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PERTURBATION ANALYSIS OF MONOTONE GENERALIZED
EQUATIONS

ANDRAS DOMOKOS

Abstract. Our goal is to establish new methods and results in reflexive
Banach spaces to the theory of local stability of the solutions of some non-
compact generalized equations, including parametric variational inequal-
ities. The continuity of the projections of a fixed point onto a family of
nonempty, closed, convex sets will he also studied using these methods.
The results from this paper generalize results proved in finit dimensional

spaces and Hilbert spaces.

0. Introduction

Stability topics for parametric variational inequalities were studied in many papers
in finite or in infinite dimensional Hilbert spaces [1, 3, 4, 8, 11]. The proofs in those
papers are closely connected with the Hilbert spaces’ properties (for example, the
nonexpansivity of the metric projection onto a closed, convex set).

Our method is independent from the above mentioned properties and also from com-
pactness assumptions (for compact perturbation of monotone operators see [7].
Papers [3, 11] use the strong-monotonicity condition in finite dimensional spam‘?& We
will replace this condition by a weaker one, p-uniform-monotonicity (used also in [1]
). In Banach spaces this is a weaker and more usefull condition, (see Proposition 1.1,
Examples 5.1 and 5.3) that the strong-monotonicity.

We will discuss also some aspects with respect to a consistency condition. Consis-
tency conditions are frequently used in the theory of implicit function theorems [1, 2,

4]. Our condition is a generalization of those used in [1, 4]. We will show that the

1991 Mathematics Subject Classification. 49J40, 49K 40.
Key words and phrases. normalized duality mapping, normal cone operator, variational inequality,

@-uniformly-monotone mappings, metric projection.

15



ANDRAS DOMOKOS

consistency condition is satisfied under reasonable conditions, as pseudo-continuity or
lower-semicontinuity (see Corollary 2.1, Examples 5.1 and 5.2). The continuity of the
projection of a fixed point onto a family of nonempty, closed, convex sets implies the
consistency of the normal cone operator. A result similar to the Holder continuity of
the projections of a fixed point onto a pseudo-Lipschitz continuous family of closed
convex sets [11] holds for uniformly-convex Banach spaces. We will use a generaliza-
tion of the metric projection operator introduced by E. Zarantonello [12].

We will denote by €, A, W topological spaces and by X a reflexive Banach space.
Throughout this paper we will work with the fixed points ¢ € X, wo € Q, Ag € A,
wo € W and with their neighborhoods Xog = B(xzg,r) (the closed ball centered at
29 and radius r) of xg, Qo of wo, Ag of Ag, and Wy of wg. We need a single-valued
mapping f : Xo x Qo = X*, a set-valued mapping F' : Xo x Wy ~ X* and an other
set-valued mapping C' : Ap ~ X with nonempty, closed, convex values.

Let us consider the following parametric variational inequality

find z € C'(A) such that

(VIw, )
(flz,w),y—z) > 0, forall yeC(N)
and the equivalent generalized equation
0 € f(;z:,w) + NC(/\)(I’), (GE(UJ,A))

where
Nepy(z) = {e* € X o {e*  y—x) <0, forall ye C(A)}

is the normal cone to the set C'(A) at the point z.

The normal cone mappings Ny @ X ~ X* are maximal-monotone, because the
sets C'(A) are nonempty, closed and convex.

In a reflexive Banach space we can introduce equivalent norms for which the space
is strictly-convex with st.rictvly—cohvex dual or locally uniform-convex with locally
uniform-convex dual. The continuity and monotonicity properties from this paper
remain the same when we use these equivalent norms, so we can use them when we
nced better properties for the duality mapping.
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PERTURBATION ANALYSIS OF MONOTONE GENERALIZED EQUATIONS
1. Preliminary results

In this section we present basic definitions and results.

Definition 1.1. [1] The mappings F (-, w) are said p-uniformly-monotone for allw €
Wo, if there exists an increasing function ¢ : Ry — Ry, with o(r) > 0 when r > 0,
such that for all w € Wy, z,,z9 € Dom F(-,w), 2} € F(z1,w), 235 € F(z2,w) hold

(21 =2, 21— 22) > @(llay = 2l]) llz1 — 2ol -

If the function ¢ 1s defined as o(r) = ar, with a > 0, then the mappings F (-, w) are

said strongly-monotone with conslant a.

The following proposition shows that -uniform-monotonicity is a natural one in

uniformly-convex spaces.

Proposition 1.1. [10] A Banach space X is uniformly-conver if and only if for each
R > 0 there exists an increasing function pr : Ry — Ry, with pp(r) > 0 when

r > 0, such that the normalized duality mapping J : X ~ X*, defined by
Je) = {2m e X" @ a) = 2l flell = eI}
is pr-uniformly-monotone in B(0, R).
Definition 1.2. Let A, B C X. The Hausdorff distance between A, 3 1s defined as
H(A, B) = max{e(4, B), ¢(B, A)} ,
where
e(A,B) = :1618 blglg [la —b]| .

