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ON WIRTINGER AND OPIAL TYPE INEQUALITIES IN THREE
INDEPENDENT VARIABLES

B.G.. PACHPATTE

Abstract. In this paper we establish some new integral and discrete in-
equalities of Wirtinger and Opial type involving functions of three inde-
pendent variables. The analysis used in the proofs is elementary and our

results provide new estimates on inequalities of this type.

1. Introduction

The inequalities of Wirtinger and Opial type and their variants have played a
vital role in the study of many qualitative as well as quantitative properties of solutions
of differential equations. Because of their usefulness and importance these inequalities
have received a wide attention and a large number of papers have appeared in the
literature. During the past few years, various investigators have discovered many
useful and new Wirtinger and Opial type inequalities involving functions of more
than one independent variables, see [1-16] and the references given therein. The main
purpose of the present paper is to establish some new integral and discrete inequalities
of the Wirtinger and Opial type involving functions of three independent variables.
An important feature of the inequalities established in this paper is that the analysis
used in their proofs is elementary and our results provide new estimates on this type

of inequalities.
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2. Integral inequalities

In what follows R denotes the set of real numbers. We use the notation
E = [a,z] % [b,y] x [c, 2] for a,b,c,z,y,z € R. If f(r,s,t) is a differentiable function
defined on E, then its partial derivatives are denoted by D, f(r,s,t) = -g; f(r,s,1),
Dyf(r,s,t) = %f(r,s,t), D3f(r,s,t) = -%f(r,s,t), and

3

a
D3D2D1f(7', S,t) = mf(r, S,t).

We denote by F(E) the class of continuous functions f : E — R for which
le('l', s, t)l D2f(7', 8, t)r Daf("', s, t)) D3DZD1f(r1 S,t)

exist and continuous on E such that f(a,s,t) = f(z,s,t) = f(r,b,t) = f(r,y,t) =
f(r,s,c) =f(r,s,z) =0fora<r<z b<s<y c<Lt<z

Our main result on Wirtinger type integral inequality involving functions of
three independent variables is given in the following theorem.
Theorem 1. Let p(r,s,t) be a real-valued nonnegative continuous function defined
on E. Suppose that f; € F(E) fori=1,2,...,n, and let m; > 1 fori=1,2,...,n

are constants. Then

_/: /by /: p(r,s,t) [ﬁlfi(r,s,t)lmi] " dtdsdr < (2.1)

i=1

T py Pz
< l.R'(a,b,c,:r:,y,:z,n,ml, cee,y) (/ / / p(r,s,t)dtdsdr) X
n a Jb Je

z Y z n
X / / / Z | D3 Dy Dy fi (v, 5,)|>™ dtdsdr,
a b ¢ =1

where
25 m PR
1 "i:l 1+: Z( 1‘1)
K(a,b,c,z,y,z,n,my,...,m,) = (5) [(z — a)(y — b)(z — ¢)] z" ,
(2.2)
s a constant depending on a,b,c,z,y,z,n,my,...,my,.
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Proof. From the hypothesis, it is easy to observe that the following identities hold for
i=1,2,...,n and (r,s,t) € E:

r 3 t
filrs,t) = / / / Ds D, D fi(u, v, w)dwdvdu, (2.3)
a Jb Je
fi(r,s,t) = —/ / / D3Ds D fi(u, v, w)dwdvdu, (2.4)
a Jb Jt
r Yy t
fi(r,s,t) = ——/ / / D3 D, D fi(u, v, w)dwdvdu, (2.5)
a s (4
T s t
fi(r,s,t) = ——/ / / D3 Dy D, fi(u, v, w)dwdvdu, (2.6)
r b Je
r orY pz
fi(r,s,1) :/ / f D3 D, D fi(u, v, w)dwdvdu, (2.7)
a s ¢
x Yy t
fi(r,s,1) :[ / / D3D; D, fi(u, v, w)dwdvdu, (2-8)
fi(r,s,1) :/ / / D3 Dy D, fi(u, v, w)dwdvdu, (2.9)
r b Jt
T Y r2
fi(r,s,t) = —-/ / / D3 Dy D, fi(u, v, w)dwdvdu. (2.10)
r s t
From (2.3)-(2.10) it is easy to observe that
1 T Y z
[fi(r,s,8)] < gf / / | D3 D3 D f;(u, v, w)|dwdvdu, (2.11)
a Jb c
for i = 1,2,...,n and (r,s,t) € E. From (2.11) and using the Holder’s integral
inequality in three dimensions with indices m; and m;/(m; —1) fori =1,2,...,n we
obtain
™
s < (5) o= o=y - x (2.12)

