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INEQUALITIES FOR GENERALIZED CO N VEX FUNCTIONS W ITH
APPLICATIONS, I.

J Ô Z S E F  S À N D O R I

A b str a c t . The Theory of Inequalities has a majore role in Mathematical 

Analysis, and in almost all areas of Mathematics, too. In this theory, 

the convex functions and the generalized convexity plays a special role.

The author has published a series of papers with applications of convexity 

inequalities in various fields of Mathematics. We quote applications in 

geometry (see e.g. [16], [22]), special functions ([19], [18], [23]); number 

theory (see many articles collected in the monograph [34]); the theory of 

means ([24], [25], [31], [33]), etc.

The aim of this series of papers (planned to have 4 parts) is to 

survey the most important ideas and results of the author in the theory 

of convex inequalities. In the course of this survey, many new results and 

applications will be obtained. In most cases only the new results will be 

presented with a proof; the other results will be stated only, with con

nections and/or applications to known theorems. All material is centered 

around three most important inequalities, namely: Jensen’s inequality, 

Jensen-Hadamard’s (or Hermite-Hadamard’s) inequality and Jessen’s in

equality.

1. Jensen’s inequality

One of the most important inequalities is Jensen’s inequality either in its 

discrete or in its integral form. In what follows we will discuss various generalizations, 

extensions, special cases, or refinements.
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JÔZSEF SÂNDOR

A . Let start with /  : [a, 6] —>■ R, a convex function in the classical sense, and let 

L : C[a, b] —>■ R  be a linear and positive functional defined on the space C[a, b] of all 

continuous functions on [a,6]. Put e^(æ) =  xk, x £ [a, 6], (fc G N).

T heorem  1.1. (see [9] and [22]) If the above conditions are satisfied and the functional 

L has the property L(eo) =  1, then the following double-inequality holds true:

f (L(e0 )  <  L(f) < L(ei) m - m
b — a +

bf(a) -  af{b) 
b — a (i)

Proof. See [22].

C orollary  1 .1 . Let L(f) =  7-^— f  f(t)dt. Then Lie0) =  1 and the relation (1)
0 -  a Ja

gives us the classical Jensen-Hadamard inequality

(6 -  a)f  f{x)dx < ( b - a ) M + m
( 2)

which will be considered later. n
C orollary  1 .2. Let >  0 (i =  l,n ) with =  1, and let a,- E [a, 6], (i =  l,n).

»=in
Let us define the functional L(f) =  iui/(a,), which is linear and positive. From

»=i
(1) we can deduce the double relation

/ I to,a, ) < ] > 2 w i f ( a i) < ( 5 Z u,‘ai 
\«=1 }  >=1 \«=1 /

7 W - / ( « ) '
b — a

, b f (a ) -a f (b )  (3)

The left side of this relation is the famous discrete (pondered) inequality by 

Jensen ([5], [8], [10]).

C orollary  1.3. Let p : [a, 6] -*  R  be a strictly positive, integrable function, and let 

g : [a, 6] —» R  continuous, strictly monotone on [a, 6]. Define

Lg(f)
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INEQUALITIES FOR GENERALIZED CONVEX FUNCTIONS WITH APPLICATIONS, I.

We can deduce from (1) the important integral inequality by Jensen:

j  p(x)g(x)dx

I p(x)dx 
J a

f p{x)f\g(x)]dx
J a_________________

,6
j p(x)dx 

J a

(4)

with various applications in different branches of Mathematics. We will see later, how 

can be applied (4) in the theory of means.

Remark. From the proof of the left side of (1) one can see that in place of convex 

functions one can consider invex functions related to  r) : [a, 6] x [a, 6] -> [a, 6] (see 

[32]). This gives the following result:

Theorem  1.2. If the function f  : [a, 6] -> R  in invex related to a given function rj, 

and the following condition is satisfied:

L{r){ei, L{ei))) — 0, (5)

then one has

/ (£ ( « ! ) )  < L(f). (6)

Corollary 1.4. Under the above conditions, as well as the conditions of Corollary

1.2, if in addition we assume that

then
, » = 1

=  0,

/  I Y  Wiai J < Y  Wif (ai)• (7)
\*=1 /  i =  l

We note that this relation holds true (with the analogous proof) for invex 

functions /  : S' R  with S C R n (see [32]).

