ON THE GOURSAT PROBLEM FOR HYPERBOLIC FUNCTIONAL-DIFFERENTIAL EQUATIONS

LUBOMIR P. GEORGIEV

It is known that in many problems of nonlinear fields theory, plasma physics and etc. (cf. [1]) arise hyperbolic functional-differential equations with so-called 'distributed' deviations (cf. [2]). The main purpose of the present paper is to formulate conditions under which there exist solutions of the Goursat problem, characteristic of functional-differential equations with 'concentrated' deviations (particular case of distributed deviations), using the fixed point theorems, proved by Angelov [3].

Typical in this respect is the following simple example, where the discontinuity of the initial function generates the discontinuity of the solution:

$$\begin{cases} u_{xy}(x,y) = k(x,y)u_{xy}(x-1,y-1), & (x,y) \in \mathbb{R}^2_+ = \{(x,y) : x > 0, y > 0\} \\ u(x,y) = \varphi(x,y), & (x,y) \in A_0 \cup B_0, \end{cases}$$
(1)

where

$$u_{xy} = \frac{\partial^{2} u}{\partial x \partial y}; \quad A_{0} = \{(x, y) : x \ge -1, -1 \le y \le 0\},$$

$$B_{0} = \{(x, y) : -1 \le x \le 0, y \ge -1\};$$

$$\varphi(x, y) = \begin{cases} 1, & (x, y) \in \mathbb{R}_{+}^{x} \cup \mathbb{R}_{+}^{y}, \\ \mathbb{R}_{+}^{x} = \{(x, y) : x \ge 0, y = 0\}, \mathbb{R}_{+}^{y} = \{(x, y) : x = 0, y \ge 0\} \\ 0, & (x, y) \in A_{0} \cup B_{0} \setminus (\mathbb{R}_{+}^{x} \cup \mathbb{R}_{+}^{y}) \end{cases}$$

$$k(x, y) = 1 - \frac{1}{1+n}, (x, y) \in A_{n} \cup B_{n} \ (n = 1, 2, ...),$$

$$A_{n} = \{(x, y) : x \ge n - 1, n - 1 \le y \le n\}, B_{n} = \{(x, y) : n - 1 \le x \le n, y \ge n - 1\}.$$

Integrating the above equation we have

$$u(x,y) - k(x,y)u(x-1,y-1) = C_1(x) + C_2(y).$$

Then the conditions

$$u(0,0) - k(0,0)u(-1,-1) = C_1(0) + C_2(0),$$

$$u(x,0) - k(x,0)u(x-1,-1) = C_1(x) + C_2(0),$$

$$u(0,y) - k(0,y)u(-1,y-1) = C_1(0) + C_2(0),$$

imply $C_1(x) + C_2(y) = 1$, so that we obtain the problem

$$u(x,y) = \left\{egin{array}{ll} k(x,y)u(x-1,y-1)+1, & (x,y) \in \mathbb{R}^2_+ \ arphi(x,y), & (x,y) \in A_0 \cup B_0 \end{array}
ight.$$

It is quite obvious that when $(x, y) \in A_n \cup B_n$ then $(x-1, y-1) \in A_{n-1} \cup B_{n-1}$ and we can construct immediately the following solution

$$u(x,y) = \begin{cases} 0, & (x,y) \in (A_0 \cup B_0) \setminus (\mathbb{R}_+^x \cup \mathbb{R}_+^y) \\ 1, & (x,y) \in (A_1 \cup B_1) \setminus (\mathbb{R}_+^{x+1} \cup \mathbb{R}_+^{y+1}) \\ (1 - \frac{1}{3}) + 1, & (x,y) \in (A_2 \cup B_2) \setminus (\mathbb{R}_+^{x+2} \cup \mathbb{R}_+^{y+2}) \\ \dots \\ (1 - \frac{1}{3}) (1 - \frac{1}{4}) \dots (1 - \frac{1}{n+1}) + (1 - \frac{1}{4}) (1 - \frac{1}{5}) \dots (1 - \frac{1}{n+1}) + \dots + \\ + (1 - \frac{1}{n+1}) + 1 = \frac{n(n+3)}{2(n+1)}, & (x,y) \in (A_n \cup B_n) \setminus (\mathbb{R}_+^{x+n} \cup \mathbb{R}_+^{y+n}) \\ \dots \end{cases}$$

where $\mathbb{R}^{x+n}_+ = \{(x,y) : x \geq n, y = n\}, \mathbb{R}^{y+n}_+ = \{(x,y) : x = n, y \geq n\}, n = 0, 1, 2, \dots$

The fixed point technique for operators in metric spaces has been very well developed (cf. [4]), but the above example shows that the hyperbolic functional-differential equations of neutral type (following the terminology introduced in [5]) possesses solutions with locally essentially bounded mixed derivative u_{xy} . (We note the known results [6]-[8], where only continuous solutions have been obtained with restrictions on the deviations of retarded type.) Moreover the example shows:

- 1. the Goursat problem allows L_{loc}^{∞} -solutions so that it cannot formulate as an operator equation in Banach or metric space.
- 2. the operator defined by the right-hand side (even in the linear case) will be not a global contraction because of $essup\{k(x,y): x \geq 0, y \geq 0\} = 1$.

That is why, we shall use the fixed point theorems from [3].

Let X be a Hausdorff sequentially complete uniform space with uniformity defined by a saturated family of pseudometrics $\{\rho_{\alpha}(x,y)\}_{\alpha\in\mathcal{A}}$, \mathcal{A} being an index set.

Let $\Phi = \{\Phi_{\alpha}(t) : \alpha \in \mathcal{A}\}$ be a family of functions $\Phi_{\alpha}(t) : [0, \infty) \to [0, \infty)$ with the properties

- 1) $\Phi_{\alpha}(t)$ is monotone non-decreasing and continuous from the right on $[0,\infty)$;
- 2) $\Phi_{\alpha}(t) < t, \forall t > 0$,

and $j: \mathcal{A} \to \mathcal{A}$ is a mapping on the index set \mathcal{A} into itself, where $j^0(\alpha) = \alpha$, $j^k(\alpha) = j(j^{k-1}(\alpha)), k \in \mathbb{N}$.