T py pz
x/ / / |D3D2 D fi(u, v, w)|™ dwdvdu.
a Jb Je
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From (2.12) and using the elementary inequalities (see [4])

n i/n 13 '
(H bi) <- an (2.13)
i=1

=1
(for by, b, . ..,b, nonnegative reals and n > 1) and
n 2 n
(Z bi) <n) b (2.14)
i=1 i=1
(for by, ba, . .., b, reals) and Schwarz integral inequality in three dimensions we observe
that
n 2/n
[II \filrs, t)l"“] < (2.15)
i=1

< [ﬁ (3) te-aw-i-arx

i=1

T
X

——
T
M e—~—

a

)

n z Yy z 2
x H/ / / | D3 Dy Dy fi(u, v, w)|™ dwdvdu/™| <
a Jb Jec

=1

2 2/n
| D3 Dy D, fi(u, v, w)|""'dwdvdu] =

m;

D llz—a)y-b)(z -]

3o

n
2
n—

(mi-1)
1

28 m o
= (%) R (PP PR PS) L =R

2
1 &[5 [Y [ .
X[;Z f /b / |D3D2D1fz'(“,v,w)l"‘*dwdvdu] <

i=1
25 m, 2 (.
]- "i.—_l :Z(m'—l)
<(3)7 le-aw-be-at 5"
1 n T py z 2
xﬁnz[/ /b / |D3D2D1f,-(u,v,w)|’""dwdvdu] <
i=1 e ¢
2y, mi 2 v~
1) » &=t 7 XL (mi-1)
<(3) e~ )y — b)(z — o) &7 x

x;li[(‘” —a)(y—b)(z - C)]Z/: /by /z |D3 D2 D fi(u, v, w)|*™ dwdvdu =

i=1
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= —K(a b,c,z,y,z,n,my,...,mp) / / / E|03D2D1f,(u v, w)|*™ dwdvdu.

Multiplying both sides of (2.15) by p(r, s,t) and integrating the resulting
inequality over E we get the desired inequality in (2.1). The proof is complete.
Remark 1. We note that in the special cases when (i) m; =1 fori=1,2,...,n, (ii)
n=2,(ili)n=1,(iv)n =2and my =my =1, and (v) n = 1 and m; = 1, the
inequality established in (2.1) reduces respectively to the following inequalities

ﬂ

[ [romoffimos] sows s
5% {(a,b,¢,z,9,2,m,1,. (/ /)b’*’/ rs,t)dtdsdr)x

///E|D3D2D1fa(7‘bt)|2dtdsdr

T py pz
///p(r,s,t)[fl(r,s,t)|"“|f2(r,s,t)|"‘2dtdsdr (2.17)
1

—K(a,b,c,z,y,2,2,m;, my) (/// rstdtdsdr)

2
X/ / [|D3D2D1f1(1’ S t)lZm, =+ |D3D2D1f2(1" S t)|2m2] dtdeT,
a b c

/T /y /2 p(r, s, )| f1(r, 5,t)|*™ dtdsdr < (2.18)

' K(a,b,c,z,y,2,l,m) (/ /by/ rstdtdsdr)
x/ / / |D3D3 D1 fi(r, s,t)|*™ dtdsdr,
a b c

/ / / p(r,5,0)|fu(r, 5,0) || fo(r, 5, 1) didsdr < (2.19)

%I(abcxy,z,?,l,l (/// rstdtd.sdr)

/ / / (1DsDs Dy f(r, 5,4) + | DsDa Dy fo(r, 5, 1) [2)dedsdr,

T pyYy pz ’
/ / / p(r, s, t)| fi(r, s,t)|*dtdsdr < (2.20)
a Jb Jc
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T pryY 12
< K(a,b,c,zy,2,1,1) (/ [ / p(r, s,t)dtdsdr) X
a Jb Je

T pyYy 2z
X / / / |Ds Dy D1 f1 (r, 5,t)|*dtdsdr.
a Jb Je

We note that the inequalities obtained in (2.17) and (2.19) are the three
independent variable analogues of the Wirtinger type inequalities established by the
present author in [10] and the inequality obtained in (2.20) is a three independent
variable analog of the Wirtinger type inequality established by Traple in [15, p‘.160].

