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ON THE GOURSAT PROBLEM FOR HYPERBOLIC
FUNCTIONAL-DIFFERENTIAL EQUATIONS

LUBOMIR P. GEORGIEV

It is known that in many problems of nonlinear fields theory, plasma physics
and etc. (cf. [1]) arise hyperbolic functional-differential equations with so-called ’dis-
tributed’ deviations (cf. [2]). The main purpose of the present. paper is to formulate
conditions under which there exist solutions of the Goursat problem, characteristic
of functional-differential equations with ’concentrated’ deviations (particular case of
distributed deviations), using the fixed point theorems, proved by Angelov [3].

Typical in this respect is the following simple example, where the disconti-

nuity of the initial function generates the discontinuity of the solution:

Ugy (2, y) = k(z, Yugy(z — 1,y = 1), (z,y) €RLI={(z,y): >0, y> 0}
U(Z‘,y) = W(r)y)v (w~y) (S AO UBO,

where
- 8%u ‘
v 8xdy’

Bo={(z.y): -1<2<0, y> -1}

Ao ={(z,y): z> -1, -1 <y <0},

1, (z,y) € RS URY,
plr,y) = BT ={(z,y):2>0, y=0}, By ={(x,y): z=0, y> 0}
0, (z,y) € AgUBp\ ([[1":_ UIR‘K_)

' 1
k(z,y) =1- 1+n,(;z:.y)EA,,UB,, (n=1,2,...),
Av={(z,9): 2>n-1,n—-1<y<n},Bpo={(z.y): n—-1<z<n, y>n-1}.

Integrating the above equation we have

u(z,y) — k(z,y)u(z — 1,y — 1) = Ci1(x) + Ca(y).
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Then the conditions
u(0,0) — k(0,0)u(—1,—-1) = C1(0) + C2(0),
u(z,0) — k(x,0)u(z — 1, -1) = C1(z) + C2(0),

u(0,y) — k(0, y)u(—1,y — 1) = C1(0) + Ca(f)

imply C;(z) + Ca(y) = 1, so that we obtain the problem

k(z,y)u(z —1,y—1)+1, (z,y) eRE

u(z,y) =
SO(-I',y), (-’L‘,y)EAOUBQ

It is quite obvious that when (x,y) € A,UB, then (x—1,y—1) € A,_1UB,_,

and we can construct immediately the following solution

{

0, (z,y) € (40U Bo)\ (R URY)

1, (r,y) € (4:UB)\ (RS URY™

(1-5)+1 (z.,9) € (42U Bo) \ (RFFPURYT)

u(z,y) =4 --.

=-5H0-3 . (1-)+0-H0-Y .. (1-5)++
+(1- k) +1= 52, (2,0) € (40 U Ba) \ (REH" URY™)

where R = {(z,y) : = > n, y =n}, RY" = {(z,y) : z = n, y > n},
n=20,1,2,...

The fixed point technique for operators in metric spaces has been very well
developed (cf. [4]), but the above example shows that the hyperbolic functional-
differential equations of neutral type (following the terminology introduced in [5])
possesses solutions with locally essentially bounded mixed derivative ugy. (We note
the known results [6]-[8], where only continuous solutions have been obtained with
restrictions on the deviations of retarded type.) Moreover the example shows: |

1. the Goursat problem allows L9 -solutions so that it cannot formulate as
an operator equation in Banach or metric space.

2. the operator defined by the right-hand side (even in the linear case) will
be not a global contraction because of esssup{k(z,y) : >0, y >0} =1.
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ON THE GOURSAT PROBLEM FOR HYPERBOLIC FUNCTIONAL-DIFFERENTIAL EQUATIONS

That is why, we shall use the fixed point theorems from [3].

Let X be a Hausdorfl sequentially complete uniform space with uniformity
defined by a saturated family of pseudometrics {pq(Z,y)}ae4, A being an index set.

Let ® = {®,(t) : a € A} be a family of functions ®,(t) : [0,00) — [0, 00)
with the properties

1) ®,(t) is monotone non-decreasing and continuous from the right on [0, 00);

2) @,(t) <t, V>0,
and j : A — A is a mapping on the index set A into itself, where j%(a) = a,
M) =j(* (), kEN.

