SOME PROPERTIES OF THE ω-LIMIT POINTS SET OF AN OPERATOR

Abstract

In this paper we study the ω-limit points set of an operator, in the terms of the fixed points set, the periodic points set and the recurrent points set.

1. Introduction

Let (X, d) be a metric space and $A: X \rightarrow X$ an operator. In this paper we shall use the following notations and notions:
$P(x):=\{Y \subset X \mid Y \neq \emptyset\}$,
$I(A):=\{Y \in P(X) \mid A(Y) \subset Y\}$,
$F_{A}:=\{x \in X \mid A(x)=x\}$ - the fixed points set of A,
$P_{A}:=\bigcup_{n \in N^{*}} F_{A^{n}}$ - the periodic points set of A,
$P_{A}^{n}:=\left\{x \in X \mid A^{k}(x) \neq x, k=\overline{1, n-1}, A^{n}(x)=x\right\}$-the n -order periodic points set of A,
$\omega_{A}(x):=\left\{y \in X \mid \exists n_{k} \rightarrow \infty\right.$, such that $f^{n_{k}}(x) \rightarrow y$ as $\left.n \rightarrow \infty\right\}$ - the $\omega-$ limit points set of A,
$\omega_{A}(X):=\bigcup_{x \in X} \omega_{A}(x)$,
$R_{A}:=\left\{x \in X \mid x \in \omega_{A}(x)\right\}$ - the recurrent points set of A,
$O_{A}(x):=\left\{x, A(x), \ldots, A^{n}(x), \ldots\right\}$.
The purpose of this paper is to study the ω-limit points set of an operator A in the terms of F_{A}, P_{A}, R_{A}.

1991 Mathematics Subject Classification. 47H10.
Key words and phrases. $\boldsymbol{\omega}$-limit, fixed points, reccurent points.
2. F_{A}, P_{A}, P_{A}^{n} and ω_{A}. Examples. Basic problems

Let (X, d) be a metric space and $A: X \rightarrow X$ an operator. It is clear that

$$
F_{A} \subset P_{A} \subset R_{A} \subset \omega_{A}
$$

In what follow we give some examples and counterexamples to these notions.
Example 2.1 (see[20], [21] and [23]). Let (X, d) be a metric space and $A: X \rightarrow X$ a weakly Picard operator. Then

$$
F_{A}=P_{A}=R_{A}=\omega_{A}(X)
$$

Example 2.2 (see [1], [2]). $X=\{z \in \mathbf{C} \| z \mid=1\}$ and $A(z):=e^{i \alpha} z$. If $\alpha=1$, then

$$
F_{A}=\emptyset, P_{A}=R_{A}=\omega_{A}(X)=X
$$

If α / π is an irrational real number, then

$$
F_{A}=P_{A}=\emptyset, R_{A}=\omega_{A}(X)=X .
$$

Example 2.3 (see [3], [5], [7]). Let $A \in C([0,1],[0,1])$. If $P_{A}^{3} \neq \emptyset$, then $P_{A}^{n} \neq \emptyset$, for all $n \in N^{*}$ (Sarkovskii's theorem).

Example 2.4 (see [19]). Let $A \in C(R, R)$ such that $A^{2}=1_{R}$ (an involution). Then $F_{A}=\left\{x^{*}\right\}$ and $P_{A}=R$.
Example 2.5 Let (X, d) be a metric space and $A: X \rightarrow X$ an operator. We suppose that
(i) $X=\bigcup_{i \in I} X_{i}, X_{i} \neq \emptyset, X_{i} \cap X_{j} \neq \emptyset, i \neq j ;$
(ii) $X_{i} \in I(A)$,
(iii) $\operatorname{cl}\left(X_{i}\right)=\operatorname{int}\left(X_{i}\right), i \in I$.

Then

$$
\omega_{A}\left(X_{i}\right) \bigcap \omega_{A}\left(X_{j}\right)=\emptyset
$$

for all $i, j \in I, i \neq j$.