B. Let /  : [a, 6] - »  R  and put a =  ( a i , . . . ,a n) G ([a,&])n« Let us consider the 

following expression

Aktn — ^4/c,n(a) — (Jk 5 3
1<*< • <ik<n

’ +  a*
( 8)
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JÔZSEF SÀNDOR

(where C* =  Clearly

This expression was considered for the first time by S. Gabier [7]. A more 

general (pondered) form is given by

Akin(a ,w)=  - k} lT-r  £  (w,.i +  . . .  +  w, . J / ( W>̂ .-+_
^ n _ l  v v n 1 < i l < . . . < i k < n

+  w i k a ik 

+ U>ik

(9)

with Wn =  ^ 2  W{. The following refinement of the Jensen inequality holds true:
* = 1

T heorem  1.3. ([29]) One has

/ \
/  , Wjaj

w n — An>n < * • • 5* 5* <  .. ,A\̂ n —

t=i________

i >
i = 1

( 10 )

C orollary 1.5.

— E (n — 1 w\ -\------- (-WjH------- i w ’n ) / (
mi a H ------- h Wjâj ------- h wnan

U)i H---------- (- Wi H---------- h w n )s

< 1 X j™ » /(« .)
~ n J2 ™i ( 1 1 )

where t?, denotes the fact that the term Wi is missing in the summation with n — 1 

terms (between n terms).

Proof. Apply (10) for k = n — 1 .

Another refinement of Jensen’s inequality is contained in
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INEQUALITIES FOR GENERALIZED CONVEX FUNCTIONS WITH APPLICATIONS, I.

Theorem  1.4. ([29]) Let Wi > 0, =  Wn >  0, at- G [a,6] (i =  l,n ). If
»=l

/  : [a, 6] —> R  is convex, then for all u, v > 0 with u + v >  0 one has the inequality

< (12) 
KKn ,= 1

C. The above theorems still hold in arbitrary linear spaces, by considering the ele

ments ai (i =  1, n) to be contained in a convex subset.

Let now X  be a real prehilbertian space with scalar product (,) and norm 

|| • ||. Let S C X  be a convex subset of X. The function /  : 5  —>■ R  will be called 

uniform ly-convex on S if

A /(x ) +  (1 -  A)f(y)  -  /[Ax +  (1 -  A)y] > A(1 -  A)||x -  y||2 (13)

for all x, y G 5, À G [0,1].

Holds true the following characterization of uniformly-convex functions: 

P roposition  1 .1 . ([27]) Let /  : 5  R  defined on the convex subset S C X.  Then 

the following assertions are equivalent:

(i) /  is uniformly-convex on S

(ii) /  — || • ||2 is convex on 5.

Examples. 1) Let A : T>(A) C X  -> X  let be a linear, symmetric operator on the 

subspace V(A)  of X,  which is coerciv, i.e. satisfying the relation

(j4x , x ) >  7||x||2, V x G T>(A) (7 > 0).

Then the function /a '■ T̂ (A) —> R , (x) =  — (Ax, x) is uniformly-convex on
7

V(A).

2) Let /  : (a, 6) C R  —> R  be a twice differentiable functions satisfying
2

f"{x)  > 0 >  0, x G (a, 6). Let g(x) =  — f{x), x G (a, b). Then g is uniformly-convex.

The following theorem gives also a refinement of Jensen's inequality, in case 

of uniformly-convex functions:
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Theorem 1.6. ([27]) Let f  : S C X  —► R be uniformly-convex functions on the
n

convex set S; let Wi >  0, Wn >  0, (where Wn =  and let a,- G 5  (i =  1 ,n).

Then
»=i

i è  é  » < / ( « . ) - /  ( ţ i ;  Ê  - « < ) >

«=1
>  0. (14)

C orollary  1.6. Let A : X>(A) C ^  X  be an operator defined as in Example 1. 

Then for all a* G T>(A), Wi > 0, Wn >  0 (i =  1, n), holds true the following inequality:

»=1
a ,,a0 -  ( a  ^ QiWi

)  >  0. (15)

C orollary  1.7. Let /  : (a, 6) —> R  be defined as in Example 2. Then for all a,- G (a, 6), 

tu,- >  0 with Wn >  0 (i '= 1, n), we have

>  7 ( Wn 5 ^ u,«'ll°*l|2 ~ , WM
i= l i= 1

> j
*=i w 2 „

KKn \»=i

> 0.

D . The convex functions o f  order n were introduced in the science by Tiberiu

Popoviciu [11]. The following result is related to the discrete inequality by Jensen: 

T heorem  1.7. Let f  : (a, 6) —> R  be a concave and 3-convex function. Let (a,), (&,■) 

(i =  1, n) two sequences in (a, b) having the properties

ai < a2 < • < an < bn < * < b2 < bi 

ai+1 -  a{ > bi -  bj+i (i =  1, 2, . . . ,  n -  1) (n > 2).