Definition. The map T : Y — Y is said to be ®-contractionon Y if

' pa(T:c,Ty) < Qa(ﬂj(a)("‘v y))

forevery z,y€eYanda € A, Y C X.
Theorem 1. (theorem 2 from [3]) Let us suppose
1. the operator T : X — X is a ®-contraction,
2. for each a € A there exists a ®-function ®4(t) such that

sup{®;x(a)(t) : k=0,1,2,...} < Balt)

and ®,(t)/t is non-decreasing;

3. there exists an element o € X such that pjx(4)(zo,T20) < p(a) < o0
(k=0,1,2,...).

Then T has at least one fired point in X.

Theorem 2. (theorem 3 from [3]) If, in addition, we suppose that

4. the sequence {pjr(q)(Z,y)}3Lo s bounded for each « € A and z,y € X,

ie.

Pix(ay(2,9) < q(z,y,0) <o (k=0,1,2,...).

Then the fized point of T is unique.
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Consider the general Goursat problem for hyperbolic functional-differential
equation:

Ugy(2,y) = F(z,y,u(A, 1), us(a, B), uy (6, £), usy (1, v)), (,y) ERY
u(z,y) = ’d’(l’, y): ul’(xvy) = dlr(zvy)’ “y(-’”:y) = '/’y(lay): (2)
u;y(l‘, y) = 1/}11/(1')3/)1 (Ivy) € Rz\sz

Wh("re F(&L’,y, 31,22,33,34), A = A(xvy)) T

- T(1:7y)7 a = a(xvy)v ,U = ,B(l"y),

0=0(z,y), « = w(z,y), p = p(z,y), v =v(z,y) and ¢(z,y) are given functions.
We set

v(z, y) = uey(2,y), when (z,y) € R2,

o(r,y) = Yry(z,y), when (z,y) € R\ RE
and after standard calculations, we obtain

z py
u(r,y)=<po(x‘y)+/o [) v(€,n)dnd¢,
Yy
wr(as) = pas) + [ vtz

w9 = eaw) + [ vl
where

po(x,y) = ¢(0,y) +¢(x,0) - (0,0),
901(‘1:):"/)1‘(‘1’10)' Y’?(y) :'l’y(ovy)v
so that the problem (2) corresponds the following problem

A T NG}
F(w,yv¢o+/ /v(&n)dnd«f-@]+/ v(a, n)dn. P+
o Jo 0
v(z,y) =

[’}
+/vmwammmxmweﬁi
0
p(z,y), (z,y) € RZ\RZ,

(3)

where Dy = po(A(z,y), 7(z,9)), 1 = pr1(a(z,y)), Pr = w2(k(z,y))-

Definition. The function u(z,y) is said to be a solution (in generalized
sense) of problem (2) if the function v(z,y) is a solution of problem (3).

[ee)

In what follows, we look for a solution of (3), belonging to Lf3..
42
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ON THE GOURSAT PROBLEM FOR HYPERBOLIC FUNCTIONAL-DIFFERENTIAL EQUATIONS

We say that the function G : R? — R? has the property (M) if inverse image
of every set with null measure is measurable.

Let us suppose:
(A1) ¢ is absolutely continuous;
¥(z,0),%(0,y), ¥=(z,0), %y (0, y) are continuous and ¢ = v, € L2 (R*\R3).

(A2) The functions A, 7,a,08,0,k,p,v : ]R?,_ — R are measurable, have the

property (M) (without A and ) and map bounded sets into bounded sets.
(A3) V (2,y) € R for which (A(z,y), 7(z,y)) € RE (or (afx,y),B(x,y)) €

R2, or (6(z,y),k(z,y)) € RE is fulfilled A(x,y) + 7(z,y) < z + y (respectively

+|
oz, y) + B(x,y) <z +y, or bz, y) +6(z,y) <z +y);
360 > 0 such that V (x,y) € ]Ri s (p(z,y)v(x,y) € ]Rlﬁ_ is fulfilled ye(xz, y) +
Ri x R* — R satisfies the
z4) and

viz,y) <z +y—do.
(A4) The function F(z,y, 21,22, 23, 24)
Caratheodory condition (measurable in z and y and continuous in zj,

the conditions:
|F(x,y, 21,22, 23, 24)| < Qu(=,y, |21, |22], 23], |2a])

