PROPERTIES OF A NEW CLASS OF ABSOLUTELY SUMMING OPERATORS

CRISTINA ANTONESCU

Abstract

In [1] there was been introduced a new class of absolutely summing operators and there was been ohtained some of its properties and, also, the relations with the known classes of absolutely summing operators.

In this article we go on with the study of the properties of this new operator class.

1. Preliminaries

We shall just refer briefly to those notions and results which are necessary for the proofs.

Let E, F be Banach spaces over the field Γ, where Γ is the set of the real or of the complex numbers. In the sequel we shall use the following notations:

1) $L(E, F):=\{T: E \rightarrow F: T$ is linear and bounded $\}$.
2) $E^{*}:=L(E, \Gamma)$.
3) $U_{E}:=\{x \in E:\|x\| \leq 1\}$.
4) For $a \in E^{*}$ and $x \in E$, let $\langle x, a\rangle:=a(x)$.
5) Let $a \in E^{*}$ and $y \in F$. We denote by a @ y the following operator

$$
a \otimes y: E \rightarrow F, \quad(a \bigcirc y)(x)=\langle x, a\rangle \cdot y, \text { for all } x \in E
$$

6) We denote by l_{∞} the set of all real number sequences, $\left\{x_{n}\right\}_{n}$, with the property

[^0]$$
\|x\|_{\infty}:=\sup _{n \text { natural }}\left|x_{n}\right|<\infty
$$
7) We denote by c_{0} the set of all real number sequences, $\left\{x_{n}\right\}_{n}$, with the property
$$
\lim _{n \rightarrow \infty}\left|x_{n}\right|=0
$$
8) We denote by $l_{p}, 0<p<x$, the set of all real number sequences, $\left\{x_{n}\right\}_{n}$, with the property
$$
\|x\|_{p}:=\left(\sum_{n=1}^{\infty}\left|x_{n}\right|^{p}\right)^{\frac{1}{p}}<\infty
$$

Definition 1. ([7])

$$
\begin{aligned}
& \text { For } x=\left\{x_{n}\right\}_{n} \in l_{\infty} . \text { let } \\
& s_{n}(x):=\inf \left\{\sigma \geq 0: \text { card }\left\{i:\left|x_{i}\right| \geq \sigma\right\}<n\right\} .
\end{aligned}
$$

Remark 1. ([7])

If the sequence $x=\left\{x_{n}\right\}_{n} \in l_{\infty}$ is ordered such that $\left|x_{n}\right| \geq\left|x_{n+1}\right|$, for any natural n, then

$$
s_{n}(x)=\left|x_{n}\right| .
$$

Proposition 2. ([7])

The numbers $s_{n}(x)$ have the following properties:

1. $\|x\|_{\infty}=s_{1}(x) \geq s_{2}(x) \geq \ldots \geq 0$, for all $x=\left\{x_{n}\right\}_{n} \in l_{\infty}$,
2. $s_{n+m-1}(x+y) \leq s_{n}(x)+s_{m}(y)$, for all $x=\left\{x_{i}\right\}_{i} \in l_{\infty}, y=\left\{y_{i}\right\}_{i} \in l_{\infty}$, and $n, m \in\{1,2, \ldots\}$, where $x+y=\left\{x_{i}+y_{i}\right\}_{i}$,
3. $s_{n+m-1}(x \cdot y) \leq s_{n}(x) \cdot s_{m}(y)$, for all $x=\left\{x_{i}\right\}_{i} \in l_{\infty}, y=\left\{y_{i}\right\}_{i} \in l_{\infty}$, and $n, m \in\{1,2, \ldots\}$, where $x \cdot y=\left\{x_{i} \cdot y_{i}\right\}_{i}$,
4. If $x=\left\{x_{i}\right\}_{i} \in l_{\infty}$ and $\operatorname{card}\left\{i: x_{i} \neq 0\right\}<n$ then $s_{n}(x)=0$.

Let us remark the similarity between the properties of the sequence $s_{n}(x)$, where $x=\left\{x_{n}\right\}_{n} \in l_{\infty}$, and the axioms from the definition of an additive and multiplicative s-scale, an s-scale being a rule, $s: T \rightarrow\left\{s_{n}(T)\right\}_{n}$, which assigns to every linear and bounded operator a scalar sequence with the following properties:

1. $\|T\|=s_{1}(T) \geq s_{2}(T) \geq \ldots \geq 0$, for all $T \in L(E, F)$,
2. $s_{n+m-1}(T+S) \leq s_{n}(T)+s_{m}(S)$, for all $T, S \in L(E, F)$
and $n, m \in\{1,2, \ldots\}$,
3. $s_{n+m-1}(T \circ S) \leq s_{n}(T) \cdot s_{m}(S)$, for all $T \in L\left(F, F_{0}\right), S \in L(E, F)$
and $n, m \in\{1,2, \ldots\}$,
4. $s_{n}(T)=0, \operatorname{dim} T<n$,
5. $s_{n}\left(I_{E}\right)=1$, if $\operatorname{dim} E \geq n$, where $I_{E}(x)=x$, for all $x \in E$.

