SCHUNCK CLASSES OF π -SOLVABLE GROUPS

RODICA COVACI

Abstract. The paper deals with some properties of \underline{X} -maximal subgroups, \underline{X} -pro-

jectors and X-covering subgroups in finite π -solvable groups related to a π -closed Schunck class X, where π is an arbitrary set of primes. The main results are: 1) an existence and conjugacy theorem for X-maximal subgroups; 2) the proof of a property of covering subgroups in the more general case of projectors and some important corollaries if π is the set of all primes.

1. Preliminaries

The aim of this paper is to study in the case of finite π -solvable groups some special subgroups introduced by W. Gaschütz in [6] and [7]. All groups considered in the paper are finite. We denote by π an arbitrary set of primes and by π ' the complement to π in the set of all primes.

The notions in the paper are resumed in the following definitions.

Definition 1.1. a) ([7]) We call \underline{X} a *class* of groups if the members of \underline{X} are finite groups and \underline{X} has the properties:

(1)
$$1 \in \underline{\mathbf{X}};$$

(2) if $G \in \underline{X}$ and f is an isomorphism of G then $f(G) \in \underline{X}$.

b) ([8]) A class \underline{X} of groups is a homomorph if \underline{X} is closed under homomorphisms, i.e.

if $G \in \underline{X}$ and N is a normal subgroup of G imply $G/N \in \underline{X}$.

c) A group G is *primitive* if there is a maximal subgroup W of G with $core_G W = 1$, where

1991 Mathematics Subject Classification. 20D10. Key words and phrases. Schunk classes, conjugacy. $\operatorname{core}_{G} W = \cap \{ W^{g} / g \in G \}.$

d) ([8]) A homomorph \underline{X} is a Schunck class if \underline{X} is primitively closed, i.e. if any group

G, all of whose primitive factor groups are in \underline{X} , is itself in \underline{X} .

Definition 1.2. Let \underline{X} be a class of groups, G a group and H a subgroup of G.

a) ([7]) H is <u>X</u>-maximal in G if:

(1) $H \in \underline{X}$;

(2) $H \leq K \leq G, K \in X \Rightarrow H = K.$

b) ([7]) H is an <u>X</u>-projector of G if for any normal subgroup N of G, HN/N is <u>X</u>-maximal in G/N. c) ([6]) H is an <u>X</u>-covering subgroup of G if:

(1) $H \in \underline{X};$

(2) $H \leq K \leq G, K_0 \leq K, K/K_0 \in X \Rightarrow K = HK_0.$

Definition 1.3. a) ([5]) A group is π -solvable if every chief factor is either a solvable π -group or a π '-group. If π is the set of all primes, we obtain the notion of solvable group.

b) A class <u>X</u> of groups is π -closed if:

 $G/O\pi'(G) \in \underline{X} \Rightarrow G \in \underline{X},$

where $O\pi'(G)$ denotes the largest normal π' -subgroup of G. We shall call π -homomorph (π -Schunck class) a π -closed homomorph (Schunck class).

We shall use in the paper the following result given by R. Baer in [1]:

Theorem 1.4. A solvable minimal normal subgroup of a group is abelian.

2. Basic properties of special subgroups

We remind here some basic properties of special subgroups defined in 1.2.

Theorem 2.1. ([6]; [8]) Let \underline{X} be a homomorph, G a group and H a subgroup of G. a) If H is an \underline{X} -covering subgroup of G, then:

(1) for any $x \in G$, H^x is an <u>X</u>-covering subgroup of G;

(2) for any normal subgroup N of G, HN/N is an <u>X</u>-covering subgroup of G/N;

(3) for any subgroup K with $H \leq K \leq G$, it follows that H is an <u>X</u>-covering subgroup of

26

К.

b) If N is a normal subgroup of G and $H \le H^* \le G$ such that $N \subseteq H^*$, H is an <u>X</u>-covering subgroup of H^* and H^*/N is an <u>X</u>-covering subgroup of G/N, then H is an

<u>X</u>-covering subgroup of G.