Definition. The map $T: Y \to Y$ is said to be Φ -contraction on Y if

$$\rho_{\alpha}(Tx, Ty) \leq \Phi_{\alpha}(\rho_{i(\alpha)}(x, y))$$

for every $x, y \in Y$ and $\alpha \in A$, $Y \subset X$.

Theorem 1. (theorem 2 from [3]) Let us suppose

- 1. the operator $T: X \to X$ is a Φ -contraction;
- 2. for each $\alpha \in A$ there exists a Φ -function $\overline{\Phi}_{\alpha}(t)$ such that

$$\sup \{\Phi_{j^k(\alpha)}(t): \ k=0,1,2,\ldots\} \leq \overline{\Phi}_{\alpha}(t)$$

and $\overline{\Phi}_{\alpha}(t)/t$ is non-decreasing;

3. there exists an element $x_0 \in X$ such that $\rho_{j^k(\alpha)}(x_0, Tx_0) \leq p(\alpha) < \infty$ (k = 0, 1, 2, ...).

Then T has at least one fixed point in X.

Theorem 2. (theorem 3 from [3]) If, in addition, we suppose that

4. the sequence $\{\rho_{j^k(\alpha)}(x,y)\}_{k=0}^{\infty}$ is bounded for each $\alpha \in \mathcal{A}$ and $x,y \in X$, i.e.

$$\rho_{j^k(\alpha)}(x,y) \leq q(x,y,\alpha) < \infty \quad (k=0,1,2,\ldots).$$

Then the fixed point of T is unique.

Consider the general Goursat problem for hyperbolic functional-differential equation:

$$u_{xy}(x,y) = F(x,y,u(\Delta,\tau),u_{x}(\alpha,\beta),u_{y}(\theta,\kappa),u_{xy}(\mu,\nu)), (x,y) \in \mathbb{R}^{2}_{+}$$

$$u(x,y) = \psi(x,y), u_{x}(x,y) = \psi_{x}(x,y), u_{y}(x,y) = \psi_{y}(x,y),$$

$$u_{xy}(x,y) = \psi_{xy}(x,y), (x,y) \in \mathbb{R}^{2} \setminus \mathbb{R}^{2}_{+},$$
(2)

where $F(x, y, z_1, z_2, z_3, z_4)$, $\Delta = \Delta(x, y)$, $\tau = \tau(x, y)$, $\alpha = \alpha(x, y)$, $\beta = \beta(x, y)$, $\theta = \theta(x, y)$, $\kappa = \kappa(x, y)$, $\mu = \mu(x, y)$, $\nu = \nu(x, y)$ and $\psi(x, y)$ are given functions.

We set

$$v(x, y) = u_{xy}(x, y)$$
, when $(x, y) \in \mathbb{R}^2_+$,
 $\varphi(x, y) = \psi_{xy}(x, y)$, when $(x, y) \in \mathbb{R}^2 \setminus \mathbb{R}^2_+$

and after standard calculations, we obtain

$$u(x,y) = arphi_0(x,y) + \int_0^x \int_0^y v(\xi,\eta) d\eta d\xi,$$
 $u_x(x,y) = arphi_1(x) + \int_0^y v(x,\eta) d\eta,$ $u_y(x,y) = arphi_2(y) + \int_0^x v(\xi,y) d\xi,$

where

$$\varphi_0(x, y) = \psi(0, y) + \psi(x, 0) - \psi(0, 0),$$

$$\varphi_1(x) = \psi_x(x, 0), \quad \varphi_2(y) = \psi_y(0, y),$$

so that the problem (2) corresponds the following problem

$$v(x,y) = \begin{cases} F(x,y,\overline{\varphi}_0 + \int_0^{\Delta} \int_0^{\tau} v(\xi,\eta) d\eta d\xi, \overline{\varphi}_1 + \int_0^{\beta} v(\alpha,\eta) d\eta, \overline{\varphi}_2 + \\ + \int_0^{\theta} v(\xi,\kappa) d\xi, v(\mu,\nu), (x,y) \in \mathbb{R}^2_+ \\ \varphi(x,y), (x,y) \in \mathbb{R}^2 \setminus \mathbb{R}^2_+, \end{cases}$$
(3)

where $\overline{\varphi}_0 = \varphi_0(\Delta(x,y), \tau(x,y)), \overline{\varphi}_1 = \varphi_1(\alpha(x,y)), \overline{\varphi}_2 = \varphi_2(\kappa(x,y)).$

Definition. The function u(x,y) is said to be a solution (in generalized sense) of problem (2) if the function v(x,y) is a solution of problem (3).

In what follows, we look for a solution of (3), belonging to L^{∞}_{loc}

We say that the function $G: \mathbb{R}^2 \to \mathbb{R}^2$ has the property (M) if inverse image of every set with null measure is measurable.

Let us suppose:

(A1) ψ is absolutely continuous;

 $\psi(x,0), \psi(0,y), \psi_x(x,0), \psi_y(0,y)$ are continuous and $\varphi = \psi_{xy} \in L^{\infty}_{loc}(\mathbb{R}^2 \setminus \mathbb{R}^2_+)$.

(A2) The functions $\Delta, \tau, \alpha, \beta, \theta, \kappa, \mu, \nu : \mathbb{R}^2_+ \to \mathbb{R}$ are measurable, have the property (M) (without Δ and τ) and map bounded sets into bounded sets.