We call $s_{n}(T)$ the n-th s-number of the operator T.
For properties, examples of s-numbers and relations between diferent s numbers it can be seen [3], [4], [5], [6], [7].

We continue by giving some basic facts about the classical real interpolation method, called the K-method.

For those interested to find an introduction on interpolation theory we recommend, for example. [2], [9].

Definition 3. ([2], [8])
For a compatible couple (K_{0}, X_{1}), in the sense of the interpolation theory, of normed or quasi-normed spaces, and $t>0$ consider the functional:

$$
K(t, x):=\inf \left\{\left\|x_{0}\left|X_{0}\|+t \cdot\| x_{1}\right| X_{1}\right\|: x=x_{0}+x_{1}, x_{i} \in X_{i}, i=0,1\right\}
$$

Let $0<\theta<1$ and $0<q \leq \infty$. The interpolation space $\left(. X_{0}, X_{1}\right)_{\theta, q}$ is defined as follows:

$$
\left(\mathcal{X}_{0}, X_{1}\right)_{\theta, q}:=\left\{x=x_{0}+x_{1}, x_{i} \in X_{i}, i=0,1:\left(\int_{0}^{\infty}\left[t^{-\theta} \cdot K(t, x)\right]^{q} \frac{d t}{t}\right)^{\frac{1}{q}}<\infty\right\},
$$

if $q<\infty$, and

$$
\left(\mathrm{X}_{0}, X_{1}\right)_{\theta, \infty}:=\left\{x=x_{0}+x_{1}, x_{i} \in X_{i}, i=0,1: \sup _{t>0} t^{-\theta} \cdot K^{\prime}(t, x)<\infty\right\} .
$$

The operator classes $P_{r, q, \gamma}$, introduced in [1], are closed related to the LorentzZygmund sequence spaces. For that we shall recall here a few things about these sequence spaces and the Lorentz-Zygmund operator ideals.

Definition 4. ([7])
Let $0<p, q<\infty$ and $-\infty<\gamma<\infty$. The Lorentz-Zygmund sequence spaces are defined as follows

$$
l_{p, q, \gamma}:=\left\{x=\left\{x_{i}\right\}_{i} \in c_{0}: \sum_{i=1}^{\infty}\left[i^{\frac{1}{p}-\frac{1}{q}} \cdot(1+\log i)^{\gamma} \cdot s_{i}(x)\right]^{q}<\infty\right\} .
$$

These are quasi-normed spaces, with the quasi-norm

$$
\|x\|_{p, q, \gamma}:=\left(\sum_{i=1}^{\infty}\left[i^{\frac{1}{p}-\frac{1}{q}} \cdot(1+\log i)^{\gamma} \cdot s_{i}(x)\right]^{q}\right)^{\frac{1}{q}}
$$

Definition 5. ([7], [8])
Let E, F be Banach spaces, s an additive s-number and $0<p<\infty, 0<q<$ $\infty,-\infty<\gamma<\infty$. We introduce the following operator classes:

$$
\begin{aligned}
& L_{p, q, \gamma}^{(s)}(E, F):= \\
& \left\{T \in L(E, F):\|T\|_{p, q, \gamma}^{(s)}:=\left(\sum_{n=1}^{\infty}\left[n^{\frac{1}{p}} \cdot(1+\log n)^{\gamma} \cdot s_{n}(T)\right]^{q} \cdot n^{-1}\right)^{\frac{1}{q}}<\infty\right\}, \\
& \text { and for } q=\infty \\
& L_{p, \infty, \gamma}^{(s)}(E, F):= \\
& \left\{T \in L(E, F):\|T\|_{p, \infty, \gamma}^{(s)}:=\sup _{n}^{n} n^{\frac{1}{p}} \cdot(1+\log n)^{\gamma} \cdot s_{n}(T)<\infty\right\} \\
& \text { We denote by } L_{p, q, \gamma}^{(s)}:=\bigcup_{E, F \text { Banach spaces }}^{(s)} L_{p, q, \gamma}^{(s)}(E, F) .
\end{aligned}
$$

Remark 2. ([7], [8])
Let s be an additive s-number and $0<p<\infty, 0<q \leq \infty,-\infty<\gamma<\infty$, then $\left(L_{p, q, \gamma}^{(s)}\|\cdot\|_{p, q, \gamma}^{(s)}\right)$ is a quasi-normed operator ideal.