Then

<
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(16)

Proof. We will use induction with respect to n. Let n =  2. For simplicity, let us 

assume that W2 =  w\ +  W2 =  1. Let ao =  toiai +  10202, 60 =  wib\ +  W2&2* If &i =  i>2, 

by concavity of /  it results to i/(a i) +  102/ ( 02) — /(toiOi +  ^ 2̂ 2) <  0, which shows 

that (16) is true in this case. If 61 ^  62, then a\ < ao < 02 < 62 <  60 <  61, so /  being

3-convex, we can write:

By definition, oq —oi =  102(02 — ai); 02 — ao =  101(02 — ai), so by multiplying

By concavity of /  it results wif(bi) 4- 102/ ( 62) — / ( M  < 0. From 02 — ai > 

61 -  62 > 0 we get w\f(a\) +  io2/ ( a 2) -  /(ao ) < ^ 1/(^ 1) +  io2/ ( 62) -  /(&0), proving 

(16) for n =  2.

Let us assume now that (16) holds true for all arguments from 2 to n — 1.

/ ( «  1) . / M  , /(ao)

(61 — &2H&1 — ^o) (62 — t i)(&2 — 6q) (bo — bi)(bo — 62)
f ( h )  , / ( t 2) , /(to )

both sides of (*) with 101102(02 — a i)2, one can deduce

Then

Let
n —1
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n — 1

d\ =  ^   ̂Wibi/Wn-u d>2 — bn.
i=l

Then the sequences {ci,C 2} and {^ 1,^2} satisfy the conditions of the theorem. Ap

plying the above proved case n =  2 with Wn- i  and wn in place of W2> we obtain 

the desired inequality.

C orollary 1.8. Let b >  0 and a,- E (0,6] (i =  l,n ). Let /  : (0,26] -> R  have a 

negative second derivative and a nonnegative third derivative. Then

| > « < )  <

< ^  è  WiK 2b E  w<(26 “  a<)^ • (17)

Proof. Put 6, =  26 — a*, where a\ < a2 <  • • • < an. Then the conditions of Theorem 

1.7 are satisfied, and we get relation (17). This inequality has been obtain by N. 

Levinson (see [5]) as a generalization of the famous inequality of Ky Fan ([5], [4],

[13]).

Let a,- € (o, , (i =  I^n),

= w “ è w<o<’ G" ( a) = n ar /Wn>
Vn »=i * = 1

where a =  (a i , .. . ,an). Put Afn(a) =  An( 1 — a), Gin(a) =  Gn( 1 — a). Then

Gn̂  <  An_
Gtn At n

(18)

Proof. Apply (17) with 6 =  ^ to f (x)  := lnæ. Then f" {x )  =  — < 0, /" '(æ ) =
2 2 *

—3 >  0, and after certain elementary computations we obtain Ky Fan’s inequality

fl8).

Let now, for simplicity, Wj =  1, (i =  l,n ). Then relation (17) can be written

also as

\  e  ^ È  w  - a*) -  (i9)n 7—r n . 7
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where An is the (unweighted) arithmetic mean of (a), and Atn is the (unweighted) 

arithmetic mean of (1 — a).

Let us introduce also

the corresponding harmonic means. Let f (x)  =  —  in (19). Then we can deduce the
x

following ” additive variant” of the Ky Fan inequality:

For other variants and refinements we quote the author’s papers [13], [14]. 

See also [4].

E. Inequalities for nondifferentiable 77-invex functions generally are fairly difficult to 

obtain. More precisely, either we must assume that the function /  satisfies certain 

complicated functional equations (see [32]), or if we do not admit such relations, the 

informations contained in these inequalities are more restrictive.

Let us remind that the function /  : S -> R  is called 77-invex on the 77-invex 

domain S> if one has

Let now S C R+ =  [0,oo) and apply relation (22) to p := q := x-i, 

x := x\ +  X2, yielding:

1

(20 )

f(u  +  Xt,(x , « )) <  Xf(x) +  (1 -  X)f(u) for all z, u G S, X G [0,1]. (21)

Let A =  —- — (p, q >  0). From (21) it follows
p + q

Up +  q)u+pT){x,u) 
1 L P +  9

< Pf(x) +  <lf{u) 
P + 1

(2 2 )

J. (x i  + X2)u  +  XXT}(xx +  3?2, u) ' < x l f { x i  + x 2) +  x 2f(u) 
X i  - f  X2 J ”  X\ +  X2

By interchanging x\ with X2 we can write

Xi + X 2

Xl +  X2 Xi +  x2
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By addition we get

f {x i  +  x2) +  f{u) > f[u +  aiT)(xi +  x2) u)] +  f[u +  a2rj(x i +  x2) ti)] (23)

where a i +  <*2 =  1 , a i  >  0, a2 >  0.