Definition 1.3. Let (A,d) be a metric space.

a) The set-valued mapping C' is pseudo-continuous at (Ag, ro) € Graph (' if there exist
neighborhoods V C Ag of Ao, U C Xo of &g and there exists a function 5: Ry — Ry
continuous at 0, with B(0) = 0, such that

C(ho) NU C C(A) + B(d(X Ao)) B(0,1) (1.1)
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and
C(A)NT C C(X) + B(d(A, X)) B(0,1) (1.2)

forall A e V.

b) The set-valued mapping C is pseudo-continuous around (Ao, zo) € GraphC if there
exist neighborhoods V C Ag of Ao, U C Xo of zo and there exists a function §: Ry —
R, continuous at 0. with $(0) = 0, such that

C(AM)NU C C(A) + B(d(A,A2)) B(0,1) (1.3)

Jorall Ay, \p € V.

¢) If the function B is defined as 3(r) = Lr, with L > 0, then we say that C s
pseudo-Lipschitz continuous at (Mo, 2o) (resp. around (Ao, zp)).

d) The sct-valued mapping C' is pseudo-continuous on the set Ay C Ao, if it is pseudo-
continuous at each point (A, z) € GraphC, X € A,.

Remark 1.1. If the set-valued mapping C'(-) N X is continuous with respect to the
Hausdorff distance at Ay (resp. in a neighborhood of Ag), then the set-valued mapping
C' is pscudo-continuous at (Ag, 2o) (resp. around (Ag, zg)).

In [11] it is proved the following theorem:

Theorem 1.1. [n the case of Q C R™, A C R?, X = R", let us suppose:
(i) zo 1s a solution of VI(wg, Ao);

(ii) there exists | > 0 such that

f(z1,w1) = flza,wall < L(ller — 22l + flwr —woll)

for all £y, 29 € Xo, wy,ws € Qo,

(i11) the mappings f(-,w) are strongly-monotone with a constant a > 0, for allw € Qq;
(iv) the set-valued mapping C' is pseudo-Lipschitz continuous around (g, zo) € GraphC.
Then there exist constants I, , [, > 0 and there exist neighborhoods Q' C Qo of wy,
A C Ag of Ao such that:
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a) for every (w,A) € Q' x A’ there exists a unique solution x(w,A) of VI(w, ),
b) for all (wy, A1), (w2, A2) € ' x A’ we have

llz(wi, A1) = z(wa, Aa)l| < lupllwr — wall + DaollAr = Aal|7

The Holder continuity with respect to A it is the consequence of the following

result :

Proposition 1.2. [11] Let Q@ C R" and X = R™. Let us assume that the set-valued
mapping C is pseudo-Lipschitz continuous around (Ao, o).

Then there erxist neghborhoods Q' C Qy of wg and X' C Xy of o and there exists a
constant I' > 0 such that

[ Peinnxe(®@) = Popamaxe ()] < VA = Aall?

forall \y, A2 € A’ and z € X'.

We denoted by Pc(a)nx,(2) the metric projection of the point z onto the set
C(X) N Xy, i.e. the unique point in C(A) N Xy with minimal distance to z.
The continuity of C(-) N Xg, with respect to the Hausdorff distance, at Ag is assumed

in [3] and the continuity of Pc(x)nx, at Ag is proved.
2. An implicit function theorem for monotone mappings

In this section we will show that Theorem 4.3 of [1] remains true when we
suppose X a reflexive Banach space (Theorem 2.1). We will use this theorem to study
the stability of the solutions of V' I(w, A), using only the consistency of the normal
cone operator which is a weaker property then the continuity of the projections of a

fixed point onto a family of nonempty, closed, convex sets.

Lemma 2.1. [5] Let T : X ~ X* be a marimal-monotone set-valued mapping. For

all integers k > 1 we define the follounng single-valued mappings:
Po = (J+KT)™' - X* =5 X.

If a sequence (zy), with zi41 = Pi(Jxy) is bounded, then there exists T € X such
that 0 € T(T) and (zx) has a subsequence weakly converging to T.
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Remark 2.1. From z4+1 = Pi(Jzx) we have

(Jek — Jzr41) € T(xk41) ,

x| =

so zx4+1 € D(T).
If D(T) is bounded, then (k) is also bounded and T has a zero in D(T).
If Ty = T + Npo, is maximal-monotone for an € > 0, then there exists 2 € B(0,¢)

such that 0 € T'(x) + Np(o.¢). If ||z|| < ¢, then 0 € T'(z).

Lemma 2.2, Let T : X ~ X* be a marimal-monotone map. We suppose that there
exist 0 < § < € such that D(T)NintB(0,e) # 0 and (y,z) > 0, for all x € X, with
d < |le|| <€ and for all y € T(2).

Then there exists T € B(0,4), such that 0 € T(T).

Proof.  Because of D(T) N intB(0,<) # 0, Ty = T + Np(o,c) is a maximal-monotone

mapping with D(T}) = B(0,¢).

If » € B(0,€) and y; € T1(x), then there exist y € T(x), n € Np(o,)(x) withn =0
corn=AJ(x), A> 0, such that y, = y+ n.