Example 2.6 (see [4]). Let $A \in C([0,1],[0,1])$. Then,

$$
\overline{P_{A}}=\overline{R_{A}} .
$$

Example 2.7 (see [26]). Consider the nonlinear Cauchy problem

$$
\frac{d u}{d t}=-u-u^{3}, u(0)=U \in \mathbf{R},
$$

where $\omega(U)=\{0\}$ for all $U \in \mathbf{R}$. Application of the forward Euler numerical method gives

$$
U_{n+1}=U_{n}-\Delta t\left(U_{n}+U_{n}^{3}\right), U_{0}=U
$$

where $U_{n} \approx u(n \Delta t), n=0,1, \ldots$ and Δt is the time step. If $A(u)=u-\Delta t\left(u+u^{3}\right)$, it may be shown that

$$
\begin{array}{lll}
\omega_{A}(U)=0 & \text { for } & \Delta t\left(1+U^{2}\right) \in(0,2) \\
\omega_{A}(U)=\{-U, U\} & \text { for } & \Delta t\left(1+U^{2}\right)=2 \\
\left|U_{n}\right| \rightarrow \infty \text { as } n \rightarrow \infty & \text { for } & \Delta t\left(1+U^{2}\right) \in(2,+\infty)
\end{array}
$$

Thus, if $\Delta t<\frac{2}{1+U^{2}}$ we obtain the correct asymptotic behaviour of the differential equation. If $U=\sqrt{\frac{2}{\Delta t}-1}$ we obtain a spurious period two solution $U_{n}=$ $(-1)^{n} \sqrt{\frac{2}{\Delta t}-1}$, i.e. $F_{A} \neq \emptyset, P_{A}^{2} \neq \emptyset$ for all $\Delta t \in[0,2]$.

The following problems arise:
Let (X, d) be a metric space and $A: X \rightarrow X$ an operator.
Problem 2.1 (see [4], [24]). Establish conditions on X and A which imply that
a) $P_{A} \neq \emptyset$;
b) $P_{A}^{n} \neq \emptyset$.

Problem 2.2 (see [11]). Which are the operators with the following property:

$$
P_{A} \neq \emptyset \Rightarrow F_{A} \neq \emptyset ?
$$

Problem 2.3 ([4]). Which are the metric spaces, X, with the following property

$$
A \in C(X, X) \Rightarrow \overline{P_{A}}=\overline{R_{A}}
$$

Problem 2.4 Let $n \in N$. In which conditions on X, A and n we have:

$$
F_{A}=P_{A}^{k}=\emptyset, k=\overline{2, n-1} \text { and } P_{A}^{k} \neq \emptyset, k \geq n
$$

Problem 2.5 (see [3], [4], [6], [9], [12], [16], [21], [25]).
Establish conditions on X and A which imply that:
a) $\omega_{A}(x) \neq \emptyset, \forall x \in X ;$
b) $R_{A} \neq \emptyset$;
c) $\omega_{A}(X)=F_{A}$;
d) $\omega_{A}(X)=P_{A} ;$
e) $\omega_{A}(X)=R_{A}$;
f) there exists $x \in X: \overline{\omega_{A}(x)}=X$.

For other examples and countraexamples to the above problems and for some results see [2], [5], [7], [8], [10] and [25].

3. Periodic points

Theorem 3.1. Let (X, \leq) be a complete lattice and $A: X \rightarrow X$ a monoton operator. Then $P_{A} \neq \emptyset$.

Proof. If the operator A is monoton increasing, then by the fixed point theorem of Tarski we have that $F_{A} \neq \emptyset$. If the operator A is monoton decreasing then A^{2} is monoton increasing, so, $F_{A^{2}} \neq \emptyset$.
Theorem 3.2. Let (X, S, M) be a fixed point structure (see [22]) and $A: X \rightarrow X$ an operator. We suppose that there exists $k \in N^{*}$ such that
(i) $A^{k} \in M(X)$;
(ii) there exists $Y \in S(X)$ such that $A^{k}(X) \subset Y$.

