AN EXTENSION OF RUSCHEWEYH'S UNIVALENCE CONDITION

IRINEL RADOMIR

Abstract. We obtain a new sufficient univalence condition, generalizing the univalence criterion of S.Ruscheweyh.

1. Introduction

We denote by U_r the disk of z-plane, $U_r = \{ z \in C : |z| < r \}$, where $r \in (0,1], U_1 = U$ and $I = [0,\infty)$.

Let A be the class of functions f which are analytic in U with f(0) = 0 and f'(0) = 1.

Theorem 1.1. ([4]). Let $s = \alpha + i\beta$, $\alpha > 0$ and $f \in A$. Assume that for a certain $c \in C$ and all $z \in U$,

$$\left| c|z|^2 + s - \alpha(1 - |z|^2) \left[s \left(1 + \frac{zf''(z)}{f'(z)} \right) + (1 - s) \frac{zf'(z)}{f(z)} \right] \right| \le M , \qquad (1)$$

where

$$M = \begin{cases} \alpha|s| + |s+c|(\alpha-1) &, \quad 0 < \alpha < 1, \\ |s| &, \quad \alpha \ge 1. \end{cases}$$
 (2)

Then the function f is univalent in U.

We will need Loewner's parametric method to prove our results.

2. Preliminaries

Theorem 2.1. ([3]. Let r be a real number, $r \in (0,1]$. Let $L(z,t) = a_1(t)z + a_2(t)z^2 + \ldots, a_1(t) \neq 0$, be analytic in U_r , for all $t \in I$, locally absolutely continuous in I and

¹⁹⁹¹ Mathematics Subject Classification. 30C55.

Key words and phrases. univalent functions, Ruscheweyh's criterion.

locally uniform with respect to U_r . For almost all $t \in I$ suppose

$$z\frac{\partial L(z,t)}{\partial z} = p(z,t)\frac{\partial L(z,t)}{\partial t} \qquad (\forall) z \in U_r ,$$

where p(z,t) is analytic in U and satisfies Rep(z,t) > 0, $z \in U$, $t \in I$.

If $|a_1(t)| \to \infty$ for $t \to \infty$ and $\{L(z,t)/a_1(t)\}$ forms a normal family in U_r , then for each $t \in I$, L(z,t) has an analytic and univalent extension to the whole disk U.

3. Main results

Theorem 3.1. Let $f \in A$ and let s, c be complex numbers, $s = \alpha + i\beta$, $\alpha > 0$, $c \neq 0$, $|s+c| \leq |s|$. If there exists an analytic function in U, $p(z) = 1 + c_1 z + \ldots$, such that

$$\left| \frac{c}{p(z)} + s \right| \le |s| \,, \tag{3}$$

$$\left| \frac{c}{p(z)} |z|^{2/\alpha} + s - \alpha (1 - |z|^{2/\alpha}) \left[s \left(1 + \frac{zf''(z)}{f'(z)} \right) + (1 - s) \frac{zf'(z)}{f(z)} + s \frac{zp'(z)}{p(z)} \right] \right| \le |s|,$$
(4)

for all $z \in U$, then the function f is univalent in U.

Proof. The conditions (3) and (4) implies that $p(z) \neq 0$ and $f(z)f'(z)/z \neq 0$ in U. If $c \neq 0$ let

$$f(z,t) = f(e^{-st}z) \left[1 - \frac{\alpha}{c} (e^{2t} - 1) p(e^{-st}z) e^{-st} z \frac{f'(e^{-st}z)}{f(e^{-st}z)} \right]^{s}$$
 (5)

The inequalities $|c+s| \le |s|$ and Re s > 0 imply $\alpha/c \notin [0, \infty)$. It follows that there exists $r \in (0, 1]$ such that

$$1 - \frac{\alpha}{c}(e^{2t} - 1)p(e^{-st}z)e^{-st}zf'(e^{-st}z)/f(e^{-st}z) \neq 0$$

for all $z \in U_r$ and $t \ge 0$, and hence the function f(z,t) is analytic in U_r for all $t \ge 0$. Furthermore

$$\left| \frac{\partial f(0,t)}{\partial z} \right| = \left| \left[\left(1 + \frac{\alpha}{c} \right) e^{-t} - \frac{\alpha}{c} e^{t} \right] \right|^{s} \neq 0$$

in I, and $\lim_{t\to\infty} \left|\frac{\partial f(0,t)}{\partial z}\right| = \infty$ (we have chosen a fixed branch for $\frac{\partial f(0,t)}{\partial z}$). It follows that $\{f(z,t)/\frac{\partial f(0,t)}{\partial z}\}$ forms a normal family in U_{r_0} , $r_0 < r$.

A simple calculation yields

$$\frac{\partial f(z,t)}{\partial t}/z \cdot \frac{\partial f(z,t)}{\partial z} = s \frac{1 + P(e^{-st}z,t)}{1 - P(e^{-st}z,t)} ,$$

where

$$P(z,t) = \frac{c}{\alpha} e^{-2t} \frac{1}{p(z,t)} + 1 - (1 - e^{-2t}) H_s(e^{-st}z) \%; and$$
 (6)

$$H_s(z) = s \left(1 + \frac{zf''(z)}{f'(z)} \right) + (1-s) \frac{zf'(z)}{f(z)} + s \frac{zp'(z)}{p(z)}$$
.