Then (y;.z) = (y+n,z) > (y,z) and hence the assumptions of Lemma 2.2 are also

satisfied by 7.

Let us denote
Pe(z) = (J+ k)" (J2), 21 =0, zpq1 = Pe(ax) .

We will prove that ||zx|| < 4, for all £ > 1.
Let us suppose the contrary and let kg be the first integer such that ||ag,|] < é and

|[2ko+1]] > 6. Then
Jzp, € Jxpor1 + koTi(Thot1) s
50 Zko+1 € D(T1) = B(0,¢) and there exists uk,41 € T1(Zko+1), such that
J;L‘k_o = JJTA~U+1 + k0uk0+1 .

Then

I ekollllzrorrll > (Trot1, JTho) = (Thot1s JThot1) + ko(Thot 1) Wkop1) >
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> [[ko 1l
Hence ||zko|| = ||[J2Zkoll > ||Zko+1]] > &, which is a contradiction.
So, (zx) C B(0,6) and using Lemma 2.1 together with the weakly-compactness of
B(0,4), we can found T € B(0,4), such that 0 € T1(%).
But Npo,)(T) = {0}, s0 0 € T(Z).

Remark 2.2. Let us fix an 2¢ € X.

If we use Lemma 2.2 for F(z) = T'(x + xg) we get:

Let 0 < 8 < ¢ be such that D(T) NintB(xg,c) # 0 and (y,z) > 0, for all x € X with
d <|lz|]| € & and for all y € T(z + o).

Then there exists T € B(xo,d), such that 0 € T(T).

Definition 2.1. Let F : X x W ~ X* be a sct-valued map and let yo € F(xo, wo).
We say that F is consistent with respect to w at (zg, wo, Yo) in a neighborhood Wy of
wo, if there exists a function B : Wy — Ry, continuous at wg, with f(wy) = 0, such
that for all w € Wy there exists (2, yu) € GraphT (-, w), satisfying ||z, — zo|| < B(w)
and [|yw — yol| < B(w).

Remark 2.3. For example, F is consistent in w at (zo,wy, yo), if F(-, we) has a
continuous selection trough (xg, yo) € GraphF (-, wq).

In [4] it is used a stronger assumption (z,, = z¢ for all w € W), but in the study of
the parametric variational inequalities this form cannot be used. We will show also
that the normal cone operator is consistent if the projection operator is continuous

with respect to the parameter A.

The following theorem is the generalization of the Theorem 4.3 of [1], in the case of
reflexive Banach spaces. We will suppose that X is renormed strictly-convex with

strictly-convex dual.

Theorem 2.1. Let us assume that:
i) 0 € F(zo, wo);
i) F is consistent with respect to w at (g, 1w, 0) tn Wy,
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i11) the set-valued mappings F(-,w) are marimal-monotone and p-uniformly-monotone
for all w € Wy.
Then there ezists a neighborhood W1 of wg and a unique mapping x : W1 — X,

continuous at wq, such that x(wg) = xp and 0 € F(z(w), w), for all w € Wi.

Proof. Let us fix 0 < € < £, such that B(zg,€1) C Xo. Let W C Wy be a neigh-
borhood of wy, such that f(w) < €;, for all w € W'.

Let 0 < § < e and w € W’ be choosen arbitrarily.

Then D(F(-,w)) N intB(zo,e,) # 0, because from assumption i) , there exists
(Tw,Yw) € GraphF (-, w), such that ||z, — 2oj| < B(w) < €1 and ||yw|| < B(w).

Let us choose z € X, with § < ||z|| < ¢ and y € F(z + &y, w). Then

e(llzlDNzll € (Y= v 2) = (¥, 2) — (Yu, )

and hence

(v.) > 9(6)5 — eflw) .
Let us denote My, = {6 > 0 : dp(8) > ef(w)}.
We can see that M,, # { for all w in a neighborhood W; C W’ of wg and inf My, — 0,
when w — wy. So, we can choose a selection §(w) € My, such that 6(w) — 0, when
w — wy.
Using Remark 2.2 we can find, for all w € W, a solution z(w) € B(zyw,d(w)) of
[3] and this solution is unique because of the g-uniform-monotonicity of F(-,w). We

have also

llz(w) = zoll < ll2(w) = zwll + l|lzu — 2ol| < 8(w) + Hw) =0,

when w — wy.

Remark 2.4. In the case when F is a single valued mapping the assumptions of
Theorem 2.1 can be written as:

1) 0 = F(zo, wo);

i1) the mapping F is continuous al (zo, wo);

it1) the mappings F(-,w) are hemicontinuous and @-uniformly-monotone on Xy, for
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allw € Wy.

In the following two corollaries we will study the continuity of the solutions in a

neighborhood of the fixed parameter wg.

Corollary 2.1. Let (W, d) be a metric space.
If we replace assumption ii) of Theorem 2.1 by:
') the set-valued mappings F(x,-) are pseudo-continuous on Wy, for all z € Xo,

then the mapping z is continuous in a neighborhood of wy.