We are giving now an interpolation result obtained by classical methods
Proposition 6. ([8])
Let E, F be Banach spaces, $0<p_{0}<p_{1}<\infty, 0<q_{0}, q_{1}, q \leq \infty, 0<\gamma_{0}, \gamma_{1}<$ ∞ and $0<\theta<1$. Then
$\left(L_{p_{n}, q_{0}, \gamma_{0}}^{(s)}(E, F), L_{p_{1}, q_{1}, \gamma_{1}}^{(s)}(E, F)\right)_{\theta, q} \subseteq L_{p_{, ~, ~}^{\prime}, \gamma}^{(s)}(E, F)$, where $\frac{1}{p}=\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}}$ and $\gamma=(1-\theta) \cdot \gamma_{0}+\theta \cdot \gamma_{1}$.

At the end of this section we shall remind the construction of the operator classes $P_{p, q, \gamma}$ and one of the properties proved in [1].

Definition 7. ([4])
Let E be a Banach space and I an index set. An E-valued family $\left\{x_{i}\right\}_{i \in I}$ is said to be absolutely r-summable if $\left\{\left\|x_{i}\right\|\right\} \in l_{r}(I)$. The set of these families is denoted by $\left[l_{r}(I), E\right]$.

For $\left\{x_{i}\right\}_{i \in I} \in\left[l_{r}(I), E\right]$ we define:

$$
\left\|\left\{x_{i}\right\} \mid\left[l_{r}(I), E\right]\right\|:=\left(\sum_{i}\left\|x_{i}\right\|^{r}\right)^{1 / r}
$$

If there is no risk of confusion, then we use the shortened symbol $\left\|\left\{r_{i}\right\} \mid l_{r}\right\|$. Moreover, we write $\left[l_{r}, E\right]$ instead of $\left[l_{r}(N), E\right]$.

Proposition 8. ([4])
$\left[l_{r}(I), E\right]$ is a Banach space.
Definition 9. ([4])
Let E be a Banach space and I an index set. An E-valued family $\left\{x_{i}\right\}_{i \in I}$ is said to be weakly r-summable if $\left\{\left\langle x_{i}, a\right\rangle\right\} \in l_{r}(I)$ for all $a \in E^{*}$.

The set of these families is denoted by $\left[u_{r}(I), E\right]$. For $\left\{x_{i}\right\}_{i \in I} \in\left[u_{r}(I), E\right]$ we define:

$$
\left\|\left(x_{i}\right) \mid\left[u_{r}(I), E\right]\right\|=\sup \left\{\left(\sum_{i}\left|\left\langle x_{i}, a\right\rangle\right|^{r}\right)^{1 / r}: a \in U_{E^{*}}\right\} .
$$

If there is no risk of confusion, then we use the shortened symbol $\left\|\left\{x_{i}\right\} \mid w_{r}\right\|$. Moreover, we write $\left[w_{r}, E\right]$ instead of $\left[u_{r}(N), E\right]$.

Proposition 10. ([4])
$\left[\omega_{r}(I), E\right]$ is a Banach space.

Remark 3. ([1])

Using the Lorentz-Zygmund sequence spaces, $l_{p, q, \gamma}$, we can define, in a similar way, the spaces $\left[l_{p, q, \gamma}(I), E\right]$ and $\left[u_{p, q, \gamma}(I), E\right]$.

Definition 11. ([1])

Let E, F be Banach spaces and $0<p_{1}, p_{2}<\infty, 1 \leq q_{2} \leq q_{1}<\infty,-\infty<$ $\gamma_{1}, \gamma_{2}<\infty$. An operator $T \in L(E, F)$ is called absolutely $\left(p_{12}, q_{12}, \gamma_{12}\right)$-summing if there exists a constant $c \geq 0$ such that

$$
\begin{aligned}
& \left(\sum_{i=1}^{n}\left[i^{\frac{1}{p_{1}}-\frac{1}{q_{1}}} \cdot(1+\log i)^{\gamma_{1}} \cdot\left\|T x_{i}\right\|\right]^{q_{1}}\right)^{\frac{1}{q_{1}}} \leq \\
& \leq c \cdot \sup _{a \in U_{E} \cdot}\left(\sum_{i=1}^{n}\left[i^{\frac{1}{p_{2}}-\frac{1}{q_{2}}} \cdot(1+\log i)^{\gamma_{2}} \cdot\left|\left\langle x_{i}, a\right\rangle\right\rangle\right]^{q_{2}}\right)^{\frac{1}{q_{2}}}, \text { for every finite family }
\end{aligned}
$$

of elements $x_{1}, \ldots x_{n} \in E$. The set of these operators is denoted by $P_{p_{12}, q_{12}, \gamma_{12}}(E, F)$.
For $T \in P_{p_{12}, q_{12}, \gamma_{12}}(E, F)$ we define $\pi_{p_{12}, q_{12}, \gamma_{12}}(T):=\inf c$, the infimum being taken over all constants $c \geq 0$ for which the above inequality holds.

