SOME PROPERTIES OF THE ω -LIMIT POINTS SET OF AN OPERATOR

BOGDAN RUS, IOAN A. RUS AND DAMIAN TRIF

Abstract. In this paper we study the ω -limit points set of an operator, in the terms of the fixed points set, the periodic points set and the recurrent points set.

1. Introduction

Let (X, d) be a metric space and $A : X \to X$ an operator. In this paper we shall use the following notations and notions:

 $P(x) := \{Y \subset X | Y \neq \emptyset\},\$ $I(A) := \{Y \in P(X) | A(Y) \subset Y\},\$ $F_A := \{x \in X | A(x) = x\} \text{ - the fixed points set of } A,\$ $P_A := \bigcup_{n \in N^*} F_{A^n} \text{ - the periodic points set of } A,\$ $P_A^n := \{x \in X | A^k(x) \neq x, k = \overline{1, n-1}, A^n(x) = x\}\text{ - the n-order periodic set of } A.$

points set of A,

 $\omega_A(x) := \{ y \in X | \exists n_k \to \infty, \text{ such that } f^{n_k}(x) \to y \text{ as } n \to \infty \} \text{ - the } \omega \text{ -}$ limit points set of A,

$$\begin{split} \omega_A(X) &:= \bigcup_{x \in X} \omega_A(x), \\ R_A &:= \{ x \in X | x \in \omega_A(x) \} \text{ - the recurrent points set of } A, \\ O_A(x) &:= \{ x, A(x), \dots, A^n(x), \dots \}. \end{split}$$

The purpose of this paper is to study the ω - limit points set of an operator A in the terms of F_A , P_A , R_A .

¹⁹⁹¹ Mathematics Subject Classification. 47H10.

Key words and phrases. ω -limit, fixed points, reccurent points.

2. F_A , P_A , P_A^n and ω_A . Examples. Basic problems

Let (X, d) be a metric space and $A: X \to X$ an operator. It is clear that

$$F_A \subset P_A \subset R_A \subset \omega_A$$

In what follow we give some examples and counterexamples to these notions. Example 2.1 (see[20], [21] and [23]). Let (X, d) be a metric space and $A: X \to X$ a weakly Picard operator. Then

$$F_A = P_A = R_A = \omega_A(X).$$

Example 2.2 (see [1], [2]). $X = \{z \in \mathbf{C} | |z| = 1\}$ and $A(z) := e^{i\alpha}z$. If $\alpha = 1$, then

$$F_A = \emptyset, \ P_A = R_A = \omega_A(X) = X.$$

If α/π is an irrational real number, then

$$F_A = P_A = \emptyset, \ R_A = \omega_A(X) = X.$$

Example 2.3 (see [3], [5], [7]). Let $A \in C([0, 1], [0, 1])$. If $P_A^3 \neq \emptyset$, then $P_A^n \neq \emptyset$, for all $n \in N^*$ (Sarkovskii's theorem).

Example 2.4 (see [19]). Let $A \in C(R, R)$ such that $A^2 = 1_R$ (an involution). Then $F_A = \{x^*\}$ and $P_A = R$.

Example 2.5 Let (X, d) be a metric space and $A: X \to X$ an operator. We suppose that

(i)
$$X = \bigcup_{i \in I} X_i, \ X_i \neq \emptyset, \ X_i \cap X_j \neq \emptyset, \ i \neq j;$$

(ii) $X_i \in I(A),$

$$(iii)cl(X_i) = int(X_i), i \in I$$

Then

$$\omega_A(X_i) \bigcap \omega_A(X_j) = \emptyset$$

for all $i, j \in I, i \neq j$.

Example 2.6 (see [4]). Let $A \in C([0, 1], [0, 1])$. Then,

$$\overline{P_A} = \overline{R_A}.$$

Example 2.7 (see [26]). Consider the nonlinear Cauchy problem

$$\frac{du}{dt}=-u-u^3,\ u(0)=U\in\mathbf{R},$$

where $\omega(U) = \{0\}$ for all $U \in \mathbf{R}$. Application of the forward Euler numerical method gives

$$U_{n+1} = U_n - \Delta t (U_n + U_n^3), \ U_0 = U,$$

where $U_n \approx u(n\Delta t)$, n = 0, 1, ... and Δt is the time step. If $A(u) = u - \Delta t(u + u^3)$, it may be shown that

$$\begin{split} \omega_A(U) &= 0 & \text{for } \Delta t(1+U^2) \in (0,2) \\ \omega_A(U) &= \{-U,U\} & \text{for } \Delta t(1+U^2) = 2 \\ |U_n| &\to \infty \text{ as } n \to \infty & \text{for } \Delta t(1+U^2) \in (2,+\infty) \end{split}$$