Proof. We will show that the pseudo-continuity at (wg,0) € Graph F(zo, ') implies
the consistency condition ii). Indeed, there exist neighborhoods U of 0x., V of wg

and a function 8 : Ry — Ry continuous at 0, with 85(0) = 0, such that
F(zo,wo)NU C F(zo,w) + Bo(d(w,we))B(0,1)

and
F(zo,w)NU C F(zo,wo) + Bold(w,wo))B(0,1)

for all w € V. Hence, for 0 € F'(xg,wp) NU and for all w € V, there exists z, €
F(zo,w) such that ||z,|| < Bo(d(w,wq)).

Now we use Theorem 2.1 to obtain a neighborhood Wi of wy and a unique mapping
r: Wp — X, continuous at wg, with z(wp) = 2o and 0 € F(z(w),w) for all w € W;.
The continuity of the mapping z at wq implies that there exists an open neighborhood
W{ C W, of wp, such that 2(w) € int X, for all w € W].

If we choose w € W] arbitrarily, a constant 7 > 0, such that B(x(w),7) C X, and
we use the pseudo-continuity of F(z(w@),-) at (w,0), which implies the consistency
at (z(w),@,0), then we can use Theorem 2.1 to find a neighborhood W C W, of @
and a unique mapping T : W — B(x(W).F) continuous at W, such that T(w) = z(w),
and 0 € F(Z(w), w) for all w € W. The uniqueness of the mappings ¢ and T implies
that they coincide on W, so we have proved the continuity of the mapping z at w.
Because W has been choosen arbitrarily, the continuity holds on W{.
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Corollary 2.2. Let (W, d) be a metric space. Let us suppose that in Theorem 2.1 we
replace assumplion i) by:
iiy) there exists a constant L > 0 and for each © € X there exists a neighborhood

Uy of Ox. such that
F(z,w)NU; C F(z,ws) + Ld(w;,w2)B(0,1)

for all wy,ws € Wy,

and assumption iit) by:

itiy) the set-valucd mappings F (-, w) are marimal-monotone and strongly-monotone
with a constant a > 0, for all w € Wy.

Then the mapping x is Lipschitz-continuous, with the constant %, in a neighborhood

of wy.

Proof. Using Corollary 2.1 we obtain a neighborhood W{ of wq, such that the
mapping « is continuous on Wj.
Let us choose w;, w2 € W] arbitrarily. Assumption #ip) implies that for z(w;) € X,

there exists a neighborhood U of 0x. such that

Fle(uw),z)NnU C F(x(wy),t) + Ld(=,t)B(0,1)

for all z,t € W,.
Hence for 0 € F(x(uq),w;) N U there exists z3 € F(x(w;),ws) such that ||z3]| <
Ld(w;,wq). Then

afle(wn) = 2(w)]* < (22— 0, 2(w)) — z(un)) <

< lz2llfle(wer) = z(wa)ll -

So,

L

[l (wy) = x(ws)|] < —d(wy,wa) .

a
In the followings we will apply Theorem 2.1 in the study of VI(w, ). We suppose
the consistency of the normal cone operator instead of the continuity, with respect
to parameters, of the projections. The adventage of this approache is that the as-
sumptions a-d) of Theorem 2.2 are independent from the geometrical properties of the
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reflexive Banach space X. We will show also that, in locally-uniform convex Banach
spaces with locally-uniform convex dual, the consistency is a weaker property that
the continuity of the projection. Assumption #i¢) of Theorem 1.1, due to Proposition

1.2, implies the continuity of the projections which it is supposed also in {1] and [3].

Theorem 2.2. Let us suppose that:

a) 0 € f(zo,wo) + Nc(ao) (o),

b) f is continuous on Xo x Qo;

¢) the mapping N (x,A) = Neoyax, () is consistent with respect to X at (zo, Ao, —f (20, wo))
n Ag;

d) the mappings f(-,w) are p-uniformly-monotone on Xy, for all w € €.

Then there exist neighborhoods QU and Ay of wy and Ay and a unique mapping

r: Q) x A = X, continuous at (wg,Ao), such that z(wg,Ao) = zo and 0 €

f(a:(w,/\),w) + NC(A)(:C(“}"\))'

Proof. Let us denote W = Q@ x A and F(z,w) = F(z,w,A) = f(x,w)+ Neopynx, ().
The mappings F(-, w) are maximal-monotone. These mappings are also p-uniformly-
monotone on Xg as a sum of a p-uniformly-monotone and a monotone mapping.
Assumption c) implies the existence of a function 51 : Ag = Ry, continuous at Ag,
with £ (Ag) = 0, such that for all A € Ay there exists (ry.ny) € GraphN(-, A) such
that J|zx — zo]| < B1(A) and ||na + f(zo,wo)|| < B1(A).

Let us choose (w,A) € Qo x Ag.

We denote z, » =z and y, » = nx + f(za,w).

Then y, » € F(xw r,w,A) and
lywall < llna + f(zo,wolll + [If(2x,w) = f(zo,wo)|| <

< Bi(A) +If(zx,w) = f(zo,wolll = Blw, A) .

Using the continuity of f, we get f(w,A) — 0, when (w,\) = (w0, Ao), hence the
assumptions of Theorem 2.1 are satisfied and the existence and continuity at (wg, Ao)

of the solutions of 0 € F(x,w) are proved.