Then $P_{A} \neq \emptyset$.
Proof. From $A^{k}: X \rightarrow X$ and $A^{k}(X) \subset Y \subset X$ we have that $Y \in I\left(A^{K}\right)$. On the other hand, $A^{k} \in M(X)$ implies that $\left.A^{k}\right|_{Y} \in M(Y)$, so, $F_{A^{k}} \neq \emptyset$.

If in the Theorem 3.2 we consider the fixed point structure of Schauder $\left(X\right.$ - Banach space, $S(X)=P_{c p, c v}(X)$ and $M(Y)=C(Y, Y)$) we have

Theorem 3.3. Let X be a Banach space and $A: X \rightarrow X$ a continous operator such that there exists $k \in N^{*}$ such that $A^{k}(X)$ is relatively compact. Then, $P_{A} \neq \emptyset$.

Proof. If we take $Y=\overline{c o} A^{k}(X)$, then $Y \in P_{c p, c v}(X)$ and we are in the conditions of the Theorem 3.2.

Theorem 3.4. Let $X=[-a, a] \subset \mathbf{R}$ and $f: \mathbf{R} \rightarrow \mathbf{R}$ such that $A(u)=u+\Delta t f(u)$ is a contraction on $X, A: X \rightarrow X$ and $A(0)=0$, where $\Delta t>0$. Then the numerical method $U_{n+1}=A\left(U_{n}\right), U_{0}=U \in X$ (forward Euler method for the Cauchy problem $\left.\frac{d u}{d t}=f(u), u(0)=U \in X\right)$ has no spurious period two solutions in X.
Proof. By the above conditions, A^{2} is a contraction on X and by theorem 3.2. for the fixed point structure of Banach, A^{2} has a unique fixed point in X and this point is 0 .

Example 3.1. Let $f(u)=-u-u^{3}$ and $A(u)=u-\Delta t\left(u+u^{3}\right)$ for $\Delta t \in(0,1)$. Let $X=\left[-\sqrt{\frac{1-\Delta t}{3 \Delta t}}, \sqrt{\frac{1-\Delta t}{3 \Delta t}}\right]$. It may be shown that $A: X \rightarrow X$ and A is a contraction on X. Thus we have no spurious period two solutions.

Note that all Runge-Kutta methods retain all the equilibria of $\frac{d u}{d t}=f(u)$ (see [26], Th. 5.3.3.). Consequently, the forward Euler method gives the correct asymptotic behaviour of this differential equation on X.

4. Recurrent points

Lemma 4.1 (see [9], [18]). Let (X, d) be a compact metric space and $A: X \rightarrow X$ a continuous operator. Then $R_{A} \neq \emptyset$.
Theorem 4.1. Let (X, d) be a metric space and $A: X \rightarrow X$ such that
(i) A is continous;
(ii) there exists $k \in N^{*}$ such that $A^{k}(X)$ is relatively compact.

Then, $R_{A} \neq \emptyset$.
Proof. It is clear that $\operatorname{cl} A^{k}(X) \in I(f)$. So, the operator $A: \overline{A^{k}(X)} \rightarrow \overline{A^{k}(X)}$ satisfies the conditions in the Lemma 4.1.

Theorem 4.2. Let (X, d) be a complete metric space, $\alpha: P_{b}(X) \rightarrow R_{+} a$ measure of noncompactness (see [23]) on X and $A: X \rightarrow X$ an operator. We suppose that:
(i) A is continuous;
(ii) A is a (α, a) - contraction.