Thus, if $\Delta t < \frac{2}{1+U^2}$ we obtain the correct asymptotic behaviour of the differential equation. If $U = \sqrt{\frac{2}{\Delta t} - 1}$ we obtain a spurious period two solution $U_n = (-1)^n \sqrt{\frac{2}{\Delta t} - 1}$, i.e. $F_A \neq \emptyset$, $P_A^2 \neq \emptyset$ for all $\Delta t \in [0, 2]$.

The following problems arise:

Let (X, d) be a metric space and $A: X \to X$ an operator.

Problem 2.1 (see [4], [24]). Establish conditions on X and A which imply that

a)
$$P_A \neq \emptyset$$
;
b) $P_A^n \neq \emptyset$.

Problem 2.2 (see [11]). Which are the operators with the following property:

$$P_A \neq \emptyset \Rightarrow F_A \neq \emptyset$$
?

Problem 2.3 ([4]). Which are the metric spaces, X, with the following property

$$A \in C(X, X) \Rightarrow \overline{P_A} = \overline{R_A}$$

Problem 2.4 Let $n \in N$. In which conditions on X, A and n we have:

$$F_A = P_A^k = \emptyset, \ k = \overline{2, n-1} \ \text{and} \ P_A^k \neq \emptyset, \ k \ge n.$$

Problem 2.5 (see [3], [4], [6], [9], [12], [16], [21], [25]).

Establish conditions on X and A which imply that:

a)
$$\omega_A(x) \neq \emptyset, \ \forall x \in X;$$

b) $R_A \neq \emptyset;$
c) $\omega_A(X) = F_A;$
d) $\omega_A(X) = P_A;$
e) $\omega_A(X) = R_A;$
f) there exists $x \in X : \overline{\omega_A(x)} = X.$

For other examples and countraexamples to the above problems and for some results see [2], [5], [7], [8], [10] and [25].

3. Periodic points

Theorem 3.1. Let (X, \leq) be a complete lattice and $A : X \to X$ a monoton operator. Then $P_A \neq \emptyset$.

Proof. If the operator A is monoton increasing, then by the fixed point theorem of Tarski we have that $F_A \neq \emptyset$. If the operator A is monoton decreasing then A^2 is monoton increasing, so, $F_{A^2} \neq \emptyset$.

Theorem 3.2. Let (X, S, M) be a fixed point structure (see [22]) and

 $A: X \to X$ an operator. We suppose that there exists $k \in N^*$ such that

(i) $A^k \in M(X);$

(ii) there exists $Y \in S(X)$ such that $A^k(X) \subset Y$.

Then $P_A \neq \emptyset$.

Proof. From $A^k : X \to X$ and $A^k(X) \subset Y \subset X$ we have that $Y \in I(A^K)$. On the other hand, $A^k \in M(X)$ implies that $A^k|_Y \in M(Y)$, so, $F_{A^k} \neq \emptyset$.

If in the Theorem 3.2 we consider the fixed point structure of Schauder $(X - \text{Banach space}, S(X) = P_{cp,cv}(X) \text{ and } M(Y) = C(Y,Y))$ we have

Theorem 3.3. Let X be a Banach space and $A: X \to X$ a continuus operator such that there exists $k \in N^*$ such that $A^k(X)$ is relatively compact. Then, $P_A \neq \emptyset$. *Proof.* If we take $Y = \overline{co}A^k(X)$, then $Y \in P_{cp,cv}(X)$ and we are in the conditions of the Theorem 3.2.

Theorem 3.4. Let $X = [-a, a] \subset \mathbf{R}$ and $f : \mathbf{R} \to \mathbf{R}$ such that $A(u) = u + \Delta t f(u)$ is a contraction on X, $A : X \to X$ and A(0) = 0, where $\Delta t > 0$. Then the numerical method $U_{n+1} = A(U_n)$, $U_0 = U \in X$ (forward Euler method for the Cauchy problem $\frac{du}{dt} = f(u), u(0) = U \in X$) has no spurious period two solutions in X.

Proof. By the above conditions, A^2 is a contraction on X and by theorem 3.2. for the fixed point structure of Banach, A^2 has a unique fixed point in X and this point is 0.