 $(\mathrm{A3}) \ \forall \ (x,y) \in \mathbb{R}^2_+ \ \text{for which} \ (\Delta(x,y),\tau(x,y)) \in \mathbb{R}^2_+ \ (\text{or} \ (\alpha(x,y),\beta(x,y)) \in \mathbb{R}^2_+, \ \text{or} \ (\theta(x,y),\kappa(x,y)) \in \mathbb{R}^2_+ \ \text{is fulfilled} \ \Delta(x,y) + \tau(x,y) \leq x + y \ (\text{respectively} \ \alpha(x,y) + \beta(x,y) \leq x + y, \ \text{or} \ \theta(x,y) + \kappa(x,y) \leq x + y);$

 $\exists \delta_0 > 0 \text{ such that } \forall \ (x,y) \in \mathbb{R}^2_+: \ (\mu(x,y),\nu(x,y)) \in \mathbb{R}^2_+ \text{ is fulfilled } \mu(x,y) + \nu(x,y) \leq x+y-\delta_0.$

(A4) The function $F(x, y, z_1, z_2, z_3, z_4)$: $\mathbb{R}^2_+ \times \mathbb{R}^4 \to \mathbb{R}$ satisfies the Caratheodory condition (measurable in x and y and continuous in z_1, \ldots, z_4) and the conditions:

$$\begin{aligned} |F(x,y,z_1,z_2,z_3,z_4)| &\leq \Omega_1(x,y,|z_1|,|z_2|,|z_3|,|z_4|) \\ |F(x,y,z_1,z_2,z_3,z_4) - F(x,y,\overline{z}_1,\overline{z}_2,\overline{z}_3,\overline{z}_4)| &\leq \\ &\leq \Omega_2(x,y,|z_1-\overline{z}_1|,|z_2-\overline{z}_2|,|z_3-\overline{z}_3|,|z_4-\overline{z}_4|), \end{aligned}$$

where the functions $\Omega_{1,2}(x,y,t_1,\ldots,t_4):\mathbb{R}^2_+\times\overline{\mathbb{R}}^4_+\to [0,\infty)$ $(\overline{\mathbb{R}}^n_+=[0,\infty)\times\cdots\times[0,\infty)$ - n times) satisfy the Caratheodory condition, $\Omega_1(\cdot,\cdot,t_1,\ldots,t_4)\in L^\infty_{loc}(\mathbb{R}^2_+)$, $\Omega_2(x,y,t_1,\ldots,t_4)$ is non-decreasing in t_1,\ldots,t_4 and

$$\exists \ \omega \in L^{\infty}(\mathbb{R}^{2}_{+}) \text{ such that } \forall \ t \geq 0 \ \Omega_{2}(\cdot, \cdot, t, t, t, t) \leq t\omega(\cdot, \cdot) \text{ a.e. in } \mathbb{R}^{2}_{+}.$$

Let \mathcal{A} be the set of all compact sets $K \subset \mathbb{R}^2$. Denote by $K_+ = K \cap \mathbb{R}^2_+$, we define the map $j: \mathcal{A} \to \mathcal{A}$:

$$j(K) = \begin{cases} K, & K_{+} = \emptyset \\ K_{\Delta\tau} \cup K_{\alpha\beta} \cup K_{\theta\kappa} \cup K_{\mu\nu}, & K_{+} \neq \emptyset \end{cases}$$

where $K_{\Delta\tau} = K_{\Delta} \times K_{\tau}$, $K_{\alpha\beta} = K_{\alpha} \times K_{\beta}$, $K_{\theta\kappa} = K_{\theta} \times K_{\kappa}$,

$$K_{\mu\nu} = \overline{\{(\mu(x,y),\nu(x,y)): (x,y) \in K\}}, \quad (\overline{A} \stackrel{def}{=} clA),$$

$$K_{\Delta} = \begin{cases} [\Delta_{inf}, \Delta_{sup}], & \Delta_{inf} < 0 < \Delta_{sup} \\ [0, \Delta_{sup}], & \Delta_{inf} \ge 0 \\ [\Delta_{inf}, 0], & \Delta_{sup} \le 0 \end{cases}$$

$$K_{\tau} = \begin{cases} [\tau_{inf}, \tau_{sup}], & \tau_{inf} < 0 < \tau_{sup} \\ [0, \tau_{sup}], & \tau_{inf} \ge 0 \\ [\tau_{inf}, 0], & \tau_{sup} \le 0 \end{cases}$$

$$K_{\beta} = \begin{cases} [\beta_{inf}, \beta_{sup}], & \beta_{inf} < 0 < \beta_{sup} \\ [0, \beta_{sup}], & \beta_{inf} \ge 0 \\ [\beta_{inf}, 0], & \beta_{sup} \le 0 \end{cases}$$

$$K_{\theta} = \begin{cases} [\theta_{inf}, \theta_{sup}], & \theta_{inf} < 0 < \theta_{sup} \\ [0, \theta_{sup}], & \theta_{inf} \ge 0 \\ [\theta_{inf}, 0], & \theta_{sup} \le 0 \end{cases}$$

$$K_{\alpha} = \overline{\alpha(K)}, & K_{\kappa} = \overline{\kappa(K)}$$

$$(\Delta_{inf} = \inf \{ \Delta(x, y) : (x, y) \in K_+ \}, \dots, \theta_{sup} = \sup \{ \theta(x, y) : (x, y) \in K_+ \}).$$

It is obvious that j(K) is compact set and $j^{l}(K)$ can be defined inductively: $j^{l}(K) = j(j^{l-1}(K))$ for all $l \in \mathbb{N}$.

Now we assume:

(A5)
$$\forall K \in \mathcal{A} \exists \widehat{K} \in \mathcal{A} : j^l(K) \subset \widehat{K} \forall l = 0, 1, 2, \dots$$

We prove the following existence-uniqueness result:

Theorem 3. If conditions (A1)-(A5) hold true, then there exists a unique solution $v(x,y) \in L^{\infty}_{loc}(\mathbb{R}^2)$ of problem (3).

Proof. Let X be the uniform sequentially complete Hausdorff space consisting of all functions, belonging to $L^{\infty}_{loc}(\mathbb{R}^2)$, which equal $\varphi(x,y)$ for a.e. $(x,y) \in \mathbb{R}^2 \backslash \mathbb{R}^2_+$, with a saturated family $P = {\rho_K : K \in \mathcal{A}}$ of pseudometrics

$$\rho_K(f,g) = esssup\{e^{-\lambda(|x|+|y|)}|f(x,y) - g(x,y)|: (x,y) \in K\},\$$

where K runs over all compact subsets of \mathbb{R}^2 (with some $\lambda > 0$).