‘F(w,y‘21,22,23,34) - F(xv y)—EhEZvES\EAl)l S
S Q'_’.(Iyyl lzl - E1|7 lzz - EZl) 23— E3I| |24 —24”)
—4 —
ts) : B x B, — [0,00) (B} = [0,00) x -+ x
4) € L[P:c(]]:{:?{-)x

where the functions Q4 o(z,y,t1,

[0,00) - n times) satisfy the Caratheodory condition, Q;(-,-,t
., t4) is non-decreasing in t1,...,t4 and

Jwe L“”(]Ri) such that V ¢ > 0 Qa(-, -, ¢,¢,¢,t) < tw(-, ') a.e. in IR_Q'_.

Q?(‘T‘ y) tlv s .
Let A be the set of all compact sets A C R2 Denote by Ky = K NR%, we

I(...:@

define the map _] A= A
. K,
iK)y=< i . . .
Kas U [\a,j U Ry, U I\uy, Ky ?é ]

AY aa,

where Kar = Ka x K7, Kop = Ko X Kp, K¢ = K¢ x K,

K ={(p(x,y),v(x,y)): (2,y) € K},
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[Ainf) Aaup],

Ainf <0< Asup

Ka = [O»Asup]’ Ainf > 0
[Ainfy O]: Asup S 0
[Tinf; Taup]) Tinf < 0< Tsup
K; = [O:Tsup]; Tinf Z 0
[Tinjy 0]) Tsup < 0
[,Binj‘ﬁsupL ﬂinf <0< ﬂ.mp
["ﬁ =9 [Ov ﬂ:ur]u ,Hinf Z 0
L [:Binf1O]7 ﬁaup S 0
[0infyasup]y oinf <0< gaup
Ky = T [O,Osup]v Binf >0
L [0inj)0]; oaup S 0
Ko =a(K), Kx=«(K)

(Aing =inf{A(z,y) : (z,y) € K4}, ..., 0.up =sup{f(x,y) : (z,y) € K} }).
It is obvious that j(K) is compact set and j'(K) can be defined inductively:
FHK) = j('Y(K)) for all { € N.
Now we assume:

(A )VKeAIKeA: j(N)cKVI=0,1,2,...

We prove the following existence-uniqueness result:

Theorem 3. If conditions (A1)-(A5) hold true, then there exists a unique
solution v(z,y) € L2, (R?) of problem (3).

Proof. Let X be the uniform sequentially complete Hausdorff space consist-
ing of all functions, belonging to L (R?), which equal ¢(z, y) for a.e. (z,y) € RZ\R?,

loc

with a saturated family P = {px : K € A} of pseudometrics

p(f,9) = esssup{e”XIFHD | f(2, 4) — g(2,9)] : (2,9) € K},

where K runs over all compact subsets of R? (with some A > 0).
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ON THE GOURSAT PROBLEM FOR HYPERBOLIC FUNCTIONAL-DIFFERENTIAL EQUATIONS
The operator T : X — X is defined by the formula:
Fry,s00+/ / f(&, m)dndg, w1+[ fla,n)dn, 6+
()@ y) = / £(6, R)E. F 3, ), (2,) € Y

o(z,y). (z,y) € R*\ R,
The measurability of T'(f)(z,y) follows from the fact that «, 3,0, «, u, v have the

property (M).
T(f) € L2 (R?) because of conditions A1, A4. Consequently T'(f) € X.

loc

Let A" C R? be any fixed compact set. Of Ky =  then T(f) — T(9) = 0
for all f,g € X ae. in K. Let Ky # 0. For ae. (z,y) € K N (R?\ R%) we have

T(f) - T(g) = 0.
For a.e. (2,y) € Ny we obtain (by means of (A4)):

IT(f)(z,y) =~ T(g)(z,9)| <
< Qo(x y,l/ / (f(E,m) — g(&,m))dndé], I/ (e, 1) — g(a,n))dn|,
1/ F(E.%) = g(€,m))dEL 1 (1t v) — gl )])