Then, $R_{A} \neq \emptyset$.
Proof. Let $Y_{1}:=\overline{A(X)}, \ldots, Y_{n+1}:=\overline{A\left(Y_{n}\right)}, n \in \mathbf{N}^{*}$. We remark that

$$
Y_{n} \in P_{b, c l}(X) \bigcap I(A), n \in \mathbf{N}^{*}
$$

From the condition (ii) we have that

$$
\alpha\left(Y_{n}\right) \leq a \alpha\left(Y_{n-1}\right) \leq \cdots \leq a^{n} \alpha(Y) \rightarrow 0 \text { as } n \rightarrow \infty
$$

But α is a measure of noncompactness on X, i.e, α satisfies the following conditions (see [23]):
(a) $\alpha(A)=0 \Rightarrow \bar{A} \in P_{c p}(X)$,
(b) $\alpha(A)=\alpha(\bar{A})$, for all $A \in P_{b}(X)$,
(c) $A \subset B \Rightarrow \alpha(A) \leq \alpha(B)$, for all $A, B \in P_{b}(X)$,
(d) If $A_{n} \in P_{b, c l}(X), A_{n+1} \subset A_{n}, n \in \mathbf{N}$, and $\alpha\left(A_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$, then

$$
A_{\infty}:=\bigcap_{n \in N} A_{n} \neq \emptyset \text { and } \alpha\left(A_{\infty}\right)=0
$$

From the condition (d) and (a) we have that

$$
Y_{\infty}:=\bigcap_{n \in N} Y_{n} \in I_{c p}(A)
$$

Now the theorem follows from the Lemma 4.1.
Theorem 4.3. Let (X, d) be a bounded metric space, $\alpha_{D P}$ a Danes-Pasicki measure of noncompactness (see [23]) and $A: X \rightarrow X$ an operator. We suppose that
(i) the operator A is continous,
(ii) the operator A is $\alpha_{D P}$ - condensing.

Then, $R_{A} \neq \emptyset$.
Proof. Let $x_{0} \in X$. By Lemma 3.1. in [22], there exists $A_{0} \subset X$ such that

$$
\operatorname{cl}\left(f\left(A_{0}\right) \bigcup\left\{x_{0}\right\}\right)=A_{0}
$$

This implies that $\alpha_{D P}\left(A_{0}\right)=0$. Thus

$$
A_{0} \in P_{c p}(X) \bigcap I(A)
$$

Now the proof follows from Lemma 4.1.

5. The set ω_{A}

In what follow we consider operators on ordered metric space (for the ordered Banach spaces see [6], [10], [11], [25]). We have

Theorem 5.1. Let (X, d, \leq) be an ordered metric space and $A: X \rightarrow X$ an increasing operator. Then
(i) $x \leq A x \Rightarrow x \leq \omega_{A}(x)$
and $y \geq A(y) \Rightarrow y \geq \omega_{A}(y) ;$
(ii) $\omega_{A}(x) \leq y \Rightarrow \omega_{A}(x) \leq \omega_{A}(y)$ and
$x \leq \omega_{A}(y) \Rightarrow \omega_{A}(x) \leq \omega_{A}(y) ;$
Proof. (i) Let, for example, $x \leq A x$. Then $x \leq A^{n}(x)$ for all $n \in \mathbf{N}$. This implies that $x \leq \omega_{A}(x)$.
(ii) Let, for example, $x, y \in X$, such that $\omega_{A}(x) \leq y$. Since
$\omega_{A}(x) \in I(A)$, it follows that $\omega_{A}(x) \leq T^{n} y$ for all $n \in \mathbf{N}$. Hence we have $\omega_{A}(x) \leq$ $\omega_{A}(y)$.
Remark 5.1. The above results improve some results given by E.N. Dancer in [6].
Remark 5.2. From the Theorem 5.1. we have the following results given in [23]:
Theorem 5.2. Let (X, d, \leq) be an ordered metric space and $A: X \rightarrow X$ an operator and $x, y \in X$ such that $x \leq y, x \leq A(x), y \geq A(y)$. We suppose that
(i) A is weakly Picard operator;
(ii) A is monoton increasing.

