  x P+ -4 P+ is a continuous function. If y(t) is 

a solution of (P) -  (Po) on /,  then

^ \ D l m)y(t)\ < <i(t) + b(t) L(s,u(.s))exp ^  u>(<r, a(<T))&(cr)do  ̂ ds, (3.2)
m =0

where
77—1

' W = E
777 =  0

77— 1

|cm| “f  ^  ̂ |o^Pm/c(0l
/v =777-}- 1

(3.3)
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b(t) = £  f  ------ lT------- f
£^0Jto r m + l ( S m + l )  J U

m + 1 2

t0 2 (^m+2 )
f Sn~2 1

• /   r --r X (3.4)
Jto r n - l { S n - l )

xdsn — \ . .. dsm+odsm+i ,

for t G I and Rmk(t) is defined by (2.1).

Proof. If y(t) is a solution of (P) — (Po), then y(t) and its derivatives can 

be written as
n - 1

(3.5)D ^ y ( t )  =  cm +  £  ckRmk(t) + f ------- ţ------
. ___L1 Jtn r m + 1 (*’m + l1

r$m +1

Jt 0

1 p s rt — 2 ?

Jto rn-l{sn- l  ) Jt0
f(y(s))dsdsn-i  .. . ( i s m + 2 ( /* ',„ + 1,

^m+2
for 0 < m < n —1, where Rmk(t) and /(*/(/)) are defined by (2.1) and (2.7) respectively. 

From (3.5), (3.1), (3.3) and (3.4) we observe that

£  |D<m></(f)i <  «(f) +  6(f) f  L (a . £  |D<m)<,(s)| ) da. (3.6)

Now an application of Theorem 3.2.1 given in [11,p.222] to (3.6) yields the 

desired inequality in (3.2). The proof is complete.

Our next theorem deals with a slight variant of Theorem 2 which can be used 

more conveniently in certain applications.

Theorem  3. Suppose that the function f  in (P ) satisfies the condition (2.1). 
If y(t) is a solution of (P) — (Pq) existing on I, then

n — 1
J2  i<  (3.7)

771 =0 
7 1 - 1 n -  1

< q{t)+b(t) y j'  q(s)w (,s, ^2  l !̂<m>(s) l j  exP yj^ b(cr)v< |̂ cr, ^  |V>(m)( « ) j  dcrj dsj ,

for t G /,  where

<P(n,)(t) = Cm +  CkR,nk(th
k—m-ei

?(0 m  [ ' l U e  iv-
Jt{i \ m=0

:-(m)(s)| U s,

(3.8)

(3.9)
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fort € /, Rmk{t) and b(t) are defined by (2.1)  and (3.4) respectively.

P roof. If y(t) is a solution of (P ) — (Po), then y(t) and its derivatives can 

be written as

r*m+i ]

/t0 rm+2(Sm + 2)
Dlm)y(t) =  V-(m) (<) + f -------ţ-------r f

Jto rm + l (5m + l) Jt-o
(3.10)

pSn-2 2 f S n_1 _
X /  -------;------ r /  f(y(s))dsdsn-i  . . .dsm + 2dSm+l,

Jto  r n - l ( 5n - l )  J t 0

where f{y{t)) is defined by (2.7). From (3.10), (3.1), (3.9), and the condition (L) we 

observe that
n-l n~\  ̂ 1 ^

x (3.11)Ë  ID’ m)y ^  ~ * (m)(0l < Ë  : — h— r /
m̂ O m̂ O m + 1 (Sm + 1 ) 'u

5 m  +  l  2

to r m+2 (s rn+2 )

C$n- 1Ç S n - 2  2 f S
x /  -------;------- r /  |/(y(s))rfsds„_i .. .(/sm+2rfsm+i <

Jt-0 rn - l (5n -l ) Jto

< Ht) [  L ( s'Y 1  lD m̂)2/(s)l ) ds <

< 6(f) f  \L U  £  IDi^y(s) -  rl^(s)\ +  E  lV’(ra)(OI ) ~ 
''to L V m = 0 m=0 /

- L  e  i V ’ ( m ) ( S ) i  )  + 1  u  E  i v - ( m ) ( * ) i
m —0 m=0

c/s <

< ï (<) + 6(0 f  «• u  E  ivi(m)( o n  E
\ m=0 /  m=0

Now an application of Theorem 1.3.2 given in [ll,p .l3] yields the required 

inequality in (3.7). The proof is complete.