If (A(z,y), 7(z,y)) & RZ then
/OA /Or(f(f,n) —g(&,n))dndé =0
and respectively if (a(z, ), A(z.y)) ¢ R% then
/ " (tarm) gl m)dn = 0,
if (0(z,y),k(x,y)) & !R'i then
/ " UFE.R) — 9(6, ))dE =0,

if ()u(l‘a y)v I/(;L', y)) ¢ R‘i then f(ﬂr U) - g(ﬂ) U) =0.
For positive values of A(z,y), 7(z,y); a(z,y), B(z,y); 8(z,y), (z,y); p(z,y),

v(x,y) we obtain as follows:

I// f(&m) —g(&n) dnd€l<//|f£n 9(& m)|dnd¢ <
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A pT

<esssup{e D | f(€,n)—g(&,n)| 1 0<E<Auup, 0 < 7 < Toup} / / e+ dnd¢ =
0 0

=22k, (f,9) (2 =1)(e}=1) <AT2MB+) gy < ATZAEH) e (f, g) (e (A3)).

B8 B
| / (Flavn) = gl ))dn] < / | Flavm) — glam)ldn <
0 0

B8
< esssup{e™ @) | f(a, ) — glar )| 0< 7 < Buup}er® / My <
0
<A Yok, (F,9)e (€ —1) <AL gy (F,9) <A o (f,9) (ef(A3)).

In the same way we prove (by means of (A3)) that

]
| / (F(€.x) — g(€, K))dE| < AT+ e (£, ).
0

(i, v) = glu, v)| < X esssup{e™ @D [ f(p,q) — g(p,q)| : (. q) < K} <
< ARV ppe (f9) S AR p (f,9) (ch.(AB)).
Let A > 1. Chosing ¥ so that
AL o> 1
A" = max{A"}, A70) = 0=
Aho 0< by <1

we obtain (since Qa(z,y,t1,...,tq) is non-decreasing in t;,...,14)

IT(f)(=,y) — T(9) (=, y)| <
< Qo y, A7V gy ) (£,9), ATTNE ) s ) (£ 9),
ATV o (£,9), AT oy (£r9)) <
<A (fLg)w(z,y)  (cf.(A4)).
Define (for t > 0)
Blt) = { 0, it Ky =0
A wllpeo(ky), f Ky #0

We can find and fix A so that A7 > ||w||Lm(R1). Consequently @ (1) < t

Vt>0, VK €A and $g(t) is continuous non-decreasing in [0,00). On the other
hand

pr(T(f),T(9)) = pr (T(f), T(9)) < ®klpj(x)(f,9)),
ie. T: X = X 1s a $-contraction.
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YV K € A we set ’55 = & (recall that (A5) assures an existence of such a
[_?that K C K (1=10,1,2,...)) and so sup{®;ix)(t) : 1 =0,1,2,...} < D (t),
EKT(t—)- = const = non-decreasing.

Hence condition 1, 2 of theorem 1 is fulfilled.

We choose the element fy € X:

0, a.e. on ]Ri
fo(x)y) =
o(2,9), (2,y) ER?\ RS,

Then for any integer { > 0 we have

piv k) (fo. T(fo)) < pg(fo,T(fo)) = P}—(fo,T(fo)) =

+
= esssup{e "+ |F(2,4,50. %1, 72,0)| : (2,4) € K4} < 00

{i.e. condition 3 of theorem 1 is fulfilled).

Besides pji (k) (f,9) < p—}?—+(f,g) for abitrary f,g € X, i.e. condiyion 4 of
theorem 2 is also fulfilled.

All conditions of theorems 1 and 2 are satisfied. Therefore the problem (3)
has a unique solution v € L2 (R?).

We are going to formulate conditions for the existence and uniqueness of a
solution of (3) belonging to L}, (R?) for some p € (1, 00):

(A1’) The initial function 1 is absolutely continuous;

¥(x,0), %(0,y), ¥s(z,0), ¥y (0, y) are continuous and ¢ = ¥,y € LT (RI\R3).