Theorem 12. ([1])
$P_{p_{12}, q_{12}, \gamma_{12}}$ is an injective Banach operator ideal.

2. Results

We start by giving a result concerning the "lexicografic order" of the LorentzZygmund sequence spaces.

Proposition 13.

We have the following inclusion:

$$
l_{p, q_{0}, \gamma} \subseteq l_{p, q_{1}, \gamma} \text {, where } 0<p<\infty, 0<q_{0}<q_{1} \leq \infty, \gamma>0 .
$$

Proof. We whall need the following result, established by N. Tiţa, in [8], for the operator ideal case.

Proposition 14.

Let $0<p<\infty, 0<q \leq \infty$ and $0<\gamma<\infty$ then

$$
\left\{x_{n}\right\}_{n} \in l_{p, q, \gamma} \Leftrightarrow\left\{2^{\frac{n-1}{p}} \cdot s_{2^{n-1}}(x)\right\}_{n} \in l_{r, q}, \text { where } \gamma=\frac{1}{r}-\frac{1}{q} .
$$

Moreoever there are the constants c and \bar{c}, which depend on p, q, γ, such that:

$$
c \cdot\left\|\left\{2^{\frac{n-1}{p}} \cdot s_{2^{n-1}}(x)\right\}_{n}\right\|_{r, q} \leq\|x\|_{r, q, \gamma} \leq \bar{c} \cdot\left\|\left\{2^{\frac{n-1}{p}} \cdot s_{2^{n-1}}(x)\right\}_{n}\right\|_{r, q}
$$

We start now our proof.
Let $\xi=\left\{\xi_{n}\right\}_{n} \in l_{p, q_{0}, \gamma} \Leftrightarrow\left\{2^{\frac{n-1}{p}} \cdot s_{2^{n-1}}(\xi)\right\}_{n} \in l_{r, q_{0}}$, where $\gamma=\frac{1}{r}-\frac{1}{q_{0}}$.
Let $\varphi_{1}>q_{0}$ and r_{1} such that $\gamma=\frac{1}{r_{1}}-\frac{1}{q_{1}}$. It follows that $\frac{1}{r}-\frac{1}{q_{0}}=\frac{1}{r_{1}}-\frac{1}{q_{1}} \Leftrightarrow \frac{1}{r_{1}}=\frac{1}{r}+\left(\frac{1}{q_{1}}-\frac{1}{q_{2}}\right) \Rightarrow \frac{1}{r_{1}}<\frac{1}{r} \Rightarrow r_{1}>r$.
From the "lexicografic orderliness" of the Lorentz sequence spaces, [4], [7], we know that $l_{r, q_{0}} \subseteq l_{r_{1}, q_{1}}$.

So $\left\{2^{\frac{n-1}{p}} \cdot s_{2^{n-1}}(\xi)\right\}_{n} \in l_{r, q_{1}} \Leftrightarrow \xi=\left\{\xi_{n}\right\}_{n} \in l_{p, q_{1}, \gamma}$.
In conclusion $l_{p, q_{0}, \gamma} \subseteq l_{p, q_{1}, \gamma}$, for $0<p<\infty, 0<q_{0}<q_{1} \leq \infty, \gamma>0$.

Proposition 15.

Let. $0<p_{0}<p_{1}<\infty, 0<q_{0}, q_{1}, q \leq \infty, 0<\gamma_{0}, \gamma_{1}<\infty$ and $0<\theta<1$. Then $\left(l_{p_{0}, q_{0}, \gamma_{0}}, l_{p_{1}, q_{1}, \gamma_{1}}\right)_{\theta, q} \subseteq l_{p, q, \gamma}$, where $\frac{1}{p}=\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}}$ and $\gamma=(1-\theta) \cdot \gamma_{0}+\theta \cdot \gamma_{1}$.

Proof. If we take account of the similarity between the properties of the sequences $\left\{s_{n}(T)\right\}_{n}$, where s is an additive s-scale, $T \in L(E, F)$, and $\left\{s_{n}(x)\right\}_{n}$, where $x=$ $\left\{x_{n}\right\}_{n} \in l_{\infty}$, the proof of the above inclusion will have the same course like the proof of the Proposition 6.