Another useful variant of Theorem 2 which deals with the bounds on the 

solution y(t) of (P) — (Po) and its derivatives is given in the following theorem. 

Theorem  4. Suppose that the function f  in (P) satisfies the condition

\f(t,DWy,DWy,-..,D<n- 1)y)\<h(t) E \°rm)y\ (3.12)
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for t e l ,  where h : 1 - »  P+ is a continuous function. If y(t) is a solution of 

(P ) - (P o ) ,  then

'Ş2\Dirm]y(t)\ <a{t)+b{t) f  h(s)a(s) exp (  f h(<r)b{<r)dcr\ ds, (3.13)
m=0 ^to ^ s '

fort e  I, where a(t) and b(t) are defined by (3.3) and (3.4) respectively.

P roof. Let y(t) be a solution of (P) — (P0) for / G /, then the solution y(t) 
and its derivatives can be written as in (3.5). From (3.5), (3.12), (3.3) and (3.4) we 

have
n — 1 rt, /  n — 1

£  \D^y(t)\ < a(t) + b(t) (  h(s) ( £  | ^ m)y(s)| I ds. (3.
m~ 0 \m=0 /

14)

Now an application of Theorem 1.3.2 given in [11 ,p. 13] yields the desired 

bound in (3.13). The proof is complete.

Our next result deals with the dependency of solutions of equations (P) on 

initial values.

Theorem  5. Let y\{y) and y-j{t) be the solutions of (P) — (P0) with the given 
initial conditions

Dlm'>yl (l0) = c m, (3.15)

and

Cjm,2/,(/0) =  dm, (3.16)

respectively, for m. =  0, 1 ,2 ,.. . ,  7? — 1, where cm, dm are given real constants. Suppose 
that the function f  in (P) satisfies the condition

I f(t, D ^ yi, D ^ yi, . . . ,  /^ ' ' - 'V i )  -  f(t. Dil)y2....... Dl” - " y , ) \ < (3.17)

\m=0 /
for t G I , where h : I —> P+ is a continuous function. Then

n — 1

£  IA(m)2/i(0 -^mW<)l< (3.18)
m~Q
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< 4 (0  +  6(/) h(s)A(s)exp h{a)b((r)dcr  ̂ ds}

where
n — 1 n- 1

(3.19)4̂(0 - ^ 2  km- m̂| + ]T] kfe -  rffc|fimfc(0 .
m=0 L A=m+1

/ort G I, Rmk{t) and b(t) are defined by (2.1) and (3.4) respectively.

P roof. In view of the facts that yi(t) and y2(t) are the solutions of (P ) with 

the given initial conditions (3.15) and (3.16) respectively, we have
n —1

D ^ yi(t) -  D ^ y 2(t) = (cm -  dm) + J2 ^  ~ + (3.20)
/c=m-f 1

+
rt 1 rSm-H

Jto rm +  l ( 5m + l ) Jto

1 r*n- 2 i 
Jt0 rn -l(sn-\)110 r m+2 (Srn +  2 ) Jt0 r n - l ( s n - \ )

rsn~i _ _
x /  if(yi(s)) -  f (y 2(s)))dsdsni.i .. .dsm+2rfsm+i,

Jt 0

where Rmk{t) and f(y(t)) are defined by (2.1) and (2.7) respectively. From (3.20), 

(3.17), (3.19) and (3.4) we observe that
n -1

(3.21)

< A(t) +  6(0 f  6 (0  ( J2  |A(.m)yi(s) -  ^ m)y2(s)| ) ds.
Jt° \m=0 )

Now an application of Theorem 1.3.2 given in [11 ,p. 13] yields the required 

inequality in (3.18) and hence the proof is complete.