The operator $T: X \to X$ is defined by the formula:

$$T(f)(x,y) = \left\{ \begin{array}{l} F(x,y,\overline{\varphi}_0 + \int_0^\Delta \int_0^\tau f(\xi,\eta) d\eta d\xi, \overline{\varphi}_1 + \int_0^\beta f(\alpha,\eta) d\eta, \overline{\varphi}_2 + \\ + \int_0^\theta f(\xi,\kappa) d\xi, f(\mu,\nu)), (x,y) \in \mathbb{R}_+^2 \\ \varphi(x,y), (x,y) \in \mathbb{R}^2 \setminus \mathbb{R}_+^2, \end{array} \right.$$

The measurability of T(f)(x, y) follows from the fact that $\alpha, \beta, \theta, \kappa, \mu, \nu$ have the property (M).

 $T(f) \in L^{\infty}_{loc}(\mathbb{R}^2)$ because of conditions A1, A4. Consequently $T(f) \in X$.

Let $K \subset \mathbb{R}^2$ be any fixed compact set. Of $K_+ = \emptyset$ then T(f) - T(g) = 0 for all $f, g \in X$ a.e. in K. Let $K_+ \neq \emptyset$. For a.e. $(x, y) \in K \cap (\mathbb{R}^2 \setminus \mathbb{R}^2_+)$ we have T(f) - T(g) = 0.

For a.e. $(x, y) \in K_+$ we obtain (by means of (A4)):

$$|T(f)(x,y) - T(g)(x,y)| \le$$

$$\le \Omega_2(x,y,|\int_0^{\Delta} \int_0^{\tau} (f(\xi,\eta) - g(\xi,\eta))d\eta d\xi|,|\int_0^{\beta} (f(\alpha,\eta) - g(\alpha,\eta))d\eta|,$$

$$|\int_0^{\theta} (f(\xi,\kappa) - g(\xi,\kappa))d\xi|,|f(\mu,\nu) - g(\mu,\nu)|)$$

If $(\Delta(x,y), \tau(x,y)) \notin \mathbb{R}^2_+$ then

$$\int_0^{\Delta} \int_0^{\tau} (f(\xi, \eta) - g(\xi, \eta)) d\eta d\xi = 0$$

and respectively if $(\alpha(x,y),\beta(x,y)) \notin \mathbb{R}^2_+$ then

$$\int_0^\beta (f(\alpha,\eta) - g(\alpha,\eta))d\eta = 0,$$

if $(\theta(x,y),\kappa(x,y)) \notin \mathbb{R}^2_+$ then

$$\int_0^\theta (f(\xi,\kappa)-g(\xi,\kappa))d\xi=0,$$

if $(\mu(x,y),\nu(x,y)) \notin \mathbb{R}^2_+$ then $f(\mu,\nu) - g(\mu,\nu) = 0$.

For positive values of $\Delta(x,y)$, $\tau(x,y)$; $\alpha(x,y)$, $\beta(x,y)$; $\theta(x,y)$, $\kappa(x,y)$; $\mu(x,y)$, $\nu(x,y)$ we obtain as follows:

$$|\int_0^\Delta \int_0^\tau (f(\xi,\eta)-g(\xi,\eta))d\eta d\xi| \leq \int_0^\Delta \int_0^\tau |f(\xi,\eta)-g(\xi,\eta)|d\eta d\xi \leq$$

$$\leq esssup\{e^{-\lambda(\xi+\eta)}|f(\xi,\eta)-g(\xi,\eta)|: 0 \leq \xi \leq \Delta_{sup}, 0 \leq \eta \leq \tau_{sup}\} \int_{0}^{\Delta} \int_{0}^{\tau} e^{\lambda(\xi+\eta)} d\eta d\xi = \\ = \lambda^{-2} \rho_{K_{\Delta \tau}}(f,g)(e^{\lambda\Delta}-1)(e^{\lambda\tau}-1) \leq \lambda^{-2} e^{\lambda(\Delta+\tau)} \rho_{K_{\Delta \tau}} \leq \lambda^{-2} e^{\lambda(x+y)} \rho_{K_{\Delta \tau}}(f,g)(cf.(A3)). \\ |\int_{0}^{\beta} (f(\alpha,\eta)-g(\alpha,\eta)) d\eta| \leq \int_{0}^{\beta} |f(\alpha,\eta)-g(\alpha,\eta)| d\eta \leq \\ \leq esssup\{e^{-\lambda(\alpha+\eta)}|f(\alpha,\eta)-g(\alpha,\eta)|: 0 \leq \eta \leq \beta_{sup}\} e^{\lambda\alpha} \int_{0}^{\beta} e^{\lambda\eta} d\eta \leq \\ \leq \lambda^{-1} \rho_{K_{\alpha\beta}}(f,g) e^{\lambda\alpha}(e^{\lambda\beta}-1) \leq \lambda^{-1} e^{\lambda(\alpha+\beta)} \rho_{K_{\alpha\beta}}(f,g) \leq \lambda^{-1} e^{\lambda(x+y)} \rho_{K_{\alpha\beta}}(f,g) (cf.(A3)).$$

In the same way we prove (by means of (A3)) that

$$\begin{split} |\int_0^\theta (f(\xi,\kappa)-g(\xi,\kappa))d\xi| &\leq \lambda^{-1}e^{\lambda(x+y)}\rho_{K_{\theta\kappa}}(f,g).\\ |f(\mu,\nu)-g(\mu,\nu)| &\leq e^{\lambda(\mu+\nu)}esssup\{e^{-\lambda(p+q)}|f(p,q)-g(p,q)|:(p,q)\leq K_{\mu\nu}\} \leq \\ &\leq e^{\lambda(x+y-\delta_0)}\rho_{K_{\mu\nu}}(f,g) \leq \lambda^{-\delta_0}e^{\lambda(x+y)}\rho_{K_{\mu\nu}}(f,g) \text{ (cf.(A3))}. \end{split}$$