We shall consider $q<\infty$, the proof of the case $q=\infty$ being similar.
From the Proposition 13 it follows that we have the inclusion

$$
\left(l_{p_{0}, q_{0}, \gamma_{0}}, l_{p_{1}, q_{1}, \gamma_{1}}\right)_{\theta, q} \subseteq\left(l_{p_{0}, \infty}, \gamma_{0}, l_{p_{1}, \infty, \gamma_{1}}\right)_{\theta, q} .
$$

So it will be enough to prove the relation

$$
\left(l_{p_{0}, \infty, \gamma_{0}}, l_{p_{1}, \infty, \gamma_{1}}\right)_{\theta, q} \subseteq l_{p, q, \gamma} .
$$

Let $x=\left\{x_{n}\right\}_{n} \in\left(l_{p_{0}, \infty, \gamma_{0}}, l_{p_{1}, \infty, \gamma_{1}}\right)_{\theta, q}$. We shall consider the arbitrary decomposition
$x=x^{0}+x^{1}$, where $x^{i}=\left\{x_{n}^{i}\right\}_{n} \in l_{p_{i}, \infty, \gamma_{i}}, i \in\{0,1\}$.
Let $i \in\{0,1\}$ then
$x^{i}=\left\{x_{n}^{i}\right\}_{n} \in l_{p_{i}, \infty, \gamma_{i}} \Leftrightarrow$
$\Leftrightarrow\left\|x^{i}\right\|_{p_{i}, \infty, \gamma_{i}}=\sup _{n}\left[n^{\frac{1}{p_{i}}} \cdot(1+\log n)^{\gamma_{i}} \cdot s_{n}\left(x^{i}\right)\right]<\infty \Rightarrow$
$\Rightarrow s_{n}\left(x^{i}\right) \leq n^{-\frac{1}{p_{i}}} \cdot(1+\log n)^{-\gamma_{i}} \cdot\left\|x^{i}\right\|_{p_{1}, \infty, \gamma_{i}}$, for any natural n.
We shall evaluate $\|x\|_{p, q, \gamma}$.
$\left(\|x\|_{p, q, \gamma}\right)^{q}=\sum_{n=1}^{\infty}\left[n^{\frac{1}{\nu}} \cdot(1+\log n)^{\gamma} \cdot s_{n}(x)\right]^{q} \cdot \frac{1}{n}=$
$=\sum_{n=1}^{\infty}\left[(2 \cdot n-1)^{\frac{1}{p}-\frac{1}{q}} \cdot(1+\log (2 \cdot n-1))^{\gamma} \cdot s_{2 \cdot n-1}(x)\right]^{q}+$
$+\sum_{n=1}^{\infty}\left[(2 \cdot n)^{\frac{1}{p}-\frac{1}{q}} \cdot(1+\log (2 \cdot n))^{\gamma} \cdot s_{2 \cdot n}(x)\right]^{q} \leq$
$\leq \sum_{n=1}^{\infty}\left[(2 \cdot n-1)^{\frac{1}{p}-\frac{1}{q}} \cdot(1+\log (2 \cdot n-1))^{\gamma} \cdot s_{2 \cdot n-1}(x)\right]^{q}+$
$+\sum_{n=1}^{\infty}\left[(2 \cdot n)^{\frac{1}{p}-\frac{1}{q}} \cdot(1+\log (2 \cdot n))^{\gamma} \cdot s_{2 \cdot n-1}(x)\right] \leq$
$\leq c(p, q, \gamma) \cdot \sum_{n=1}^{\infty}\left[n^{\frac{1}{p}-\frac{1}{q}} \cdot(1+\log n)^{\gamma} \cdot s_{2 \cdot n-1}(x)\right]^{q} \leq$
$\leq c(p, q, \gamma) \cdot \sum_{n=1}^{\infty}\left[n^{\frac{1}{p}-\frac{1}{q}} \cdot(1+\log n)^{\gamma} \cdot\left(s_{n}\left(x^{0}\right)+s_{n}\left(x^{1}\right)\right)\right]^{q} \leq$
$\leq c(p, q, \gamma)$.
$\sum_{n=1}^{\infty}\left[n^{\frac{1}{p}-\frac{1}{q}}(1+\log n)^{\gamma-\gamma_{0}} n^{-\frac{1}{p_{0}}}\left(\left\|x^{0}\right\|_{p_{0}, \infty, \gamma_{0}}+n^{\frac{1}{p_{0}}-\frac{1}{p_{1}}}(1+\log n)^{\gamma_{0}-\gamma_{1}}\left\|x^{1}\right\|_{p_{1}, \infty, \gamma_{1}}\right)\right]^{q}$.
The decomposition $x=x^{0}+x^{1}$ being arbitrary and taking account of the
K-functional's definition