When (w, A) is close enough to (wo, Ag), then z(w, A) € int.Xy and hence Ng(xy(z(w, A)) =
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Neaynx, (2(w, A)), so the proof is complete.

Remark 2.5. We observe that if in Theorem 2.2 we suppose the same type of pseudo-
continuities for the set-valued mapping N, as in the previous corollaries for F, then

we obtain same continuities for the mapping z.

Definition 2.2. [12] Let " C X be a nonempty, closed, convexr set. The projection
onto C is the mapping Pc : X* — X defined by

Pe(a®) = (J + Ne)7' (z%) .

In the case when X is a Hilbert space, this i1s the metric projection onto C.

Let X be a locally-uniform convex, reflexive Banach space, with X* locally-uniform
convex. In this case the normalized duality mapping is continuous from the strong
topology of X to the strong topology of X*.

Let us define the mapping P : X* x A = X by

P(I*,/\) = Pc-(,\)nxo(z*).

The following result shows that the continuity of the projection with respect to a

parameter implies the consistency of the normal cone operator.

Proposition 2.1. If for an ng € N(zg, Ag), P(Jza + ng, ) is continuous at Aq, then

N s consistent with respect to A at (xg, Ao, ng) in a neighborhood of Ag.

Proof. Let us take zy = P(Jry+ ng, A). Because of 2o = P(Jzg + ng, Ao) and the
continuity of P hold ||zx — x¢|| = 0, when A — Aq.

We have also

Jrog+ng € Jzy + N(za, )
and hence

Jzog+ng—Jzx € N(zp,A) .
We can take

ya =Jzo+mno— Jzy,
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B(A) = max {|[zx — zol|, ||[Jzx — J20o|| }

and the consistency of N is proved.

3. Continuity of the projection with respect to a parameter

In this section, assuming the pseudo-continuity of the set-valued mapping
C, we will show that the continuity, with respect to a parameter, of the projection
operator holds in a uniformly-convex Banach space. We cannot obtain the same type
of Holder-continuity as in Proposition 1.2 because, as will be shown, that holds only

in Hilbert-spaces.

Proposition 3.1. Let (A, d) be a metric space.

Let A : Xo = X* be a continuous, p-uniformly-monotone mapping. Let us suppose
that the set-valued mapping C is pseudo-continuous at (Ao, zo) € GraphC and 0 €
A(zo) + Nc(ag) (20)-

Then there exist a neighborhood V' C Ag of Ao, a function f; : Ry — Ry continuous

at 0, with 31(0) =0, and a constant s > O such that the generalized equation
0 € Alz) + Ne(z) (3.1)
has a unique solution 2(\) € B(zo,s) for all A € V and also hold
@ ([lz(A) = zol) ll2(A) — zoll < 51 (d(A, o)) - (3:2)

Proof. We choose a constant 0 < s < r such that the pseudo-continuity of C' can be
written as:
- there exist a function @ : Ry — R continuous at 0, with 3(0) = 0, and a neigh-

borhood V' C Ag of A\g such that
C(Xo) N B(zo,s) C C(A) + B(d(\ Ao)) B(0, 1)

and

C(A)N B(ra,s) C C(Ao) + B(d(X, Ao)) B(0,1)
27
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for all A € V.

Using the continuity of 8 at 0, we can choose € > 0 such that B(Xp,e) C V' and
B(d(X, Xo)) < s, for all A € B(Xo,€).

Let us define V. = B()\o,€).

Let A € V. be choosen arbitrarly. Then the inclusion
zo € C(Ao) N B(ro.s) C C(A) + B(d(A, X)) B(0,1)
implies the existence of an uy € C(A) such that
llzo — uall < B(d(A, X)) < 5.

This means that C'(X\) N B(xg, s) is nonempty for all A € V. Corollary 32.35 of [13]

shows that the generalized equation
0 € A(z) + Ne(nB(ro,s) ()
has a unique solution z(A) € C(A) N B(xg,s). So
(A(z(N)), u—z(X)) >0

for all u € C(A) N B(xyp, s).
The pseudo-continuity of the set-valued mapping C' implies that for 2(\) there exists
an element ug € C'(Ag) such that ||x(A) — uo|| < B(d(M, Ao)).

Using the -uniform-monotonicity of A we obtain
@ (Ile(A) = zoll) [le(A) = zol| < (A(2(A)) = Alxo) , 2(A) = 20) <
S <A(.B(/\)) — A(-TO) s -l'(/\) - .L‘()) + <A(.lfo), Ug — .230) +

+ (Alz(N)), ur —z(})) =

= —(A(z(A), un = 20) + (A(20), uo — z(}))

IA

< NlAGD)IHIus = 2oll + [[A(zo)ll w0 — (M| <

< 2MB(d(M Ao))
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where M = sup {||A(z)|| : = € B(zo,s)} is finite, because a continuous, monotone

mapping is bounded on the interior of its domain. The inequality
@ (llz(A) — zoll) llx(A) = zoll < 2MB(d(A, Ao))

means that 2(A) = zg, when A — Ag.
We can choose a neighborhood V' C V. of Ag, such that |[z(A) — zo]| < s, for all

A € V. This means that for A € V

Ne)(x(A)) = NeynB(zo,s)(2(A))
and hence z(A) is a solution of the problem (3.1).