Let $\lambda > 1$. Chosing γ so that

$$\lambda^{-\gamma} = \max\{\lambda^{-1}, \lambda^{-\delta_0}\} = \begin{cases} \lambda^{-1}, & \delta_0 \ge 1\\ \lambda^{-\delta_0}, & 0 < \delta_0 \le 1 \end{cases}$$

we obtain (since $\Omega_2(x, y, t_1, \dots, t_4)$ is non-decreasing in t_1, \dots, t_4)

$$|T(f)(x,y) - T(g)(x,y)| \le$$

$$\le \Omega_2(x,y,\lambda^{-\gamma}e^{\lambda(x+y)}\rho_{j(K)}(f,g),\lambda^{-\gamma}e^{\lambda(x+y)}\rho_{j(K)}(f,g),$$

$$\lambda^{-\gamma}e^{\lambda(x+y)}\rho_{j(K)}(f,g),\lambda^{-\gamma}e^{\lambda(x+y)}\rho_{j(K)}(f,g)) \le$$

$$\le \lambda^{-\gamma}e^{\lambda(x+y)}\rho_{j(K)}(f,g)\omega(x,y) \quad (cf.(A4)).$$

Define (for $t \geq 0$)

$$\Phi_K(t) = \begin{cases} 0, & \text{if } K_+ = \emptyset \\ t\lambda^{-\gamma} ||\omega||_{L^{\infty}(K_+)}, & \text{if } K_+ \neq \emptyset \end{cases}$$

We can find and fix λ so that $\lambda^{\gamma} > ||\omega||_{L^{\infty}(\mathbb{R}^{2}_{+})}$. Consequently $\Phi_{K}(t) < t$ $\forall t > 0, \ \forall \ K \in \mathcal{A}$ and $\Phi_{K}(t)$ is continuous non-decreasing in $[0, \infty)$. On the other hand

$$\rho_K(T(f), T(g)) = \rho_{\overline{K}_+}(T(f), T(g)) \le \Phi_k(\rho_{j(K)}(f, g)),$$

i.e. $T: X \to X$ is a Φ -contraction.

 $\forall \ K \in \mathcal{A} \text{ we set } \overline{\Phi}_{K} = \Phi_{\widehat{K}} \text{ (recall that (A5) assures an existence of such a } \\ \widehat{K} \text{ that } j^{l}(K) \subset \widehat{K} \text{ } (l=0,1,2,\ldots)) \text{ and so } \sup\{\Phi_{j^{l}(K)}(t): \ l=0,1,2,\ldots\} \leq \overline{\Phi}_{K}(t), \\ \overline{\Phi}_{K}(t) = const \implies \text{non-decreasing.}$

Hence condition 1, 2 of theorem 1 is fulfilled.

We choose the element $f_0 \in X$:

$$f_0(x,y) = \left\{egin{array}{ll} 0, & ext{a.e. on } \mathbb{R}^2_+ \ arphi(x,y), & (x,y) \in \mathbb{R}^2 \setminus \mathbb{R}^2_+. \end{array}
ight.$$

Then for any integer l > 0 we have

$$\rho_{j^{l}(K)}(f_{0}, T(f_{0})) \leq \rho_{\widehat{K}}(f_{0}, T(f_{0})) = \rho_{\overline{\widehat{K}_{+}}}(f_{0}, T(f_{0})) =$$

$$= esssup\{e^{-\lambda(x+y)}|F(x, y, \overline{\varphi}_{0}, \overline{\varphi}_{1}, \overline{\varphi}_{2}, 0)| : (x, y) \in \overline{\widehat{K}_{+}}\} < \infty$$

(i.e. condition 3 of theorem 1 is fulfilled).

Besides $\rho_{j^{l}(K)}(f,g) \leq \rho_{\widehat{K}_{+}}(f,g)$ for abitrary $f,g \in X$, i.e. condition 4 of theorem 2 is also fulfilled.

All conditions of theorems 1 and 2 are satisfied. Therefore the problem (3) has a unique solution $v \in L^{\infty}_{loc}(\mathbb{R}^2)$.

We are going to formulate conditions for the existence and uniqueness of a solution of (3) belonging to $L^p_{loc}(\mathbb{R}^2)$ for some $p \in (1, \infty)$:

(A1') The initial function ψ is absolutely continuous;

$$\psi(x,0), \psi(0,y), \psi_x(x,0), \psi_y(0,y)$$
 are continuous and $\varphi = \psi_{xy} \in L^p_{loc}(\mathbb{R}^2 \setminus \mathbb{R}^2_+)$.

(A4') The function $F(x, y, z_1, z_2, z_3, z_4)$: $\mathbb{R}^2_+ \times \mathbb{R}^4 \to \mathbb{R}$ satisfies the Caratheodory condition (measurable in x and y and continuous in z_1, \ldots, z_4) and the conditions:

$$\begin{split} |F(x,y,z_1,z_2,z_3,z_4)| &\leq a(x,y) + b(|z_1| + |z_2| + |z_3| + |z_4|) \\ |F(x,y,z_1,z_2,z_3,z_4) - F(x,y,\overline{z}_1,\overline{z}_2,\overline{z}_3,\overline{z}_4)| &\leq \\ &\leq \omega_1(x,y)|z_1 - \overline{z}_1| + \omega_2|z_2 - \overline{z}_2| + \omega_3|z_3 - \overline{z}_3| + \omega_4|z_4 - \overline{z}_4|, \\ \text{where } a(\cdot,\cdot) &\in L^p_{loc}(\mathbb{R}^2_+), \ b = const \geq 0, \ \omega_1(\cdot,\cdot) \in L^p(\mathbb{R}^2_+), \ \omega_{2,3}(\cdot) \in L^p(\mathbb{R}^1_+), \\ \omega_4 = const \geq 0 \end{split}$$