Theorem 2.2. ([7]) Let \underline{X} be a class of groups, G a group and H a subgroup of G. a) If H is an \underline{X} -projector of G and $x \in G$, then H^x is an \underline{X} -projector of G. b) H is an \underline{X} -projector of G if and only if: (1) H is \underline{X} -maximal in G; (2) HM/M is an \underline{X} -projector of G/M for all minimal normal subgroups M of G. c) If H is an \underline{X} -projector of G and N is a normal subgroup of G, then HN/N is an X-projector of G/N.

Theorem 2.3. Let \underline{X} be a class of groups, G a group and H an \underline{X} -maximal subgroup of G. Then:

a) for any $x \in G$, H^x is an <u>X</u>-maximal subgroup of G;

b) for any subgroup K with $H \leq K \leq G$, it follows that H is <u>X</u>-maximal in K.

Concerning to the connection between \underline{X} -maximal subgroups, \underline{X} -projectors and

 \underline{X} -covering subgroups in finite groups we give:

Theorem 2.4. ([4]) Let \underline{X} be a class of groups, G a group and H a subgroup of G. a) If H is an \underline{X} -covering subgroup or an \underline{X} -projector of G, then H is \underline{X} -maximal in G.

b) If further \underline{X} is a homomorph, then: H is an \underline{X} -covering subgroup of G if and only if H is an \underline{X} -projector in any subgroup K with $H \leq K \leq G$. Particularly, any \underline{X} -covering subgroup of G is an \underline{X} -projector of G.

Remaark. The converse of the last assertion does not hold, as the following example shows: Let \underline{A} be the homomorph of all finite abelian groups. Any subgroup of order

27

RODICA COVACI

4 which is not normal in the symmetric group S_4 is an <u>A</u>-projector, but is not an <u>A</u>-covering subgroup in S_4 .

3. Existence and conjugacy theorems

The fundamental problem on the special subgroups defined in 1.2. is to prove the existence and conjugacy theorems. We give below such theorems for finite π -solvable groups.

All groups in this section are finite π -solvable.

Theorem 3.1. ([2]) Let \underline{X} be a π -homomorph.

a) \underline{X} is a Schunck class if and only if any π -solvable group has \underline{X} -covering subgroups.

b) Any two <u>X</u>-covering subgroups of a π -solvable group G are conjugate in G.

Theorem 3.2. ([3]; [4]) Let \underline{X} be a π -homomorph. Then: \underline{X} is a Schunck class if and only if any π -solvable group has \underline{X} -projectors.

Corollary 3.3. Let \underline{X} be a π -homomorph. The following conditions are equivalent: (1) \underline{X} is a Schunck class;

- (2) any π -solvable group has <u>X</u>-covering subgroups;
- (3) any π -solvable group has <u>X</u>-projectors.

Theorem 3.4. ([I]) If \underline{X} is a π -Schunck class, then any two \underline{X} -projectors of a π -solvable group G are conjugate in G.

In the proof of 3.4. given in [3], we use a lemma, important in itself, because it can be considered as an existence and conjugacy theorem for <u>X</u>-maximal subgroups in finite π -solvable groups.

Theorem 3.5. ([S]) Let \underline{X} be a π -Schunck class, G a π -solvable group and A an abelian normal subgroup of G with $G/A \in \underline{X}$. Then:

a) there is a subgroup S of G with $S \in \underline{X}$ and AS = G (which imply that there is an \underline{X} -maximal subgroup S of G such that AS = G);

b) if S_1 and S_2 are <u>X</u>-maximal subgroups of G with $AS_1 = G = AS_2$, then S_1 and S_2 are conjugate in G.

4. New results on projectors

In our intention to study some properties of special subgroups in finite π solvable groups we raised the following question: Does an analogous property of 2.1.b) hold for projectors? The answer is affirmative in finite π -solvable groups, as the result below shows.

Theorem 4.1. Let \underline{X} be a π -Schunck class, G a π -solvable group such that for any minimal normal subgroup M of G which is a π '-group we have $G/M \in \underline{X}$ and let B be a normal abelian subgroup of G such that:

(1) S is <u>X</u>-maximal in BS;

(2) BS/B is an <u>X</u>-projector of G/B.