Then
(a) $x \leq A^{\infty}(x) \leq A^{\infty}(y) \leq y$;
(b) $A^{\infty}(x)$ is the minimal fixed point of A in $[x, y]$ and $A^{\infty}(y)$ is the maximal fixed point of A in $[x, y]$.

References

[1] P. Blanchard, Complex analytic dynamics on the Riemann sphere, Bull. A.M.S., 11(1984), 85-141.
[2] A.F. Beardon, Iteration of rational functions, Springer, Berlin, 1991.
[3] A.B. Bruckner, Some problems concerning the iteration of real functions, Atti Sem. Mat. Fis. Univ. Modena, 41(1993), 195-203.
[4] J.J. Charatonik, On sets of periodic and of recurrent points, Publ. L'Insti. Math., 63(1998), 131-142.
[5] P. Collet, J.-P. Eckmann, Iterated maps on the interval as dynamical systems, Birkhäuser, Basel, 1980.
[6] E.N. Dancer, Some remarks on a boundedness assumption for monoton dynamical systems, Proc. A.M.S., 126(1998), 801-807.
[7] R.L.Devaney, An introduction to Chaotic dynamical systems, Addiso-Wesley, New-York, 1988.
[8] H. Furstenberg, B. Weiss, Topological dynamics and combinatorial number theory, J. D'Anal. Math., 34(1978), 61-85.
[9] L.F. Guseman, J.L. Solomon, Subsequential limit points of successive aproximations, Proc. A.M.S., 34(1972), 573-577.
[10] M.W. Hirsch, Stability and convergence in strongly monoton dynamical systems, J. reine angew. Math., 383(1988), 1-53.
[11] M.W. Hirsch, Fixed point of monoton maps, J. Diff.Eq., 123(1995), 171-179.
[12] W.A. Kirk, Nonexpansive mappings and the weak closure of sequence of iterates, Duke Math. J., 36(1969), 639-645.
[13] Z.Liu, On continuous maps of the interval, Math. Japonica, 38(1993), 509-511.
[14] Z. Liu, On the structure of the set of subsequential limit points of a sequence of iterates, J. Math. Anal. Appl., 222(1998), 297-304.
[15] P.T. Metcalf, T.D. Rogers, The cluster set of sequences of successive approximations, J. Math. Anal. Appl., 31(1970), 206-212.
[16] S.F. Roehrig, R.C. Sine, The structure of w-limit sets of nonexpansive maps, Proc. A.M.S., 81(1981), 398-400.
[17] D. Roux, P. Soardi, Sui punti uniti di mappe continue di uno spazio topologica in sé, Rev. Mat. Univ. Parma, 12(1971), 21-28.
[18] D.Roux, C. Zanco, Quasi-periodic points under self-mappings of a metric space, Rev. Mat. Univ. Parma, 3(1977), 189-197.
[19] I.A. Rus, Principii si aplicatii ale teoriei punctului fix, Ed. Dacia, Cluj-Napoca, 1979.
[20] I.A. Rus, Generalized contractions, Univ. Cluj-Napoca, 1983.
[21] I.A. Rus, Weakly Picard operators, C.M.U.C., 34(1993), 769-773.
[22] I.A. Rus, Some open problems in fixed point theory by means of fixed point structures, Libertas Math., 14(1994), 65-84.
[23] I.A. Rus, Picard operators and applications, Univ. Cluj-Napoca, 1996.
[24] V.M. Sehgal, On fixed and periodic points for a class of mappings, J.London Math. Soc., 5(1972), 571-576.
[25] R.C. Sine (ed.), Fixed points and nonexpansive mappings, A.M.S., 1983.
[26] A.M. Stuart, A.R. Humphries, Dynamical Systems and Numerical Analysis, Cambridge Univ. Press, 1996.

Universitatea Babeş-Bolyai, Facultatea de Matematică şi Informatică, 1, M. Kogălniceanu Street, 3400 Cluj-Napoca, Romania