$$
\begin{aligned}
& K\left(x, n^{\frac{1}{p_{0}}-\frac{1}{p_{1}}} \cdot(1+\log n)^{\gamma_{0}-\gamma_{1}}, l_{p_{0}, \infty, \gamma_{0}}, l_{p_{1}, \infty, \gamma_{1}}\right) \text { we obtain that } \\
& \left\|x^{0}\right\|_{p_{0}, \infty, \gamma_{0}}+n^{\frac{1}{p_{0}}-\frac{1}{p_{1}}} \cdot(1+\log n)^{\gamma_{0}-\gamma_{1}} \cdot\left\|x^{1}\right\|_{p_{1}, \infty, \gamma_{1}} \leq \\
& \leq K\left(x, n^{\frac{1}{p_{0}}-\frac{1}{p_{1}}} \cdot(1+\log n)^{\gamma_{0}-\gamma_{1}}, l_{p_{0}, \infty, \gamma_{0}}, l_{p_{1}, \infty, \gamma_{1}}\right) \\
& \text { So }\left(\|x\|_{p, q, \gamma}\right)^{q} \leq \\
& \leq c \cdot \sum_{n=1}^{\infty}\left[n^{\frac{1}{p}-\frac{1}{p_{0}}}(1+\log n)^{\gamma-\gamma_{0}} K\left(x, n^{\frac{1}{p_{0}}-\frac{1}{p_{1}}}(1+\log n)^{\gamma_{0}-\gamma_{1}}\right)\right]^{q} \cdot \frac{1}{n} \leq \\
& \leq c_{1} \cdot \int_{1}^{\infty}\left[t^{\frac{1}{p^{2}}-\frac{1}{p_{0}}}(1+\log t)^{\gamma-\gamma_{0}} K\left(x, t^{\frac{1}{p_{0}}-\frac{1}{p_{1}}}(1+\log t)^{\gamma_{0}-\gamma_{1}}\right)\right]^{q} \frac{d t}{t}= \\
& =c_{1} \cdot \int_{1}^{\infty}\left[t^{\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}}-\frac{1}{p_{0}}}(1+\log t)^{(1-\theta) \gamma_{0}+\theta \gamma_{1}-\gamma_{0}} K\left(x, t^{\frac{1}{p_{0}}-\frac{1}{p_{1}}}(1+\log t)^{\gamma_{0}-\gamma_{1}}\right)\right]^{q} \frac{d t}{t}=
\end{aligned}
$$

$$
\begin{aligned}
& =c_{1} \cdot \int_{1}^{\infty}\left[t^{-\theta\left(\frac{1}{p_{0}}-\frac{1}{p_{1}}\right)}(1+\log t)^{-\theta\left(\gamma_{0}-\gamma_{1}\right)} K\left(x, t^{\frac{1}{p_{0}}-\frac{1}{p_{1}}}(1+\log t)^{\gamma_{0}-\gamma_{1}}\right)\right]^{q} \frac{d t}{t}= \\
& =c_{1} \cdot \int_{1}^{\infty}\left[\left(t^{\frac{1}{p_{0}}-\frac{1}{p_{1}}} \cdot(1+\log t)^{\gamma_{0}-\gamma_{1}}\right)^{-\theta} \cdot K\left(x, t^{\frac{1}{p_{0}}-\frac{1}{p_{1}}} \cdot(1+\log t)^{\gamma_{0}-\gamma_{1}}\right)\right]^{q} \frac{d t}{t} .
\end{aligned}
$$