Then S is an <u>X</u>-projector of G.

Proof. We consider two cases:

1) B = 1. Then BS/B \cong S and G/B \cong G. By (2), S is an X-projector of G.

2) $B \neq 1$. To prove that S is an <u>X</u>-projector of G we use 2.2.b).

(1) S is <u>X</u>-maximal in G. Indeed, if we put $S^* = BS$, our assumptions (1) and (2) imply that S is <u>X</u>-maximal in S^{*} and S^{*}/B is an <u>X</u>-projector of G/B. Then $S \in \underline{X}$. Let $S \leq T \leq G$ and $T \in \underline{X}$. We show that S = T. From $BT/B \cong T/B \cap T$ and <u>X</u> being a homomorph we obtain $BT/B \in \underline{X}$. By 2.4.a), S^{*}/B is <u>X</u>-maximal in G/B. This and $BS/B \leq BT/B$, where $BT/B \in \underline{X}$, imply BS/B = BT/B, hence $S^* = BS = BT$ and $T \leq S^*$. But $S \leq T \leq S^*$, $T \in \underline{X}$ and S <u>X</u>-maximal in S^{*} imply S = T.

(2) For any minimal normal subgroup M of G, MS/M is an X-projector of G/M. Indeed, M being a minimal normal subgroup of the π -solvable group G, two cases are possible:

a) *M* is a solvable π -group. Then, by 1.4., M is abelian. <u>X</u> being a π -Schunck class, 3.2. shows that the π -solvable group G/M has an <u>X</u>-projector T^{*}/M. We shall prove that MS/M and T^{*}/M are conjugate in G/M, hence, by 2.2.a), MS/M is an <u>X</u>-projector of G/M.

We are in the hypotheses of 3.5. because T^* is a π -solvable group and M is an abelian normal subgroup of T^* with $T^*/M \in \underline{X}$. By 3.5.a), there is an \underline{X} -maximal subgroup T

of T^{*} such that $MT = T^*$. We shall prove that T is <u>X</u>-maximal in G. Indeed, $T \in \underline{X}$. Further, let $T \leq T' \leq G$ with $T' \in \underline{X}$. We show that T = T'. Since $T^* = MT \leq MT'$ it follows that

 $T^*/M \leq MT'/M \cong T'/M \cap T' \in X.$

Using that T^*/M is an <u>X</u>-projector of G/M, that means that T^*/M is <u>X</u>-maximal in G/M, we obtain $T^*/M = MT'/M$, hence $MT = T^* = MT'$. So $T \le T' \le T^*$. But T is an

<u>X</u>-maximal subgroup of T^* and $T' \in \underline{X}$. Then T = T'. So T is <u>X</u>-maximal in G.

Let A = BM. Clearly A is a normal abelian subgroup of G. Further AS/A and AT/A are <u>X</u>-projectors of the π -solvable group G/A. By 3.4., AS/A and AT/A are conjugate in G/A. It follows that $AS^g = AT$ for some $g \in G$. But S and T are <u>X</u>-maximal in G. By 2.3.b), S^g and T are <u>X</u>-maximal in $AT = AS^g$. Applying now 3.5.b) to the π -solvable group AT and its abelian normal subgroup A with $AT/A \in X$, it follows that S^g and T are conjugate in AT. Hence M S^g/M and $MT/M = T^*/M$ are conjugate in G/M. Then MS/M and T*/M are conjugate in G/M and so MS/M is an <u>X</u>-projector of G/M.

B) M is a π '-group. Then $M \leq O\pi$ '(G) and

 $G / O\pi'(G) \cong (G/M) / (O\pi'(G)/M).$

But M being a minimal normal subgroup of G which is a π '-group, we have $G/M \in \underline{X}$. So, \underline{X} being a homomorph, we also have $G/O\pi'(G) \in \underline{X}$. It follows, by the π -closure of \underline{X} , that $G \in \underline{X}$. But S is \underline{X} -maximal in G. Then S = G is its own \underline{X} -projector, which means also that MS/M = G/M is its own \underline{X} -projector.