The inequality (3.2) is satisfied with gy(r) = 2Mp(r).

Corollary 3.1. If in Proposition 3.1 we suppose that the sel-valued mapping C 1s

pseudo-continuous around (Ao, xy), then
@ (llz(A1) — (X)) le(A1) —2(A2)] < Bi(d(A1,A2))
forall \j, Ay € V.
Proof. Let us choose the constant 0 < s < r and the neighborhood V' C Ag such that
C(A1) N B(xo,s5) C C(A2) + B(d(A1.A2))B(0,1)

for all Aj, Ay € V.
As in the proof of the Proposition 3.1 we obtain the neighborhood V of A¢ and the
solution r(A) of (3.1), for all A € V.
Let us choose A, Ay € V. For z(\) € C'(A) N B(zo, s) there exists uy € C'(A2), such
that

llz(A1) = ual| < B(d(A1, A2)) -

For z(A2) € C(A2) N B(xg, s) there exists u; € C(A;) such that

llz(A2) —wi|| < B(d(A1,A2)) -

Then
@ ([lz(A1) = z(A)]]) [le(Ar) —z(Aa)]] <
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< (A(x(A1)) — A(z(A2))» (A1) — 2(A2)) <

< (Ax(M)) = Az(X2)) s 2(M) — 2(A2)) + (A(2(A1)), w1 — (M) +
+ (A(z(Aa)), ua — (X)) =
= (A(z(M)), ur —z(A2)) = (A(z(A2)), 2(M) —u2) <
< NAEADIHR — 22l + (A 2(A1) — wo]] <
< 2MB(d(A1, A2)) = Bi(d(Aq, A2)) -

Corollary 3.2. Let (A,d) be a metric space and let X be a uniformly-convexr Banach
space. If the set-valued mapping C is pseudo-continuous at (Ao, o) (resp. around
(Ao, o)), then P(-,z*) is continuous at Ay (resp. in a neighborhood of Xy ) for all
t e X*.

Proof. Let us choose », R > 0 such that z¢ € int B(0, R), B(zo,r) C B(0, R). Let us
fix an element z* € X*. We use Proposition 3.1 (resp. Corollary 3.1) in the case of
the mapping A : B(zo,7) = X*, defined by A(z) = J(z)—z*, which is ¢g-uniformly-
monotone due to Proposition 1.1. In this way we obtain a neighborhood V of Ag and
a unique mapping ¢ : V — X continuous at Ag (resp. in a neighborhood of Ap), such

that for all A € V' we have
0 € J(x(A)) =z* + Nepy(e(A) ,

which means that z(A) = P(2*, A).

Remark 3.1. If we suppose that C is pseudo-continuous around (Ag,zo), then
P(-,z*) is continuous in a neighborhood of .

We observe that in a uniformly-convex Banach space, which is not a Hilbert space,
we cannot prove the Holder-continuity of Proposition 1.2, even when C is pseudo-
Lipschitz continuous. The Holder-continuity holds only in a Hilbert space because
only in this case is the normalized duality mapping strongly-monotone.
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4. Parametric variational inequalities

In this section we generalize Theorem 1.1, on the continuity of the solutions
of VI(w, ), in the case of reflexive Banach spaces. The continuity of the projection
operator or the consistency of the normal cone operator will be not supposed. A
consequence of Theorem 4.1 is that all the results from (1], [3], (8], [11] remain true
in reflexive Banach spaces.

We suppose that X is renormed strictly-convex with strictly-convex dual and let (A, d)

be a metric space.

Theorem 4.1. Let us suppose that:

a) 0 € f(xo,wo) + Nc(ao)(Zo)s

b) f is continuous on Xo x Qp;

c) the mappings f(-,w) are p-uniformly-monotone on Xy, for all w € Qo;

d) the set-valued mapping C is pseudol-continuous at (Mg, zo)-

Then there erist neighborhoods Q' of wg, A’ of Ao and a unique mappingz : Q' x A’ —

Xo continuous at (wg, Ag), such that x(wo, Ao) = zo and
0 € f(:u(w,/\) ' OJ) + NC(/\)(I(“"a/\))

forallwe Y, Ae A
Proof. We choose the positive constants ¢, r small enough to
B(d(A, X)) < 7,

C(Ro) 0 B(zo,r) C C(N) + Bd(\ A BB, 1)
and
C(A) N B(zo,r) C C(Xo) + B(d(X, X)) B(0,1),

for all A € B(\o,¢).
As in the previous proofs, for all A € B(Ag,¢), the set C(A) N B(zo,r) is nonempty.

Hence, for all (w,A) € o x B(Ao,¢€) there exists a unique element z(w, A) such that

0 € f(z(w.A),w) + Nepy(z(w,A)) .
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Using Proposition 3.1 we deduce that for all w € ¢ the mappings z(w, -) are contin-
uous at A\g and Theorem 2.2 implies that z(-, A¢) is continuous at wp.