If $h(z,t) = \frac{\partial f(z,t)}{\partial t}/(z\frac{\partial f(z,t)}{\partial z})$ then the inequality $Re\ h(z,t) > 0$ for all $z \in U$ and $t \in I$ is equivalent to

$$|\alpha P(e^{-st}z, t) + i\beta| < |s|, \quad z \in U, \ t \in I.$$
 (7)

Replacing the function P(z,t) defined from (6) in (7) we obtain

$$\left| e^{-2t} \left(\frac{c}{p(e^{-st}z)} + s \right) + (1 - e^{-2t}) [-\alpha H_s(e^{-st}z) + s] \right| \le |z| . \tag{8}$$

In order to prove the inequality (8) we consider the function

$$Q(z,t) = e^{-2t} \left(\frac{c}{p(e^{-st}z)} + s \right) + (1 - e^{-2t}) [-\alpha H_s(e^{-st}z) + s]$$

which for all $t \in I \setminus \{0\}$ is analytic in \overline{U} and hence

$$\max_{|z| \le 1} |Q(z,t)| = |Q(e^{i\theta},t)|, \quad \theta \in R.$$
(9)

If $\xi = e^{-st}e^{i\theta}$, then $|\xi| = e^{-\alpha t}$, $e^{-t} = |\xi|^{1/\alpha}$ and by (8), (9) and (4) it results

$$|Q(z,t)| < |Q(e^{i\theta},t)| = \left| |\xi|^{2/\alpha} \left(\frac{c}{p(\xi)} + s \right) + \left(1 - |\xi|^{\frac{2}{\alpha}} \right) \left[-\alpha H_s(\xi) + s \right] \right| \le |s|,$$

for all $z \in U$ and $t \in I \setminus \{0\}$.

If t = 0, then Q(z, 0) = c/p(z) + s and by (3) it results that $|Q(z, 0)| \le |s|$ for all $z \in U$ and hence the inequality (8) holds true for all $z \in U$ and $t \in I$.

Theorem 3.2. Let $f \in A$ and let s, c be complex numbers, $s = \alpha + i\beta$, $\alpha \ge 1$, $c \ne 0$, $|s+c| \le |s|$. If there exists an analytic function in U, $p(z) = 1 + c_1(z) + \ldots$, such that

$$\left| \frac{c}{p(z)} + s \right| \le |s| \tag{10}$$

$$\left| \frac{c}{p(z)} |z|^2 + s - \alpha (1 - |z|^2) \left[s \left(1 + \frac{zf''(z)}{f'(z)} \right) + \right| + (1 - s) \frac{zf'(z)}{f(z)} + s \frac{zp'(z)}{p(z)} \right] \right| \le |s|,$$
(11)

for all $z \in U$, then the function f is univalent in U.

Proof. The function

$$w(z,\lambda) = \lambda \left(\frac{c}{p(z)} + s\right) + (1 - \lambda)[-\alpha H_s(z) + s]$$

is analytic in U for all $\lambda \in [0, 1]$. From (10) and (11) it results that

$$|w(z, |z|^2)| \le |s| \quad (\forall) z \in U;$$
 (12)

$$|w(z, 1)| < |s| \qquad (\forall) z \in U. \tag{13}$$

If λ increases from $\lambda_1 = |z|^2$ to $\lambda_2 = |z|^{2/\alpha}$, then the point $w(z, \lambda)$ moves on the segment whose endpoints are $A = w(z, |z|^2)$ and B = w(z, 1), and hence from (12) and (13) it results that

$$|w(z, |z|^{2/\alpha})| < |s| \tag{14}$$

for all $z \in U$. Because

$$w(z, |z|^{2/\alpha}) = \frac{c}{p(z)} |z|^{2/\alpha} + s - \alpha (1 - |z|^{2/\alpha}) \left[\left(1 + \frac{zf''(z)}{f'(z)} \right) + (1 - s) \frac{zf'(z)}{f(z)} + s \frac{zp'(z)}{p(z)} \right]$$
(15)

from (14) and (15) it results that (4) holds true for all $z \in U$ and from Theorem 3.1 it results that the function f is univalent in U. Remark. For $\alpha \geq 1$ and $p(z) \equiv 1$, from Theorem 3.2 we obtain Theorem 1.1.

References

- [1] L. V. Ahlfors, Sufficient conditions for quasiconformal extension, Ann. Math. Studies, 79, Princeton (1974), 23-29.
- [2] J. Becker, Löwnersche Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen, J. Reine Angew. Math., 255, (1972), 23-43.
- [3] Ch. Pommerenke, Über die Subordination analytischer Funktionen, J. Reine Angew. Math., 218, (1965), 159-173.
- [4] S. Ruscheweyh, An extension of Becker's univalence condition, Math. Annalen, 220, (1976), 285-290.

DEPARTMENT OF MATHEMATICS, "TRANSILVANIA" UNIVERSITY, BRAŞOV, ROMANIA