Let now define $f:(1, \infty) \rightarrow(0, \infty), f(t)=t^{\frac{1}{p_{0}}-\frac{1}{p_{1}}} \cdot(1+\log t)^{\gamma_{0}-\gamma_{1}}$.
$f^{\prime}(t) \cdot t=\left(\frac{1}{p_{0}}-\frac{1}{p_{1}}\right) \cdot t^{\frac{1}{p_{0}}-\frac{1}{p_{1}}} \cdot(1+\log t)^{\gamma_{0}-\gamma_{1}}+$
$+\left(\gamma_{0}-\gamma_{1}\right) \cdot t^{\frac{1}{p_{0}}-\frac{1}{p_{1}}} \cdot(1+\log t)^{\gamma_{0}-\gamma_{1}} \cdot \frac{1}{1+\log t} \cdot c_{2}=$
$=t^{\frac{1}{p_{0}}-\frac{1}{p_{1}}} \cdot(1+\log t)^{\gamma_{0}-\gamma_{1}} \cdot\left(\frac{1}{p_{11}}-\frac{1}{p_{1}}+\left(\gamma_{0}-\gamma_{1}\right) \cdot \frac{1}{1+\log t} \cdot c_{2}\right) \leq c_{3} \cdot f(t)$.
Hence we obtain $\left(\|x\|_{p, q, \gamma}\right)^{q} \leq$
$\leq c_{1} \cdot \int_{1}^{\infty}\left[\left(t^{\frac{1}{p_{0}}-\frac{1}{p_{1}}} \cdot(1+\log t)^{\gamma_{0}-\gamma_{1}}\right)^{-\theta} \cdot K\left(x, t^{\frac{1}{p_{0}}-\frac{1}{p_{1}}} \cdot(1+\log t)^{\gamma_{0}-\gamma_{1}}\right)\right]^{q} \frac{d t}{t}=$
$=c_{1} \cdot \int_{1}^{\infty}\left[f(t)^{-\theta} \cdot K(x, f(t))\right]^{q} \cdot f^{\prime}(t) \cdot \frac{1}{f^{\prime}(t) \cdot t} d t \leq c_{3} \cdot \int_{1}^{\infty}\left[f(t)^{-\theta} \cdot K^{\prime}(x, f(t))\right]^{q}$. $\frac{1}{f(t)} \cdot f^{\prime}(t) \cdot d t=$
$=c_{3} \cdot \int_{0}^{\infty}\left[s^{-\theta} \cdot K(x, s)\right]^{q} \cdot \frac{d s}{s}<\infty$.
(We have made the following change of variable $f(t)=s$.)
In conclusion $x \in l_{p, q, \gamma}$.

Proposition 16.

Let I be any infinite index set. An operator $T \in L(E, F)$ is absolutely $\left(p_{12}, q_{12}, \gamma_{12}\right)$-summing if and only if $T(I):\left\{x_{i}\right\}_{i \in I} \rightarrow\left\{T x_{i}\right\}_{i}$ defines a linear and bounded operator from $\left[w_{p_{2}, q_{2}, \gamma_{2}}(I), E\right]$ into $\left[l_{p_{1}, q_{1}, \gamma_{1}}(I), F\right]$. When this is so, then

$$
\pi_{p_{12}, q_{12}, \gamma_{12}}(T)=\left\|T(I):\left[u_{p_{2}, q_{2}, \gamma_{2}}(I), E\right] \rightarrow\left[l_{p_{1}, q_{1}, \gamma_{1}}(I), F\right]\right\| .
$$

Proof. It is similar to the proof for the similar result for absolutely (r, s)-summing operators, see Proposition 1.2.2 from [3].

Suppose that $T \in P_{p_{12}, q_{12}, \gamma_{12}}(E, F)$ and $\left(x_{i}\right)_{i \in I} \in\left[w_{p_{2}, q_{2}, \gamma_{2}}(I), E\right]$. Then we have

$$
\begin{aligned}
& \left(\sum_{i}\left[i^{\frac{1}{p_{1}}-\frac{1}{q_{1}}} \cdot(1+\log i)^{\gamma_{1}} \cdot\left\|T x_{i}\right\|\right]^{q_{1}}\right)^{\frac{1}{q_{1}}} \leq \\
& \leq \pi_{p_{12}, q_{12}, \gamma_{12}}(T) \cdot \sup _{a \in U_{E}}\left(\sum_{i}\left[\left.i \frac{1}{p_{2}}-\frac{1}{q_{2}} \cdot(1+\log i)^{\gamma_{2}} \cdot \right\rvert\,\left\langle x_{i}, a\right\rangle\right]^{q_{2}}\right)^{\frac{1}{q_{2}}}, \text { for all } F,
\end{aligned}
$$

$$
F \in \mathbf{F}(I) \text {. Passing to the limit } I \text { yields }
$$

$$
\left\|\left(T x_{i}\right)_{i \in I}\left|\left[l_{p_{1}, q_{1}, \gamma_{1}}(I), F\right]\left\|\leq \pi_{p_{12}, q_{12}, \gamma_{12}}(T) \cdot\right\|\left(x_{i}\right)_{i \in I}\right|\left[w_{p_{2}, q_{2}, \gamma_{2}}(I), E\right]\right\| .
$$