The above continuities shows that the mapping z is continuous at (wo, Ag).

Remark 4.1. As in the previous section, if we suppose that the set-valued mapping
C is pseudo-continuous around (Ao, Zo), then the solution mapping z is continuous in

a neighborhood of (wyg. Ag).

5. Applications

The reason of the following examples is to show that Theorem 2.1 is usefull in
the study of the continuity of the solutions of parametric integral equations and evo-
lution differential inclusions. We will also show that the consistency condition appear
under well-known assumptions and it is important because some of the mappings are

not defined everywhere, they have only dense domains.

Example 5.1. Let (a,b) C R be an open interval, let p,g > 1 be such that
%+ % =1, let Ap € R, let Ag be a neighborhood of A\¢ and let ug € LP(a,b).

We suppose that the mappings F : (a,0) x R x Ag > R and K : (a,b) x (a,b) = R
satisfy the following conditions:

(F1) the mappings F(-,7,\) are measurable for all r € R and A € Ao,

(Fy) the mappings F(x,-, A) ave continuous a.e. & € (a,b) and A € Ay,

(

F3) for each A € Ay there exist g € L9(a,b) and ¢y > 0 such that

|F(z, 7, M) < galz) + exlrfP™!

forallr € R and z € (a,b);
(F4) there exists a constant d > 0 such that

(F(z,r1,A) = F(z,ro.A)) (r — r2) > dlry — raf?,

for all z € (a,b), r1,72 € R, A € Ag;
(F5) the mappings F(-,ug(-), A) converge uniformly to F(-,uo(-), Ao) on (a.b), when
32
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/\—}/\0;

(K1) there exist constants cy,ca > 0, s,t > 1 such that

b g
(/ |1<(x,y)|5dx)
b g
/ |K(2,y)|" dy < ca, ae z€(ab),

p>s. (1—5>p5t;
14

(K2) for all u € LP(a,b), u+# 0 we have

IN

c1, ae yE€(ab),

A

b b
/ / K(z,y)u(z)u(y)dedy > 0.

Remark 5.1. Assumptions (F3) and (F,) do not exclude. We can take, for example,
F(z,r,A) = A + |r|P~?r.
Assumptions (F}), (F2), (F3) imply that ([9]) for all A € Ag the mappings (-, ) :
LP(a,b) — L%(a,b). defined by H(u,A)(z) = F(z,u(x),A), are well-defined and
continuous.
Assumption (F}) implies the @-uniform-monotonicity of the mappings H(-, A), with
w(r) = drP~!. This means that the strong-monotonicity is satisfied locally when
1 < p <2 and is not satisfied when 2 < p.
Assumption (K1) implies that ([9]) the mapping G : L9(a, b) — LP(a,b), defined by

b

W) = [ Kw)ds,

a
is well-defined and continuous (not nescesarrily compact).
Assumption (K'2) implies the strict-monotonicity of G.

Let us consider the following parametric Hammerstein integral equation:

b
u(r) + / K(z,y)F(y,u(y),\)dy = w(z). (5.1)
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Proposition 5.1. Let us consider that assumptions (Fy) — (Fs), (K1) — (K2) are
satisfied and there exist ug,wo € LP(a,b) such that

, .
uo(z) + / K(z,y)F(y, uo(y), Ao)dy = wo(x).

Then there exists a unique mapping u : LF(a,b) x Ag = LP(a,b) such that u(w,A) s
a solution of (5.1) for all (w,X) € L*(a,b) x Ao, w(wo, Ao) = uo and the mapping u is

continuous at (wq, o).

Proof. The existence of the solutions u(w, A) is proved in [9]. We will prove now the
continuity.

Equation (5.1) can be written as
v+ GoH(u,A) = w
or equivalently
0€ H(w,\) = G Hw—1) .
We define the mapping T : LP(a,b) x L"(a,b) — L9(a,bd) by

T(w,u) = -G N w—u).

The mappings T'(w, -) are linear, continuous, maximal-monotone and strictly-monotone
and hence G~! is linear, continuous, maximal-monotone on Dom G~!. We observe
also that in this case Dom G~! is dense in L?(a,b) ([12]).

Let us fix w € LP(a,b). Then we can choose u, € LF(a,bd) such that ||u, — uol| <
llw —wo|| and w—u,, € Dom G~!. Hence G~ (w—1u,) = G~ }(wo—1up), when w — wy,
so we proved the consistency of T' with respect to w at (ug,wo, T'(wo, o))-
Assumption (Fs) implies that the mapping H (uy, -) is continuous at Ag and using the
continuity of the mappings H (-, A) we conclude that H is continuous at (ug, Ag). This
continuity together with the consistency of T implies that H + T is consistent with
respect to (w, A) at (wo,wo, Ag, 0).

Now we can use Theorem 2.1 for the mapping H + T to get the desired continuity.
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Example 5.2. Let H be a Hilbert space. Let us consider the following problem:

u + A(u,A) D
() 3 f 62
uw(0) =0
in the case when T > 0, p.q > 1, %+% =1, fe L0, T;H), o € R, Apis a

neighborhood of Ag, 4 : LP(0,T; H) x Ag = L9(0,T; H).