The following theorem deals with an integral inequality of Opial type involv-
ing functions of three independent variables.

Theorem 2. Let the functions p(r,s,t), fi(r,s,t) and the constants m; for i =
1,2,...,n be as in Theorem 1. Then

/: / / Vilr. 1) [H lf-(r,s,t)lm-] ", (2.21)

X Y |D3Dy D fi(r, s,t)|™ dtdsdr <

=1

T py 3 1/2
< [K(a,b,c,x,y,z,n,ml,...,m,.)/ / / p(r,s,t)dtdsdr] X
a Jb Je

T UVl z N
x/ / / Z|D3D2D1fi(1',S,t)lz'""dtdsdr,
a Jb Je

i=1
where the constant K(a,b,c,z,y,z,n,my,...,my) is defined by (2.2).
Proof. By using the Schwarz integral inequality in three dimensions and the inequal-
ities (2.1) and (2.14) we observe that

z z n ’ i/n n
/ /:// ,/P(r, S,t) [Hlfi("', s, t)lm.] X EID3D2D1fi(7'a S,t)lm‘dtdsdr <
4 ¢ i=1

=1

T z n 2/n 1/2
< l:/a /b'y/c p(r,s,1) [13 lf.-(r,s,t)l] dtdsdr} X
2 1/2
T prY 2 n
g [/a /b /c (§|D3D2D1fi(7‘,3,t)|m‘) dtdsdr] <
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T pY pz
< [lK(a, b,c,z,y,z,my,...,myp) (/ / / p(r, s,t)dtdsdr) X
n a Jb Je

Tz py pz N 1/2
x/ / / 2IDaDlefi(r,s,t)l"""dtdsdr X
a Jb

¢ i=1

T Yy oz D 1/2
X n/ / / Z|D3D2D1f,~(r,s,t)[z"‘idtdsd,- =
a Jb

¢ =1

T rY P2 1/2
=[K(a,b,c,w,y,z,n,ml,...,m,,) (/ / / p(r,s,t)dtdsdr)] X

/ f / E'DaDszf-(r,st)|2m-dtdsdr

This is the desired mequa.hty in (2.21) and hence the proof is complete.
Remark 2. If we take

(i) mi=1fori=1,2,...,n,

(i) n=1,

(iii) n =1 and m; = 1in (2.21),

then we get respectively the following inequalities

z z n 1/n n
/ /by / Vo(r,5,t) [Hlf.'(r,s,t)l] X ) " |DaD; D fi(r, s,t)|dtdsdr < (2.22)

=1

T y 2z 1/2
g[K(a,b,c,z,y,z,n,l,...,1)/ / / p(r,s,t)dtdsdr] X

/ / f Z|D3D2D1fz(r,8t)|2dtdsdr

T pY Pz
/ / / Vp(r, s, t)| f1(r, 5,t)|"* | DDy Dy fi(r, 5,t)|™  dtdsdr < (2.23)
a Jb c

T Y z 1/2
< [K(a,b, c,x,y,z,l,'ml)/ / / p(r,s,t)dtdsdr] X
a Jb Je

T pY 2
X / / / |D3D2 Dy fi(r, s,t)|*™ dtdsdr,
a Jb c

[ /,, | VRSBl s OID8DaDs (s, )dsdr < (224)
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y pz /2
< [K(a,b,c,z,y‘,z,l,l)/\"/ / p(r,s,t)dtdsdr] x
a Jb c