(A4’) The function F(z,y,z1,%2,23,24) : [Rﬁ, x R* 5 R satisfies the
Caratheodory condition (measurable in z and y and continuous in z1,...,24) and

the conditions:
|F(z,y, 21, 22, 23, 24)| < a(z,y) + b(|z1] + |22] + |23] + |24])
|F(z,y, 21, 22, 23, 24) — F(z,y,%1,72,%3,24)} <
<wi(z,y)|21 = 71| + wolz2 — T2 + walzs — Za| +walzs — T4l

where a(-,-) € L}, (R2), b= const > 0, wy(, ") € LP(R3), w2 3(-) € LP(R}),

loc
wq = const >0
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(A6) The transformations

u=p(z,y)
v=1u(z,y)

u=o(z,y) u==z
v =k(z,y)

v=Yy

. * % D(“*)V) o) 2
are admissible, sufficiently smooth and af,, &7, Do) € L= (R]), where

(a*(a(z,9),9),9) = (z,9), (2.6 (z,k(2,9))) = (z,9),

(™ (u(z, ), v(2. 9)), v (u(z, ), v(2,9)) = (2,9).
Theorem 4. If conditions (A1°), (A2), (A3), (A4’), (A5), (A6) hold true,
then there exists a unique solution v(r,y) € L} (R?) of problem (3).
Proof. Let X be the space consisting of all functions, belonging to Lf (R?),

which equal p(z,y) a.e. (z,y) € IPZ'\FP?.;F, with a saturated family P of pseudometrics

o (£ 9) (/ [etsiisay) - (z,ynwxdy)" (K € A),

where A is the family of all compact sets in R?, A > 0.

The map j : A = A and the operator T : X — X are defined as in the proof
of theorem 3.

For any K € A, f,g € X we have T(f)(z,y) — T(9)(z,y) = 0, for ae.
(2,5) € K\ Ky;

If (x,y) € K4 # 0, then

IT(N) (2. y) =T (g) (e, y)P <

_(wlzw// F(E,m) — g€, m))dnde] + waly 1/ (o0, ) — g(a, m))dnl+
14
+ws(zx) I/ g(&, ))dE| + wa(f(p, )—g(ﬂvV)l) <
A T B
54P-‘(w';(x»y)| /O / (1) = 9(€. 7)) dnd€ P +2 (y)] /0 (o) = glor, m))dnlP+

/]
+w§(17)|/0 (f1€,x) —g(cf,ff))dfl”+wf§|f(#m)—g(u,l/)l”)-

If (A7), (a,8), (6, k), (1, v) € B2, then T(f)(z,y) — T(g)(z,y) = 0.
48
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If (A, 7) € R%, then (with 117+ ‘-} =1)

A T P
0 /0 (F(En) — 9(€,m))dnde

14
(/ / I£(€;m) g(&nldndg) =
LN ?
:(/0 /0e;(e+n—e—n)|f(6,n)-y(ﬁ,n)ldndg) <
a o e
S(/o /Oep(f+n)d77d5) /0 /oe-/\(£+ﬂ)lf(£’n)_g(frrmpdndfS

P—l 2(p~1) AA
<(B2) 7 e, (o <

1\ 2(r-1)
s(”—A—]) A, (£,9) (cL(A3).

If (a, B) € R, then
P

v
jo (e, m) — g(a,m))dn| <

P

8 P B
S(/O If(a,n)—y(a.n)ldn) =</0 eF(“*”'“'”)If(a,n)—y(a,n)ldn) <
< (/ (“”)dn) /p e~ @) | f(a,m) — g(a, n)|Pdn <

< (p—r 1) Aet) / et | (o) - g(a, )Py <
Q0

-1 B
< (p; I)P em+y)/ e~ Mot £ ) — g(a,n)|Pdy  (cf.(A3)).
0

In the same way (by means of (A3)) we obtain: if (6, k) € R%, then

0
[ rtem) - ste.mnee| < (25
o]

Hence

/ / e MHIDT(£)(2,y) - T(g) (2, y) P dady <
K

P _ 1 p—1 [’}
< (L) eA(w+y)/ e~ MER) | f(£, k) — g(€, K)|PdE.
0
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1\ 2p-1)
<4 ( (B—)\_l) pﬁ(m fr9 / / Pz, y)dedy+
p—1 p—1 ) )
+ (——’\—) /;{+ /Wg(y)‘/(; € +n |f(a>7l) g(“yﬂ)lpdnd:cdy+