(A6) The transformations

$$\left| egin{array}{c|c} u=lpha(x,y) & u=x & u=\mu(x,y) \ v=y & v=\kappa(x,y) & v=
otag\\ \end{array}
ight.$$

are admissible, sufficiently smooth and $\alpha_u^*, \kappa_v^*, \frac{D(\mu^*, \nu^*)}{D(u, v)} \in L^{\infty}(\mathbb{R}^2_+)$, where

$$(\alpha^*(\alpha(x,y),y),y) = (x,y), \quad (x,\kappa^*(x,\kappa(x,y))) = (x,y),$$

$$(\mu^*(\mu(x,y),\nu(x,y)),\nu^*(\mu(x,y),\nu(x,y))) = (x,y).$$

Theorem 4. If conditions (A1'), (A2), (A3), (A4'), (A5), (A6) hold true, then there exists a unique solution $v(x,y) \in L^p_{loc}(\mathbb{R}^2)$ of problem (3).

Proof. Let X be the space consisting of all functions, belonging to $L^p_{loc}(\mathbb{R}^2)$, which equal $\varphi(x,y)$ a.e. $(x,y) \in \mathbb{R}^2 \setminus \mathbb{R}^2_+$, with a saturated family P of pseudometrics

$$\rho_K(f,g) = \left(\int_K \int e^{-\lambda(|x|+|y|)} |f(x,y) - g(x,y)|^p dx dy\right)^{\frac{1}{p}} \quad (K \in \mathcal{A}),$$

where A is the family of all compact sets in \mathbb{R}^2 , $\lambda > 0$.

The map $j: \mathcal{A} \to \mathcal{A}$ and the operator $T: X \to X$ are defined as in the proof of theorem 3.

For any $K\in\mathcal{A},\ f,g\in X$ we have T(f)(x,y)-T(g)(x,y)=0, for a.e. $(x,y)\in K\setminus K_+;$

If $(x,y) \in K_+ \neq \emptyset$, then

$$|T(f)(x,y) - T(g)(x,y)|^{p} \leq$$

$$\leq \left(\omega_{1}(x,y)|\int_{0}^{\Delta} \int_{0}^{\tau} (f(\xi,\eta) - g(\xi,\eta))d\eta d\xi| + \omega_{2}(y)|\int_{0}^{\beta} (f(\alpha,\eta) - g(\alpha,\eta))d\eta| +$$

$$+\omega_{3}(x)|\int_{0}^{\theta} (f(\xi,\kappa) - g(\xi,\kappa))d\xi| + \omega_{4}(f(\mu,\nu) - g(\mu,\nu)|\right)^{p} \leq$$

$$\leq 4^{p-1} \left(\omega_{1}^{p}(x,y)|\int_{0}^{\Delta} \int_{0}^{\tau} (f(\xi,\eta) - g(\xi,\eta))d\eta d\xi|^{p} + \omega_{2}^{p}(y)|\int_{0}^{\beta} (f(\alpha,\eta) - g(\alpha,\eta))d\eta|^{p} +$$

$$+\omega_{3}^{p}(x)|\int_{0}^{\theta} (f(\xi,\kappa) - g(\xi,\kappa))d\xi|^{p} + \omega_{4}^{p}|f(\mu,\nu) - g(\mu,\nu)|^{p}\right).$$
If $(\Delta,\tau), (\alpha,\beta), (\theta,\kappa), (\mu,\nu) \notin \mathbb{P}_{+}^{2}$, then $T(f)(x,y) - T(g)(x,y) = 0$.

If
$$(\Delta, \tau) \in \mathbb{R}^2_+$$
, then (with $\frac{1}{p} + \frac{1}{q} = 1$)
$$\left| \int_0^\Delta \int_0^\tau (f(\xi, \eta) - g(\xi, \eta)) d\eta d\xi \right|^p \le$$

$$\le \left(\int_0^\Delta \int_0^\tau |f(\xi, \eta) - g(\xi, \eta)| d\eta d\xi \right)^p =$$

$$= \left(\int_0^\Delta \int_0^\tau e^{\frac{\lambda}{p}(\xi + \eta - \xi - \eta)} |f(\xi, \eta) - g(\xi, \eta)| d\eta d\xi \right)^p \le$$

$$\le \left(\int_0^\Delta \int_0^\tau e^{\frac{q\lambda}{p}(\xi + \eta)} d\eta d\xi \right)^{\frac{p}{q}} \int_0^\Delta \int_0^\tau e^{-\lambda(\xi + \eta)} |f(\xi, \eta) - g(\xi, \eta)|^p d\eta d\xi \le$$

$$\le \left(\frac{p-1}{\lambda} \right)^{2(p-1)} e^{\lambda(\Delta + \tau)} \rho_{K_{\Delta \tau}}^p (f, g) \le$$

$$\le \left(\frac{p-1}{\lambda} \right)^{2(p-1)} e^{\lambda(x+y)} \rho_{K_{\Delta \tau}}^p (f, g) \quad (\text{cf.}(A3)).$$

If $(\alpha, \beta) \in \mathbb{R}^2_+$, then

$$\begin{split} \left| \int_0^\beta (f(\alpha,\eta) - g(\alpha,\eta)) d\eta \right|^p & \leq \\ & \leq \left(\int_0^\beta |f(\alpha,\eta) - g(\alpha,\eta)| d\eta \right)^p = \left(\int_0^\beta e^{\frac{\lambda}{p}(\alpha + \eta - \alpha - \eta)} |f(\alpha,\eta) - g(\alpha,\eta)| d\eta \right)^p \leq \\ & \leq \left(\int_0^\beta e^{\frac{g\lambda}{p}(\alpha + \eta)} d\eta \right)^{\frac{p}{q}} \int_0^\beta e^{-\lambda(\alpha + \eta)} |f(\alpha,\eta) - g(\alpha,\eta)|^p d\eta \leq \\ & \leq \left(\frac{p-1}{\lambda} \right)^{p-1} e^{\lambda(\alpha + \beta)} \int_0^\beta e^{-\lambda(\alpha + \eta)} |f(\alpha,\eta) - g(\alpha,\eta)|^p d\eta \leq \\ & \leq \left(\frac{p-1}{\lambda} \right)^{p-1} e^{\lambda(x+y)} \int_0^\beta e^{-\lambda(\alpha + \eta)} |f(\alpha,\eta) - g(\alpha,\eta)|^p d\eta \quad (\text{cf.}(A3)). \end{split}$$