We next consider the following differential equations

(Ch D ^ y  =  / ( / ,  D ^ y, D ^ y , D ^ y , y ) ,

(<W D^y = f(t, D̂ y, D™y, • • •, ̂ n_l)3/. A*o),

with the given initial conditions in (Po), where f  : I x Rn x R R is a continuous 

function and //.,//o are real parameters.

The following theorem shows the dependency of solutions of equations (Qi) — 

(P0) and (Q?) — (Pq) on pure parameters.
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Theorem  6. Suppose that

|f(t, D ^ y , . . ., D ^-^y, y -  f ( t , D ^ ÿ .......D ^~l)ÿ, p)| < (3.22)

<h(t)  ( ] T  I D ^ y - U ^ ÿ M  ,
\m =0

\ f ( t , D ^ y ,  D ^ y , . . . , D i n - ^ y , y ) -  

- f ( t , D ^ y ,  D (r l ) y , . . . ,  D irn ~ 1)y , y 0 )\ <  g ( t ) \ y  ~  yo\ -

(3.23)

where h,g : I —t R+ are continuous functions. If yi(t) and y2(t) are solutions of 

(Qi) -  (Po) »nd (Q2) -  {Po), then
n -  1
^ m (m)J/1( 0 - ^ m).'/2(0l< (3.24)
m = 0  o

< A(t) + b(t) h(s)A(s) exp /?(<j)6(<r)c/cr  ̂ ds,

for t G I , where

A{t) = \p ~ Po\b(t) f  g{s)ds,
Jt.Q

(3.25)

for t G 1 and b(t) is defined by

P roof. Lot z(t) = V\(t) — y‘i(i) for t G /. As in the proof of Theorem 5, from 

the hypothesis we observe that

= / _____i_____r
Jto rm + l ( s rn+l)  Jt0

D<m>z(t) =  D<m>y,(t) -  D ^ y 2(/) 

+1 1

(3.26)

/«/tof m + 2 (  + 2) Jt0 r n _ i ( s „ _ i )

x /  { / ( s , ^ 0)2/ i(s),D(1)y](s),.. . ,D<n-1)î/i(s),^)-
«/ to

- / ( * ,  £»P>y2(s).......Dln-^ y 2(s),y) +

+f(s, OWy2(s), D{ Vy2( s ) , y ) -  

- f ( s ,  D{r0)y2{s), Dj^y-As)---- - Djn~l>y2(s), y t,)}dsdsn~i ■. .d.sm+2dsm+l.
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From (3.26), (3.22), (3.23), (3.25) and (3.4) we observe that
n — 1
£  < f ------ J------r f
^-0 Jto r m + l ( s m + l )  Jti

1

m

(*8 n — 2

t0 ^m+2 ($m+2 )
• X (3.27)

f n — 1
r ~2 — r— ï r ~ '  I w  I e  -  Dim)y2(s) I ) +
Jto 7 .0  I  \m =0 /

+ff(s)|/« -  /toI >(/srfSr»-l • ..tlsm+2<lsm+l <

'n— 1
< 6 « )  /  ^ (® ) + ^ ) | / t - / / o | W S =

VmrO

=  A(t) +  6(0 f h ( s )  ( 2 |£»^)z(S
\m=0

Now an application of Theorem 1.3.2 given in [11 ,p. 13] yields the required 

inequality in (3.24) and the proof is complete.

Rem ark 2. We note that the results obtained in this paper can be very 

easily extended to the more general integrodifferential equation of the form

(<?) D ^ y  =  f(t, D i% , D™ y , . . . ,  D ^ y ,

[  y(t,s, D{r0)y(s), D(rl)y ( s ) , D (rn~l)y(s))ds),
JtQ

with the given initial conditions in (Pq), under some suitable conditions on the func

tions involved in (Q) and by using the suitable general versions of the inequalities 

given in Chapters 1 and 3 in [11]. For similar results, see references [7-10,12,13].
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