_1 p-1 ]
* <p_r> /K / wh(z) / e MEFR) | £ (¢ k) — gl€, k) |PdEdady+

oMo / / e £, v) —y(u,V)I‘"dwdy)-
K4

Denote Ky = {y : (x,y) € Ky}, Kp = {z: (z,y) € K4 }. Consequently

4
[ [ah) [ e 00,m) gl dndedy <
S/ ‘-"‘27(”)/ /h ok (e, v)[e ™A+ f(w, n) = g(u, n)|Pdydudv <
Ky JKp

<ol i, (129) [ whlo)ds

Ky

and similarly

0
[, s [ e isten —atemrdezy <

< wpllneem2) P, (f1 9 / wh(u)du.

/ / N [ (4, 0) = g(p,v) Pdedy =
K4

Dt v*) | awto) ,
U+v _ d <
/K,,,,/ D(u, 1) |f(u,v) — g(w, v)|P dudv
D(p*,v*)
S TR i (£.9).
—I D('U,’U) Lw(ﬁi) Kuu

Thus we receive the estimate

_ 2p—-2
pl;\,(T(f),T(g)) < 4r=lp J(]\)(f J)( (P \ 1) ”“)llle }\A,)+

p—1\""! p—1\""" 5
+ (T) Callwzllip(Ky) + (T) C~||w3||ip(Kr) +A7%C,uh |,

Al U
where Co = ||la || (R2)» C, = HM,HLN(W) Cu = “_'uu__l;)_)

L= (R3)
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ON THE GOURSAT PROBLEM FOR HYPERBOLIC FUNCTIONAL-DIFFERENTIAL EQUATIONS

Define
(o3 (t) =

0, Ky=90
—2\2p—2 —4\P-1 A L (4wg)PC
{ A (22) T el oy + (3554) 7 Colloalll oy + (4572) " Cnllosll o, ) + S50,

Ky #0

~Then px (T(f). T(9)) < @k (pjx)(f9)) VK €AV fg€X.
We can find and fix A > 1 so that

@w-2\?? ap—4\P7! .
(Z22) oty + (B0) Colloallay +

(4&)4 )p C“u

YD <1

41)—4)"’_l »
() ol +

for example
2
A > max(22(p = Dllwrll gz 4°CL7 (0 = Dllwall s ay )
49097 (p — ])”w;;”%p(nki),Cb£50(4w4)P/6o}.
Consequently ®x (t) < t, Px(t)/t = const and T is a ®-contraction.

K4 is bounded set = A(R}),7(K4),a(K4),£(K4) are bounded sets too,

so (A1’) implies 3 Cx = const > 0:
IF (2,3, 9o(D. 7). p1(a). @3(x), 0)] < a(z,y) + bCk € LE, (B3) (cL.(AL")).

We choose the element fy € X:

0, a.e. on R'i
f()(l',y) = 2 2
@(I,y), (Iyy) € R \R-I-

Then
a.e. 2
— { F(zyp0(8,7),01(0). 2(w).0) 2 on RY

p(z,y), (z,y) € R2\RY.
and consequently
T (erixy < NT(SF) = T(f)llLexy + T (FollLe(x) <
< ( max WD) (T(f), T(fo)) + IT(f)llLr(x) <

T (zy)EK
< (K, \p)piry(f> fo) + 1T (folllLe (k) ¥V f € X.
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But pjx)(f, fo) < Wfllzegrynmz) = T(f) € X,
Besides the estimates pjik)(fo.T(fo)) < pi(fo,T(fo)), pjuk)(f.9) <

K
pg(f,g) for any integer | > 0, V f,g € X (cf. (A5)) show that conditions 3 of
theorem 1 and 4 of theorem 2 are fulfilled. Using once again (A5), we check that
condition 2 of theorem 1 is also fulfilled, which completes the proof of theorem 4.
Acknowledgement. The author thanks Prof. V. Angelov for his very useful

suggestions.
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