Definition 5.1. Let X and Z be topological spaces. A set-valued mapping F : X — Z
is called lower-semicontinuous at (xg, z0) € GrafF, if for all neighborhood Zy of zg

there exists a neighborhood X of xq such that F(z)NZy # 0, for all ¢ € Xo.

Lemma 5.1. [13] The linear mapping L : LP(0,T;H) — L9(0,T; H), defined by
L(u) =« and DomL = {u€ W'r(0,T; H) : u(0) = 0}, 2s mazimal-monotone.

Proposition 5.2. Let us suppose that:

a) there exist ug € Dom L and vy € A(ug, Ao) such that ug + vo — f = 0;

b) the set-valued mapping A is lower-semicontinuous at ((ua, Ao) , vo);

c) the set-valued mappings A(-, A} are marimal-monotone and p-uniformly-monotone
for all X € Ao.

Then there exist a neighborhood A’ of A\g and a unique mapping v« : A’ — LP(0,T; H)
such that u(Ao) = ug, u(A) is the unique solution for each A € A’ for (5.2) and u is

continuous at Ag.

Proof. Let us denote X = LP(0,T; H). Assumption b) implies that for all € > 0
there exists 7 > 0 such that, for all (v, ) € X x Ag, with ||u—wuo|| < 7, |[|A = Xo|| < 7,
hold A(u, ) N B(vg,€) # 0.

Hence for all £ > 0 there exists vy x € A(u, A) such that ||v, x — vo]| < €.

Let us consider the sequence (€5)neN, €n = %, and a corresponding sequence (7,)neN
converging to 0 such that B(Ag,71) C Aq.

Let us choose arbitrarily A € B(Xo,71). Then for all u € B(ug, 1) we have A(u, A) N
B(ug,1) # 0, so B(ug,m) C DomA(:,A). In this way we can see that L + A(-, )
is maximal-monotone and as a sum between a monotone and another y-uniformly-
monotone mapping, is p-uniformly-monotone.
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Let 7,, be the smallest number in the sequence (7,)nen for which A € B(Aq, 7a,).

Then there exists vy € A(uo, A) such that ||vy — v]| < 2. Hence

1
I|L(uo) + va — fIl = [|L(w0) 4+ va — L(uo) — wol| = |loa — wo|| < e
We define the function 8 : B(Ao,m1) = Ry by
B(\) = max {n i} .
ny

Using this function @ we conclude that the mapping L + A — f is consistent with
respect to A at (ug, Ao, 0) in B(Ao,71). The conclusion of this proposition follows now

from Theorem 2.1.

Example 5.3. Let  C R” be a bounded domain, p, ¢ € Ry such that 2 < p < 400,
%+%:landlet/\eR+‘
We denote X = W, 7(Q) and

n

a(u,v,A) = /f}(}:l

r=

Ou

dx;|  Or; 0x;

r-2 )
Ou O + Auv) de |

Fr(v) = /1 f(z)v(z)dz .
§
Let us consider the following problem:

- for f € LI(Q) and A € Ry, find v € X such that
a(u,v,A) = Fy(v), forall veX. (5.3)

Let us define the mapping A: R4 x X — X~ by

P=2 Hu Hu
—_— A dz . 5.4
(91’,‘ 3Ii + uv) I (d )

n

AN u)(v) = a(u,v,\) = /n (Z

i=1

Au
81-,-

Proposition 5.3. [13] For all A € Ry and v € X, the mapping A(\ u) is well-
defined and the mappings A(\,-) : X — X* are continuous, @-uniformly-monotone,

with o(r) = ¢;rP~ 1L,

Proposition 5.4. For all A € Ry and f € LI(Q), the problem (2.3) has a unique
solution u(\, f) € LVOI‘p(Q) and these solutions are continuous in \ and f.
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Proof. Using the surjectivity and the p-uniform-monotonicity of the mappings A(-, A),
we deduce that for all f € LI(2) and A € Ry there exists a unique element u(A, f) €
X such that A(u,\) = Fy.

For all Ay, A2 € R4 and u,v € X hold

(A(u, A1) — A(w, A9)  v) = /(/\1 = X)uvdr <
Q
< = Agffullez flolle < A= Aafelul[{fo]] -

Hence

NAGwe, Ay) = A(u, A2 < efAr = Ao |1,

which means that the mappings A(w, -) are continuous on R.

Let us fix Ao € Ry and fy € LI(Q).

Theorem 2.1 implies the existence of a neighborhood Ag x Up of (Ag, fo) and of a
unique mapping ug : Ag x Uy — X continuuous at (Ag, fo), such that ug(A, f) is
the unique solution of the problem (2.3) for all (X, f) € Ag x Uy. The uniqueness of
the solutions implies that the mappings o and u coincide on Ay x Uy. Hence the
continuity of u at (Ao, fo) 1s proved.

(Ao, fo) being choosed arbitrarily, the continuty holds for all (A, f) € Ag x Up.
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