This proves that

$$
\left\|T(I):\left[w_{p_{2}, q_{2}, \gamma_{2}}(I), E\right] \rightarrow\left[l_{p_{1}, q_{1}, \gamma_{1}}(I), F\right]\right\| \leq \pi_{p_{12}, q_{12}, \gamma_{12}}(T)
$$

The reverse inequality is obvious.
Theorem 17. (interpolation theorem)
Let E, F be Banach spaces. If $0<p_{1}<p_{3}<\infty, 0<p_{2}<\infty, 0<$ $q_{1}, q_{2}, q_{3}, q_{4}<\infty, 0<\gamma_{1}, \gamma_{3}<\infty$ and $0<\theta<1$, then
$\left(P_{p_{12}, q_{12}, \gamma_{12}}(E, F), P_{p_{32}, q_{32}, \gamma_{32}}(E, F)\right)_{\theta, q_{4}} \subseteq P_{p_{42}, q_{42}, \gamma_{42}}(E, F)$, where $\frac{1}{p_{1}}=$ $\frac{1-\theta}{p_{1}}+\frac{\theta}{p_{3}}$ and $\gamma_{4}=(1-\theta) \cdot \gamma_{1}+\theta \cdot \gamma_{3}$.

Proof. We use the idea from the proof of the interpolation theorem for the absolutely (p, q)-summing operators. This theorem can be found in [4], Proposition 1.2.6.

Let $\left\{x_{i}\right\}_{i} \in\left[w_{p_{2}, q_{2}, \gamma_{2}}, F\right]$. We define the operator
$X: T \in L(E, F) \rightarrow\left\{T x_{i}\right\}_{i}$. From the Proposition 16 it follows that, for $T \in P_{p_{12}, q_{12}, \gamma_{12}}(E, F),\left\{T x_{i}\right\}_{i} \in\left[l_{p_{1}, q_{1}, \gamma_{1}}, F\right]$ and, for $T \in P_{p_{32}, q_{32}, \gamma_{32}}(E, F),\left\{T, x_{i}\right\}_{i} \in$ $\left[l_{p_{3}, q_{3}, \gamma_{3}}, F\right]$.

So for

$$
\begin{aligned}
& T \in\left(P_{p_{12}, q_{12}, \gamma_{12}}(E, F), P_{p_{32}, q_{32}, \gamma_{32}}(E, F)\right)_{\theta, q_{4}} \Rightarrow \\
& \Rightarrow\left\{T x_{i}\right\}_{i} \in\left(\left[l_{p_{1}, q_{1}, \gamma_{1}}, F\right],\left[l_{p_{3}, q_{3}, \gamma_{3}}, F\right]\right)_{\theta, q_{4}} \subseteq\left[l_{p_{4}, q_{4}, \gamma_{4}}, F\right] \text {. We have applied }
\end{aligned}
$$ the Proposition 15.

In conclusion

$$
X: T \in\left(P_{p_{12}, q_{12}, \gamma_{12}}(E, F), P_{p_{32}, q_{32}, \gamma_{32}}(E, F)\right)_{\theta, q_{4}} \rightarrow\left\{T x_{i}\right\}_{i} \in\left[l_{p_{4}, q_{4}, \gamma_{4}}, F\right]
$$

Hence the assertion follows from the Proposition 16.

References

[1] C. Antonescu, C. Pârvulescu, A. Subțire, A new class of absolutely summing operators, Proc. of the Conf. Held in Honour of Professor Elena Popoviciu, Cluj-Napoca, October 15-16, 1999, pp. 16-26.
[2] J. Bcrgh, J. Löfstrom, Intcrpolation spaces, Springer Verlag, 1976.
[3] B.Carl, I. Stephani, Entropy, compactness and the approximation of operators, Cambridge Univ. Press, Cambridge, 1990.
[4] A. Pietsch, Eigenvalues and s-numbers, Cambridge Univ. Press, Cambridge, 1987.
[5] N. Tiţa, Norming operator ideals, Braşov Univ. Press, Braşov, 1979.(in Romanian)
[6] N. Tiţa, Complements of operator ideals, Braşov Univ. Press, Braşov, 1983.(in Romanian)
[7] N. Tiţa, Operator ideals generated by s-numbers, Edit. Transilvania, Brazov, 1998.(in Romanian)
[8] N. Tita, Some properties of Lorentz-Zygmund ideals, preprint 1999.
[9] H. Triebel, Interpolation theory, functions spaces, differential operators, North Holland, 1980.
"Dr. I. Meşotă" Secondary School, 2200 Braşov, Romania
Ei-mail address: adiantofx.ro

[^0]: Key words and phrases. p-ahsolutely summing operators, p-q absolutely summing operators, symmetric norming function, Lorentz-Zygmund sequence ideals.