From now on let π be the set of all primes, i.e. all groups we consider are finite solvable groups. Theorem 4.1. has in this particular case the following immediate corollaries (given also in [7]).

Corollary 4.2. Let \underline{X} be a Schunck class, G a solvable group, S a subgroup of G and $G = G_0 \ge G_1 \ge \ldots \ge G_r = 1$ 30 such that for any i, $G_i < G$ and G_i/G_{i+1} is abelian. Then S is an <u>X</u>-projector of G if and only if for any i, G_iS/G_i is <u>X</u>-maximal in G/G_i .

Proof. By induction on |G|. If S is an <u>X</u>-projector of G, then, by 1.2.b), for any i, G_iS/G_i is <u>X</u>-maximal in G/G_i . Conversely, let, for any i, G_iS/G_i be <u>X</u>-maximal in G/G_i .

By the induction, $G_{r-1}S/G_{r-1}$ is an X-projector of G/G_{r-1} . Then putting in 4.1. B = G_{r-1} , we obtain that S is an X-projector of G.

Corollary 4.3. Let \underline{X} be a Schunck class, G a solvable group, H a subgroup of G and S an \underline{X} -projector of G such that $S \subseteq H$. Then S is an \underline{X} -projector of H.

Proof. G being solvable, there is a chain

 $G = G_0 \ge G_1 \ge \ldots \ge G_r = 1$

such that for any i, $G_i < G$ and G_i/G_{i+1} is abelian. We denote for any i, $H_i = H \cap G_i$. Then

 $\mathbf{H} = \mathbf{H}_0 \geq \mathbf{H}_1 \geq \ldots \geq \mathbf{H}_r = 1$

is a chain with $H_i < H$ and H_i/H_{i+1} abelian for any i. Applying 4.2. for the Xprojector S of G, we obtain that for any i, G_iS/G_i is X-maximal in G/G_i . But, for any i, we also have:

 $\begin{array}{l} H_iS/ \; H_i \cong S/S \cap H_i = S/S \cap (H \cap G_i) = S/(S \cap H) \cap G_i = S/S \cap G_i \cong G_iS/G_i \\ \text{and} \end{array}$

 $H/H_i = H/H \cap G_i \cong HG_i/G_i \leq G/G_i.$

It follows that for any i, H_iS/H_i is X-maximal in H/H_i , hence, by 4.2., S is an X-projector of H.

From 2.4.b) and 4.3. follows:

Corollary 4.4. Let \underline{X} be a Schunck class, G a solvable group and S a subgroup of G. Then S is an X-covering subgroup of G if and only if S is an X-projector of G.

References

 Baer, R., Classes of finite groups and their properties, Illinois J. Math., 1, 2, 1957, 115-187.

- [2] Covaci, R., Projectors in finite π -solvable groups, Studia Univ. "Babes-Bolyai", Math., XXII, 1, 1977, 3-5.
- [3] Coyaci, R., Some properties of projectors in finite π-solvable groups, Studia Univ. "Babes-Bolyai", Math., XXVI, 1, 1981, 5-8.
- [4] Covaci, R., Projectors and covering subgroups, Studia Univ. "Babeş-Bolyai", Math., XXVII, 1982, 33-36.
- [5] Aunihin, S.A., O teoremah tipa Sylowa, Dokl. Akad. Nauk SSSR, 66, 1949, 165-168.
- [6] Gaschütz, W., Zur Theorie der endlichen auflösbaren Gruppen, Math. Z., 80, 4, 1963, 300-305.
- [7] Gaschütz, W., Selected topics in the theory of soluble groups, Australianb National University, Canberra, Jan.-Feb. 1969.
- [8] Schunck, H., <u>H</u>-Untergruppen in endlichen auflösbaren Gruppen, Math. Z., 97, 4, 1967, 326-330.

.

"BABES-BOLYAI" UNIVERSITY, FACULTY OF MATHEMATICS AND COMPUTER SCI-ENCE, 3400 CLUJ-NAPOCA, ROMANIA