T py Pz
X / / / |D3D2D1f1 (7’, s,t)|2dtdsdr.
a Jb Je

We note that the inequality obtained in (2.24) is a three independent variable
analog of the Opial inequality established by Traple in [15, p.160]. In the special case
when p(r, s,t) is constant, then from (2.24) we have the following Opial type inequality

r py pz
/ / / lfl(r,s,t)||D3D2D1f(r,s,t)ldtdsdr S (225)
a Jb Je
<[K(a,b,¢,2,9,2,1,1)(z — a)(y — b)(z — ¢)]*/?x
T Py pz
X / / / |D3D2D1f1 (1", S,t)|2dtd8d’l’.
a Jb c

For similar inequalities involving functions of two independent variables, see
[6,8,10,14].
3. Discrete inequalities
Let N = {1,2,...} and for z,y,z in N, we define
A={1,2,...,z+1}, B={1,2,...,y+1}, C={1,2,...,2+1}
and Q@ = A x B x C. For a function f : N3 — R, we define the difference operators
Ay f(r,s,t) = f(r+1,s,t) — f(r,s,1),
Az f(r,s,t) = f(r,s +1,t) — f(r,s,t),
Asf(r,s,t) = f(r,s,t+ 1) = f(r,s,t),
Ay f(r,s,t) = Ag[Ay f(r,s,1)]
and
A3 Ay f(r, s, t) = As[AA f(r,s,1)].
We denote by G(Q) the class of functions f : Q@ — R such that
f(1,s,7)= f(z +1,s,t) = f(r,1,¢) = f(r,y+ 1,8) = f(r,s,1) = f(r,s,z+ 1) = 0.

The discrete analogue of the inequality given in Theorem 1 is embodied in
the following theorem.
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Theorem 3. Let p(r, s,t) be a real-valued nonnegative function defined on Q. Suppose
that f; € G(Q) fori=1,2,...,n and let m; > 1 for i = 1,2,...,n are constants.
Then

z Yy 2z n 2/n
ZZZP(’US:‘) [H |fi(7‘,8,t)|mi] S (31)

r=1s=1t=1 i=1

< %M(z,y,z,n,ml,...,m,.) (iiip(r,s,t)) X
r=1s=1t=1
x Ziz [Z |AsALA fi(r, s t)|2'"-]
where e
2 3 o, n
M(z,y,z,n,myq,...,my) = (%) ) E‘ ' (a:yz)1+%i§x(mi—1), (3.2)
is a constant depending on x,y,z,n,my,...,My,.

Proof. From the hypotheses, it is easy to observe that the following identities hold
fori=1,2,...,n and (r,s,t) € Q:

r—1s—-1t-1

fi(r)s)t) = z Z Z AeA2A1fi(uvvxw)) (33)

u=lv=1w=l

r-1s-1 z

filrs,t) ==Y " AcdsA fi(u, v, w), (3.4)

u=1lv=1w=t

r-1 y t-1

(r,s,1) 30D A fi(u,v,w), (3.5)
u=1lv=sw=l1
z s—-1t-1

(r,s,1) ZZ Z A AA; fi(u,v,w), (3.6)

u=rv=1lw=l1

Yy z

i (7, 5,1) EZZA Mg fi(u, v, w), (8.7)

u=lv=s w=t

z Y

i (7, 5,1) ZZEAeAZAlf, (u,v,w), (3.8)

u=rv=sw=1
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r s-1 z

f,(r,s t) = ZZZA Ao fi(u, v, w), (3.9)

u=rv=1lw=t

z Yy oz
fi(ry S,t) = - ZZZ A8A2A1fi(u’v)w)) (310)

u=r v=s w=t

From (3.3)-(3.10) it is easy to observe that

\fi(r,8,8)| < < ZZZ |A3A2 A fi(u, v, w)], (3.11)

u—l v=1w=1
for (r,s,t) € Q and i = 1,2,...,n. From (3.9) and using the Holder’s inequality for
summations in three dimensions with indices m;, m;/(m; — 1) for i = 1,2,...,n we
obtain

|fi(r,s,8)|™ < (%) i (zyz)™ ! x ZZ Z [A3A2A; fi(u,v,w)|™.  (3.12)

u=lv=1w=1
From (3.12) and using the elementary inequalities (2.13) and (2.14) and