In the same way (by means of (A3)) we obtain: if $(\theta, \kappa) \in \mathbb{R}^2_+$, then

$$\left| \int_0^{\theta} (f(\xi,\kappa) - g(\xi,\kappa)) d\xi \right|^p \leq \left(\frac{p-1}{\lambda} \right)^{p-1} e^{\lambda(x+y)} \int_0^{\theta} e^{-\lambda(\xi+\kappa)} |f(\xi,\kappa) - g(\xi,\kappa)|^p d\xi.$$

Hence

$$\int_K \int e^{-\lambda(|x|+|y|)} |T(f)(x,y) - T(g)(x,y)|^p dx dy \le$$

$$\leq 4^{p-1} \left(\left(\frac{p-1}{\lambda} \right)^{2(p-1)} \rho_{K_{\Delta r}}^{p}(f,g) \int_{K_{+}}^{s} \int \omega_{1}^{p}(x,y) dx dy + \right.$$

$$+ \left(\frac{p-1}{\lambda} \right)^{p-1} \int_{K_{+}}^{s} \int \omega_{2}^{p}(y) \int_{0}^{\beta} e^{-\lambda(\alpha+\eta)} |f(\alpha,\eta) - g(\alpha,\eta)|^{p} d\eta dx dy +$$

$$+ \left(\frac{p-1}{\lambda} \right)^{p-1} \int_{K_{+}}^{s} \int \omega_{3}^{p}(x) \int_{0}^{\theta} e^{-\lambda(\xi+\kappa)} |f(\xi,\kappa) - g(\xi,\kappa)|^{p} d\xi dx dy +$$

$$+ \omega_{4}^{p} e^{-\lambda\delta_{0}} \int_{K_{+}}^{s} \int e^{-\lambda(\mu+\nu)} |f(\mu,\nu) - g(\mu,\nu)|^{p} dx dy \right).$$
Denote $K_{y} = \{y : (x,y) \in K_{+}\}, K_{x} = \{x : (x,y) \in K_{+}\}.$ Consequently
$$\int_{K_{+}}^{s} \int \omega_{2}^{p}(y) \int_{0}^{\beta} e^{-\lambda(\alpha+\eta)} |f(\alpha,\eta) - g(\alpha,\eta)|^{p} d\eta dx dy \leq$$

$$\leq \int_{K_{y}}^{s} \omega_{2}^{p}(v) \int_{K_{\alpha}}^{s} \int_{K_{\beta}}^{s} |\alpha_{u}^{*}(u,v)| e^{-\lambda(u+\eta)} |f(u,\eta) - g(u,\eta)|^{p} d\eta du dv \leq$$

$$\leq ||\alpha_{u}^{*}||_{L^{\infty}(\mathbb{R}^{2}_{+})}^{s} \rho_{K_{\alpha\beta}}^{p}(f,g) \int_{K_{y}}^{s} \omega_{2}^{p}(v) dv$$

and similarly

$$\begin{split} \int_{K_+} \int \omega_3^p(x) \int_0^\theta e^{-\lambda(\xi+\kappa)} |f(\xi,\kappa) - g(\xi,\kappa)|^p d\xi dx dy &\leq \\ &\leq ||\kappa_v^\star||_{L^\infty(\mathbb{R}^2_+)} \rho_{K_{\theta\kappa}}^p(f,g) \int_{K_x} \omega_3^p(u) du. \\ &\int_{K_+} \int e^{-\lambda(\mu+\nu)} |f(\mu,\nu) - g(\mu,\nu)|^p dx dy &= \\ &= \int_{K_{\mu\nu}} \int \left| \frac{D(\mu^\star,\nu^\star)}{D(u,v)} \right| e^{-\lambda(u+v)} |f(u,v) - g(u,v)|^p du dv &\leq \\ &\leq \left\| \frac{D(\mu^\star,\nu^\star)}{D(u,v)} \right\|_{L^\infty(\mathbb{R}^2_+)} \rho_{K_{\mu\nu}}^p(f,g). \end{split}$$

Thus we receive the estimate

$$\rho_{K}^{p}(T(f), T(g)) \leq 4^{p-1} \rho_{j(K)}^{p}(f, g) \left(\left(\frac{p-1}{\lambda} \right)^{2p-2} ||\omega_{1}||_{L^{p}(K_{\Delta \tau})}^{p} + \left(\frac{p-1}{\lambda} \right)^{p-1} C_{\alpha} ||\omega_{2}||_{L^{p}(K_{y})}^{p} + \left(\frac{p-1}{\lambda} \right)^{p-1} C_{\kappa} ||\omega_{3}||_{L^{p}(K_{x})}^{p} + \lambda^{-\delta_{0}} C_{\mu\nu} \omega_{4}^{p} \right),$$
where $C_{\alpha} = ||\alpha_{u}^{*}||_{L^{\infty}(\mathbb{R}_{+}^{2})}, C_{\kappa} = ||\kappa_{v}^{*}||_{L^{\infty}(\mathbb{R}_{+}^{2})}, C_{\mu\nu} = \left\| \frac{D(\mu^{*}, \nu^{*})}{D(u, v)} \right\|_{L^{\infty}(\mathbb{R}_{+}^{2})}.$