Put 11 :=  0 in (23) and assume that /  satisfies

f (a0(b)) > f(ab) eu a, b >  0

where 6(x) =  77(2:, 0). By taking into account of

(24)

xi
[xi + x 2 

one gets the inequality

0 {xi - f x 2) >  / ( *  1) §i /
X2

Xi +  X 20{x 1 +  a?2) > f i x2),

/(a?i) +  / (^ 2) <  / (^ i  +  « 2) +  /(0 ), with «1 >  0, x2 > 0. (25)

By mathematical induction it easily follows now that

f { x  1) + ----1- f { x n) < f ( x  1 + ------ h xn) +  (n -  l)/(® o), Xi >  0 (i =  Î 7n) (n >  1)

(26)

So, we have proved the following result:

T heorem  1 .8. Let /  : [0,oo) —> R  be 77-invex function and let $(x) =  77(3?, 0) with 

x >  0. Let us assume that for a, b >  0 one has the inequality f(ad(b)) >  / ( 06). Then, 

for all Xi >0  (i =  1, n), (n >  1) we have the inequality (26).

Remark. For convex /  and 6(x) =  æ we can reobtain from (26) the known inequality 

by M. Petrovic ([10]).

In what follows we shall introduce the notion of invex com bination. Let 

X  be a linear space and let S' C X  be an invex subset of X. We say that 2 is an 

invex combination of x\ and x2, in notation z E inv(æi,a?2) if there exists A E [0,1] 

such that 2 =  x 2 +  \r}{xi,x2). Let E S. Then 2 E inv(«i, x2y. . . ,  xn)

(invex combination of n elements) if there exist y E inv(a?i,. . . ,  æn_i) and there 

exists A E [0,1] such that

2 =  y + \ri(xn,y) E inv(y,a?„).

We can prove the following analogue of Jensen’s inequality:
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Theorem 1.9. Let f  : S —> R  be rj-invex function. Then for all n > 2 and x\, x2i • • *, €

S and z G in v (x i, £2, . . . ,  xn) there exists Z G c o n v ( / ( x i ) , . . . ,  f ( x n)) with the prop

erty

/ (* )  <  Z (27)

where conv is the convex combination.

Proof. We shall proceed by mathematical induction. For n =  2 we have z G 

inv(æi,jC2) G S, so z =  #2 +  Ai/(a?i,X2) and from (21) we can deduce f(z)  < 

A/(®i) +  (l  — A)/(a?2) =  Z G c o n v /(x i) , /(x 2))- Let us assume that relation (27) holds 

for n elements, and let zt G inv(a?i, £2, • • •, xn+i), where z G inv(a?i, a?2, . . . ,  xn). Then 

zf has a form zt =  z -1- Arç(æn+i, z) so we can write f(zt) < A / ( * n+1) +  ( l - A ) / ( z )  =  

A /(*n + i)+ (l-A )[A i/(æ i)+ A 2/ ( * 2)+- * •+An/(*n )] where Ai+- • •+A„ =  1. Therefore, 

/(* ) < A i(l — A )/(x i ) +  A2(1 -  A )/(x2) +  • • • + A „(l -  A )/(x „) +  A /(xn+i). Remarking

that A i ( l -  A)H-------hAn( l - A )  +  A =  1 we get f(zt) < Zt G c o n v (/(x i) ,. . .  , / ( x n+i)),

finishing the proof of Theorem 1.9.

F. In this final subsection on Jensen’s inequality we mention certain applications. 

First we reobtain the classical inequality of weighted means. This inequality plays a 

central role in information theory (Shannon’s theory of entropy) [1], in the theory of 

codes (Kraft’s inequality), in the theory of functional equations and rational group 

decision [2], etc. (See e.g. [3] for applications and economics, and [6] for geometric 

programming).