Schwarz inequality for summation in three dimensions we observe that

n 2/n
[H lfi(r» S, t)lmil S (313)

=1
i=1 u=lv=1w=1

n\™ z ¥y 3 afn
S H (g) (zyz)m;—l X Z Z Z |A3A2A1f,~(u’ U,‘w)l""jl =

i=lu=lv=lw=1

1 %Zj:m; 2'}”:('"- 1) n T Yy z 1/n]?
= (1) 5 {HZZZlAsAzAzfi(u,v,w)l"”] <

NIE™ 2Ry 1 [
< (g) = (ey)" = [;Z [ZZZ |As A2 fi(u,v w)l""H
i=1 lu=lv=1lw=1
NEE™ 28 1 A&
<(3) ™ @t BT Ly ZZZlAaAzAm(uvw)lm}
i=1 lu=lv=1w=
1 /135 %im- ) & . 2
s;(‘é) (zyz)™ = xZwyz)ZZZlAsAzAlﬂ (v, W)™ =

u=lv=1lw=1

= %M(z)yyz;nyml, o ‘;mn) X ZZZ [E lAsAzAlfi(u,v,w)lzm‘] .

u=lv=1lw=1 Li=1
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Multiplying both sides of (3.13) by p(r,s,t) and taking the sum over ¢,s,r
from 1 to z, 1 to y, 1 to z respectively we get the required inequality in (3.1). The
proof is complete.

Remark 3. If we take (i) m; =1fori=1,2,...,n, (i) n=2,(ii)n=1, (iv)n =2
and m; = mg =1 and (v) n =1 and m; = 1, then the inequality established in (3.1)
reduces to the various new inequalities which can be used in certain applications.

The following theorem deals with the discrete analogue of the inequality given
in Theorem 2.

Theorem 4. Let the functions p(r,s,t), fi(r,s,t) and the constants m; for i =
1,2,...,n be as in Theorem 3. Then

z

1/n n
ZZE\/ r,s,1) [Hlf,(rs t |m'] x> |A3BA fi(r, s, t)|™ < (3.14)

r=1s=1t=1 i=1

x ; 1/2
< [M(:c,y,z,n,ml,...,m,,)zzy: p(r,s,t)} X
r=1s=1t=1
x ZZZ Z lAaAzAlf,-(r,s,t)l”."'] :

r=1s=1t=1 Li=1
where the constant M(z,y,z,n,my,...,my,) is defined by (3.2).

Proof. By using Schwarz inequality for summation in three dimensions and the in-
equalities (3.1) and (2.14) we observe that

T Yy 2z

1/n n
ZZZ\/p(r s,t) {H[f, (r,s,1) |’"] Cox Z[AaAgAlf;(r,s,t)V”‘ <

r=1s=11t=1 i=1

< [iizp(r 5,1) [H]f, (r,5,1) |'"r/n] 1lzx

r=1s=11t=1
. v 27 1/2

X [ZZZ [Z|A3A2A1fi(rlsat)|mi:| ] S
r=1s=1t=1

< [%M(x,y,z,n,ml,...,mn) (iij:i:l’(r,&ﬂ) X

L ) r=1s=1t=1 12

D359 ISR i
r=1s=1t=1 Li=1
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Tz Y z n 1/2 |
X [’HZEZ [z_; |A3A2A1f,-(r,s,t)|2""'” X

.
X [HZZZ [Z |A3A2A1f,(1'13 t)|2m,]] —
r=1s=1t=1 N
- [M(l,y,z,n’ml,_‘ mn)ZZZP(r s t)] X
r=1s=1t=1
X EZE [Z IA3A2A1f,(r s, t)|2m ] ]
r=1s=1t=1

This is the desired inequality in (3.14) and hence the proof is complete.
Remark 4. In the special cases, if we take (i) m; = 1fori=1,2,...,n, (ii) n = 1, (iii)
n=1and m; =1 in (3.14), then we get the new inequalities which may be useful in
certain situations. For similar inequalities, see [7,9,11,12,13] and the references given

therein.
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