Example 3.1. Let $f(u) = -u - u^3$ and $A(u) = u - \Delta t(u + u^3)$ for $\Delta t \in (0, 1)$. Let $X = \left[-\sqrt{\frac{1-\Delta t}{3\Delta t}}, \sqrt{\frac{1-\Delta t}{3\Delta t}}\right]$. It may be shown that $A: X \to X$ and A is a contraction on X. Thus we have no spurious period two solutions.

Note that all Runge-Kutta methods retain all the equilibria of $\frac{du}{dt} = f(u)$ (see [26], Th. 5.3.3.). Consequently, the forward Euler method gives the correct asymptotic behaviour of this differential equation on X.

4. Recurrent points

Lemma 4.1 (see [9], [18]). Let (X, d) be a compact metric space and $A: X \to X$ a continuous operator. Then $R_A \neq \emptyset$.

Theorem 4.1. Let (X, d) be a metric space and $A : X \to X$ such that (i)A is continous;

(ii) there exists $k \in N^*$ such that $A^k(X)$ is relatively compact.

Then, $R_A \neq \emptyset$.

Proof. It is clear that $clA^k(X) \in I(f)$. So, the operator

 $A: \overline{A^k(X)} \to \overline{A^k(X)}$ satisfies the conditions in the Lemma 4.1.

Theorem 4.2. Let (X, d) be a complete metric space, $\alpha : P_b(X) \to R_+$ a measure of noncompactness (see [23]) on X and $A : X \to X$ an operator. We suppose that:

(i)A is continuous; (ii)A is a (α, a) - contraction. Then, $R_A \neq \emptyset$.

Proof. Let $Y_1 := \overline{A(X)}, \ldots, Y_{n+1} := \overline{A(Y_n)}, n \in \mathbb{N}^*$. We remark that

$$Y_n \in P_{b,cl}(X) \bigcap I(A), n \in \mathbf{N}^*$$

From the condition (ii) we have that

$$\alpha(Y_n) \leq a\alpha(Y_{n-1}) \leq \cdots \leq a^n \alpha(Y) \to 0 \text{ as } n \to \infty$$

But α is a measure of noncompactness on X, i.e., α satisfies the following conditions (see [23]):

$$A_{\infty} := \bigcap_{n \in N} A_n \neq \emptyset \text{ and } \alpha(A_{\infty}) = 0.$$

From the condition (d) and (a) we have that

$$Y_{\infty} := \bigcap_{n \in N} Y_n \in I_{cp}(A).$$

Now the theorem follows from the Lemma 4.1.

Theorem 4.3. Let (X, d) be a bounded metric space, α_{DP} a Danes-Pasicki measure of noncompactness (see [23]) and $A: X \to X$ an operator. We suppose that

(i) the operator A is continuous,

(ii) the operator A is α_{DP} - condensing.

Then, $R_A \neq \emptyset$.

Proof. Let $x_0 \in X$. By Lemma 3.1. in [22], there exists $A_0 \subset X$ such that

$$cl(f(A_0) \bigcup \{x_0\}) = A_0$$

This implies that $\alpha_{DP}(A_0) = 0$. Thus

$$A_0 \in P_{cp}(X) \bigcap I(A).$$

Now the proof follows from Lemma 4.1.

5. The set ω_A

In what follow we consider operators on ordered metric space (for the ordered Banach spaces see [6], [10], [11], [25]). We have

Theorem 5.1. Let (X, d, \leq) be an ordered metric space and $A : X \to X$ an increasing operator. Then

(i)
$$x \leq Ax \Rightarrow x \leq \omega_A(x)$$

and $y \geq A(y) \Rightarrow y \geq \omega_A(y);$
(ii) $\omega_A(x) \leq y \Rightarrow \omega_A(x) \leq \omega_A(y)$ and
 $x \leq \omega_A(y) \Rightarrow \omega_A(x) \leq \omega_A(y);$

Proof. (i) Let, for example, $x \leq Ax$. Then $x \leq A^n(x)$ for all $n \in \mathbb{N}$. This implies that $x \leq \omega_A(x)$.

(ii) Let, for example, $x, y \in X$, such that $\omega_A(x) \leq y$. Since

 $\omega_A(x) \in I(A)$, it follows that $\omega_A(x) \leq T^n y$ for all $n \in \mathbb{N}$. Hence we have $\omega_A(x) \leq \omega_A(y)$.