Theorem  1.10. (Theorem of means) Let aj >  0, qj >  0 (j =  1 ,n) with =  1.
3 =1

Then we have
n n

n  aij  ̂xi ̂
j= 1 3=1

(28)

Proof Select bj := log aj and the convex function f(t) =  et (t G (—00, 00)) and apply 

Jensen’s discrete inequality.

obtain:

1 1  1 1  
By letting n =  2, qi =  - ,  q2 =  a 1 =  xp, a2 =  yq with -  +  -  =  1, we

p q p q
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C orollary  1.9. a) (Young’s inequality)

< X M  I I I > °) (30)

xy <  i xp +  - y ç , where -  +  -  =  1, p >  1 (29)
~ p q p q

b) (Holder’s inequality)

l/P /  \ l/q

~  rq
i= i \j=i /  \j=i

Proof. It is sufficient to consider

/  » \ 1/p /  » ' 1/9 
w:=  ( Ë * ? )  » v = ( X > ?

and apply (29) for x :=  xj/u) y :=  y j/v . After summation we get (30).

The following little known refinement of (23) is due to the author [15]: 

T heorem  1.11. Let A > 0, p >  0 and let

- p - i  1Ip

JJ(1 +  A aj +  Ax)?J — 1

J(puq%*Pi A) =  < p f
i= i dx i

and

/•OO n

i T3 1

jT II p/Jo n<*+aj)9i dx

j

- i / p

Then we have the following inequalities:
n n

j  =  1 J - 1

(31)

Proof Since this result has been published in a journal with reduced circulation, we 

give here the proof of (31). First we prove that

n  1

I K ' < t
j= 1

]4 (1  +  Ao,-)9-1 -  1
3 =  1

5: X  ai qi '
i= i

(32)
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Indeed, let / (x )  =  ln(l +  Ae*), ï E R , which is strictly convex since / " (x )  =  

Aex/(1 +  Xex)2 >  0. By Jensen’s inequality we have

(  t  ajqj\ "
In I 1 +  AeJ=1 J < ln(l +  Aeflj).

By the substitution eaj -> aj we obtain
n n

1' +  A U  CtjJ <  P J (1 +  Aüj)qj .
7 = 1  7 =  1

On the other hand, from the inequality of means we can write
n n

J J (1 +  ACtj)qj <  1 +  A y
7 = 1  7 = 1

which combined with the above inequality gives (32). Apply now this inequality to 

aj +  x in place of aj and integrate the obtained relation. We can successively deduce

JJ(a j +  * ) «  <  j
7 = 1

and since p >  0, we have

||(1 ~b A aj +  Ax)9j — 1 
7 =  1 3 =  1

f +  aj )qi
i =i

- p - 1

dx >f
IJ (x  “1“ A(ij -|- Ax)9i — 1
7 = 1

- p - 1

dx >

>f
l  - p - i

7 =  1

(33)

By Holder’s integral inequality for n functions (which for 2 functions is in 

fact a consequence of (30), while for n functions follows by mathematical induction, 

see e.g. [8]) we can write
i  - p - i

f n ^ + o j ) 9'
7 = 1

r°° _ _
dx =  j  JJj(x +  aj)~p~'1]qjdx <

J Q 7 =  1

n r poo -igi ri 1

< n  (x +  a^-P -'da; =  11
/= i L7o J p
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which combined with (33) gives us

n  1 PC

3

r  n

£ ( *  +  a,-)«
J = 1

- P - 1

dx >

>rJo

JJ(1 +  Aoj -f Aa?)9j — 1 
i= i

- p - i

finishing the proof of theorem.
f  poo 'j i  fp

C orollary  1.10. (0102 . . . an)l!n <  J [(x -f a i ) . . .  (a +  an)]~(p+1^ndxj  < 

'(1 +  Aai +  A*)1/"  . . .  (1 +  Aan +  A*)1/"  -  1] ~P_1
4 f p ■] * }

- 1 / p

dx\ <

< ~ (ai + -----h an).
n

(34)

(Put =  • • • =  qn -  -  in (31)).n
A pplication . Let n =  3 in (34). We shall apply this relation in the theory of

geom etric inequalities. Let ABC  be a triangle of sides a, 6, c; with r as the inscribed

circle radius, R as the circumscribed circle radius. Then (see [16]) it is known that

a +  6 +  c „ n (a&c)1/ 3R > -------— and 2 r < -— ^ — .
“  3\/3 “ 7 3

From the above inequality for n =  3 we can obtain the following refinements

2r\/3 <  (abc)1/3 <  J(a ,6 ,c,p ) <  J(a,6, c,p, A) <  i(a-f-&  +  c) < Ry/3,
o

implying in fact infinitely many refinements of the classical Euler inequality 2r <  R.
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