Define

$$\Phi_K(t) =$$

$$\begin{cases} 0, & K_{+} = \emptyset \\ t \sqrt{\left(\frac{2p-2}{\lambda}\right)^{2p-2} \|\omega_{1}\|_{L^{p}(K_{\Delta\tau})}^{p} + \left(\frac{4p-4}{\lambda}\right)^{p-1} C_{\alpha} \|\omega_{2}\|_{L^{p}(K_{y})}^{p} + \left(\frac{4p-4}{\lambda}\right)^{p-1} C_{\kappa} \|\omega_{3}\|_{L^{p}(K_{x})}^{p} + \frac{(4\omega_{4})^{p}C_{\mu\nu}}{4\lambda^{\delta_{0}}}, \\ K_{+} \neq \emptyset \end{cases}$$

Then $\rho_K(T(f), T(g)) \leq \Phi_K(\rho_{j(K)}(f, g)) \ \forall \ K \in \mathcal{A}, \ \forall \ f, g \in X.$

We can find and fix $\lambda > 1$ so that

$$\left(\frac{2p-2}{\lambda}\right)^{2p-2} ||\omega_{1}||_{L^{p}(\mathbb{R}^{2}_{+})}^{p} + \left(\frac{4p-4}{\lambda}\right)^{p-1} C_{\alpha} ||\omega_{2}||_{L^{p}(\mathbb{R}^{1}_{+})}^{p} + \left(\frac{4p-4}{\lambda}\right)^{p-1} C_{\kappa} ||\omega_{3}||_{L^{p}(\mathbb{R}^{1}_{+})}^{p} + \frac{(4\omega_{4})^{p} C_{\mu\nu}}{4\lambda^{\delta_{0}}} < 1$$

for example

$$\begin{split} \lambda > \max\{2^q(p-1)||\omega_1||_{L^p(\mathbb{R}^1_+)}^{q/2}, 4^q C_\alpha^{q/p}(p-1)||\omega_2||_{L^p(\mathbb{R}^1_+)}^q, \\ 4^q C_\kappa^{q/p}(p-1)||\omega_3||_{L^p(\mathbb{R}^1_+)}^q, C_{\mu\nu}^{1/\delta_0}(4\omega_4)^{p/\delta_0}\}. \end{split}$$

Consequently $\Phi_K(t) < t$, $\Phi_K(t)/t = const$ and T is a Φ -contraction.

 K_+ is bounded set $\Rightarrow \Delta(K_+), \tau(K_+), \alpha(K_+), \kappa(K_+)$ are bounded sets too, so (A1') implies $\exists C_K = const \geq 0$:

$$|F(x, y, \varphi_0(\Delta, \tau), \varphi_1(\alpha), \varphi_2(\kappa), 0)| \le a(x, y) + bC_K \in L^p_{loc}(\mathbb{R}^2_+) \text{ (cf.(A1'))}.$$

We choose the element $f_0 \in X$:

$$f_0(x,y) = \left\{egin{array}{ll} 0, & ext{a.e. on } \mathbb{R}^2_+ \ & \ arphi(x,y), & (x,y) \in \mathbb{R}^2 \setminus \mathbb{R}^2_+. \end{array}
ight.$$

Then

$$T(f_0) = \begin{cases} F(x, y, \varphi_0(\Delta, \tau), \varphi_1(\alpha), \varphi_2(\kappa), 0), \text{ a.e. on } \mathbb{R}^2_+ \\ \varphi(x, y), (x, y) \in \mathbb{R}^2 \setminus \mathbb{R}^2_+. \end{cases} \Rightarrow T(f_0) \in X$$

and consequently

$$||T(f)||_{L^{p}(K)} \leq ||T(f) - T(f_{0})||_{L^{p}(K)} + ||T(f_{0})||_{L^{p}(K)} \leq$$

$$\leq (\max_{(x,y)\in K} e^{\lambda(|x|+|y|)})^{\frac{1}{p}} \rho_{K}(T(f), T(f_{0})) + ||T(f_{0})||_{L^{p}(K)} \leq$$

$$\leq c(K, \lambda, p)\rho_{j(K)}(f, f_{0}) + ||T(f_{0})||_{L^{p}(K)}, \ \forall \ f \in X.$$

But $\rho_{j(K)}(f, f_0) \leq ||f||_{L^p(j(K)\cap \mathbb{R}^2_+)} \Rightarrow T(f) \in X$.

Besides the estimates $\rho_{j^l(K)}(f_0, T(f_0)) \leq \rho_{\widehat{K}}(f_0, T(f_0))$, $\rho_{j^l(K)}(f, g) \leq \rho_{\widehat{K}}(f, g)$ for any integer $l \geq 0$, $\forall f, g \in X$ (cf. (A5)) show that conditions 3 of theorem 1 and 4 of theorem 2 are fulfilled. Using once again (A5), we check that condition 2 of theorem 1 is also fulfilled, which completes the proof of theorem 4.

Acknowledgement. The author thanks Prof. V. Angelov for his very useful suggestions.

References

- [1] Pisarenko, V.G., Problems in the relativistic dynamic of many bodies and nonlinear fields theory, Naukova dumka, Kiev, 1974 (in Russian).
- [2] Myshkis, A.D., Linear differential equations with retarded argument, Nauka, Moscow, 1972 (in Russian).
- [3] Angelov, V.G., Fixed point theorem in uniform spaces and applications, Czechoslovak Math. Journal, 37(112), 1987, Praha, 19-33.
- [4] Rus, I.A., Metrical fixed point theorems, Babes-Bolyai University, 1979.
- [5] Elsgoltz, L.E., Norkin, S.B., Introduction in the theory of differential equations with deviating argument, Nauka, Moscow, 1971 (in Russian).
- [6] Kisielevicz, M., Grytczuk, K., The existence of solutions of hereditary systems of hyperbolic type, Demonstratio Mathematica, v.9, No.4, 1976, 545-561.
- [7] Kamont, Z., Kwapisz, M., On nonlinear Voltera integral-functional equations in several variables, University of Gdanski, Preprint No.11, 1978.
- [8] Agarwal, R.P., Thandapani, E., On the uniqueness of solutions of hyperbolic delay differential equations, Math. Seminar Notes v.6, 1978, 531-536.

University of Mining and Geology "St.I. Rilski" Department of Mathematics, 1100 Sofia, Bulgaria