Remark 5.1. The above results improve some results given by E.N. Dancer in [6].

Remark 5.2. From the Theorem 5.1. we have the following results given in [23]:

Theorem 5.2. Let (X, d, \leq) be an ordered metric space and $A : X \to X$ an operator and $x, y \in X$ such that $x \leq y, x \leq A(x), y \geq A(y)$. We suppose that

(i) A is weakly Picard operator;

(ii) A is monoton increasing.

Then

(a) $x \leq A^{\infty}(x) \leq A^{\infty}(y) \leq y;$

(b) $A^{\infty}(x)$ is the minimal fixed point of A in [x, y] and $A^{\infty}(y)$ is the maximal fixed point of A in [x, y].

References

- P. Blanchard, Complex analytic dynamics on the Riemann sphere, Bull. A.M.S., 11(1984), 85-141.
- [2] A.F. Beardon, Iteration of rational functions, Springer, Berlin, 1991.
- [3] A.B. Bruckner, Some problems concerning the iteration of real functions, Atti Sem. Mat. Fis. Univ. Modena, 41(1993), 195-203.
- [4] J.J. Charatonik, On sets of periodic and of recurrent points, Publ. L'Insti. Math., 63(1998), 131-142.
- [5] P. Collet, J.-P. Eckmann, Iterated maps on the interval as dynamical systems, Birkhäuser, Basel, 1980.
- [6] E.N. Dancer, Some remarks on a boundedness assumption for monoton dynamical systems, Proc. A.M.S., 126(1998), 801-807.
- [7] R.L.Devaney, An introduction to Chaotic dynamical systems, Addiso-Wesley, New-York, 1988.
- [8] H. Furstenberg, B. Weiss, Topological dynamics and combinatorial number theory, J. D'Anal. Math., 34(1978), 61-85.
- [9] L.F. Guseman, J.L. Solomon, Subsequential limit points of successive aproximations, Proc. A.M.S., 34(1972), 573-577.
- [10] M.W. Hirsch, Stability and convergence in strongly monoton dynamical systems, J. reine angew. Math., 383(1988), 1-53.
- [11] M.W. Hirsch, Fixed point of monoton maps, J. Diff.Eq., 123(1995), 171-179.
- [12] W.A. Kirk, Nonexpansive mappings and the weak closure of sequence of iterates, Duke Math. J., 36(1969), 639-645.
- [13] Z.Liu, On continuous maps of the interval, Math. Japonica, 38(1993), 509-511.
- [14] Z. Liu, On the structure of the set of subsequential limit points of a sequence of iterates, J. Math. Anal. Appl., 222(1998), 297-304.
- [15] P.T. Metcalf, T.D. Rogers, The cluster set of sequences of successive approximations, J. Math. Anal. Appl., 31(1970), 206-212.
- [16] S.F. Roehrig, R.C. Sine, The structure of w -limit sets of nonexpansive maps, Proc. A.M.S., 81(1981), 398-400.
- [17] D. Roux, P. Soardi, Sui punti uniti di mappe continue di uno spazio topologica in sé, Rev. Mat. Univ. Parma, 12(1971), 21-28.
- [18] D.Roux, C. Zanco, Quasi-periodic points under self-mappings of a metric space, Rev. Mat. Univ. Parma, 3(1977), 189-197.
- [19] I.A. Rus, Principii si aplicatii ale teoriei punctului fix, Ed. Dacia, Cluj-Napoca, 1979.
- [20] I.A. Rus, Generalized contractions, Univ. Cluj-Napoca, 1983.
- [21] I.A. Rus, Weakly Picard operators, C.M.U.C., 34(1993), 769-773.
- [22] I.A. Rus, Some open problems in fixed point theory by means of fixed point structures, Libertas Math., 14(1994), 65-84.
- [23] I.A. Rus, Picard operators and applications, Univ. Cluj-Napoca, 1996.
- [24] V.M. Sehgal, On fixed and periodic points for a class of mappings, J.London Math. Soc., 5(1972), 571-576.
- [25] R.C. Sine (ed.), Fixed points and nonexpansive mappings, A.M.S., 1983.
- [26] A.M. Stuart, A.R. Humphries, Dynamical Systems and Numerical Analysis, Cambridge Univ. Press, 1996.

Universitatea Babeș-Bolyai, Facultatea de Matematică și Informatică, 1, M. Kogălniceanu Street, 3400 Cluj-Napoca, Romania