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A NOTE ON THE TR IVIALITY OF THE  
BOHR-COM PACTIFICATION OF LIE GROUPS

B R I G I T T E  B R E C K N E R

Abstract. We determine a class of connected Lie groups for which the 
triviality of the Bohr-compactification is equivalent to the triviality of 
the Bohr-compactification of the simply connected covering group. We 
derive from these results some information on the structure of the Bohr- 
compactification of some class of connected topological groups. '

1. Introduction

A topological group G has a trivial Bohr-compactification if ( / ,  {1 }) is the 

Bohr-compactification of G, where / :  G —y {1 } is the trivial homomorphism. One 

shows quickly that if a topological group G has a simply connected covering group 

G and if G has a trivial Bohr-compactification, then G itself must possess a trivial 

Bohr-compactification. The converse of this statement is not always true, i.e., that 

the triviality of the Bohr-compactification of a topological group G does not imply the 

triviality of the Bohr-compactification of its simply connected covering group G (if this 

covering group exists). In the present paper we look for conditions when this converse 

is true. The main results are contained in Section 2: We find a class of connected 

Lie groups for which the triviality of the Bohr-compactification is equivalent to the 

triviality of the Bohr-compactification of the simply connected covering group (see 

Theorem 2.10). As we shall see in Section 3, Theorem 2.10 implies statements about 

the structure of the Bohr-compactification of connected simple Lie groups and of 

connected semisimple Lie groups. For the sake of completeness we include as a final 

result of this section the structure theorem for the Bohr-compactification of solvable
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connected topological groups. We mention that Neeb investigates in Proposition 

X .l of [5] the structure of the Bohr-compactification of Lie groups, too. But his 

methods differ essentially from ours. The last section of the paper contains an example 

for a connected topological group satisfying the property that it has a trivial Bohr- 

compactification while its simply connected covering group has a non-trivial Bohr- 

compactification .

We denote by (ia, Gb) the Bohr-compactification of the topological group G. 
For the sake of simplicity we shall say that Gb is the Bohr-compactification of G. 

With this notation, the triviality of the Bohr-compactification of G is equivalent to 

the fact that Gb =  {1 }.

We recall the well-known fact that the Bohr-compactification of a topological 

group G is also the universal topological group compactification of G.

2. Passing to  the universal covering group

It is easy to see that if the simply connected covering group G of a topological 

group G has a trivial Bohr-compactification then G has also a trivial Bohr-compac­

tification. This fact follows from the following lemma..

Lem m a 2.1. Let f : H - + K b e a  dense and continuous homomorphism between 

topological groups. If Hb =  {1 }, then K b =  { 1}.

P roof. The universality of (iff, Hb) implies the existence of a continuous homo­

morphism <j> : Hb —>■ K b such that the diagram

H — Hb

K b =  K b

commutes. Since Hb =  {1 }, we deduce that

*#(/(/*)) =  1, for all h G H.

The density of /  and the continuity of Ik now imply that K b =  { ! } .  □
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Corollary 2.2. Let G be a connected topological group and G its simply connected 

covering group. If (G)b =  {1 }, then Gb =  {1 }.

Rem ark. The converse of Corollary 2.2 is not always true. We postpone the presen­

tation of an example (see Proposition 4.1).

In the remainder of this section we look for conditions on a Lie group G which 

ensure that the converse of Corollary 2.2 is also true. The following well-known lemma 

on topological groups (whose proof we omit) will be very useful for our purposes.

Lem m a 2.3. Let G, H, and K  be topological groups, q : G —> H a quotient homo­

morphism of topological groups, and f  : G —► K a continuous homomorphism. If 

ker q C ker / ,  then there exists a unique continuous homomorphism f : H - * K  such 

that the diagram
G  — H

'{ V
K =  K

is commutative.

We derive from Lemma 2.3 the following isomorphism results for topological groups:

C orollary 2.4. Let G be a topological group, N a normal subgroup of G, and H an 

arbitrary subgroup of G . The map <j>: H/(HC\N) —► HN/N defined by <f>(h(H ClN)) =  

hN, for all h(H fl N) G H/(HD N), is a continuous algebraic isomorphism.

C orollary 2.5. Let G be a topological group, N a normal and closed subgroup of 

G, and H a compact subgroup of G. Then the map <f> defined in Corollary 2.4 is a 

homeomorphism.

The next theorem is basic for what follows.

Theorem  2.6. Let Z H G be a sequence of continuous homomorphisms of 
topological groups satisfying the following properties:

(i) f i z ) =  kerp.
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(ii) Z is abelian.

(iii) p is a quotient map.

(iv) Gb =  {1 }.

Then Hb is abelian.

P roof. The universality of (i z , Zh) implies the existence of a continuous homo­

morphism / '  : Zb —»• H b such that the following diagram

(2-1) 4  i ' '
H -------- ► Hb

*H
commutes.

We first prove that f ( Z b) is a closed normal subgroup of Hb. It is obvious 

that f f(Zb) is a closed subgroup of Hb.

The fact that f ( Z ) =  kerp implies that the subgroup f (Z)  is normal in H. 
Thus for an arbitrary h £ H we have

hf(Z)h- 1 Ç f(Z).

Applying in to both sides of the above inclusion and taking into account (2.1), one 

obtains that

(2.2) iH{h)f{ iz {Z)){ i„ {h) )- '  Ç f ' ( iz (Z)) Ç f ' (Zb).

Since the inner automorphisms of Hb are continuous and since Hb is Hausdorff and 

compact, the following equality holds

(2.3) -  iH{h)f'[iz{Z)){iH{h))~l .

Using the continuity of / ' ,  the density of and the fact that Hb is Hausdorff and 

compact, one gets the following equalities

(2.4) f ( i z (Z)) =  f ( M Z ) )  = f ( Z b).

Relations (2.2), (2.3), and (2.4) imply that

(2.5)

14
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Taking into account that iji{H) =  Hb, one concludes from (2.5) that f ( Z b) is normal 

in Hb.

Let K  := Hb/f*(Zb) be endowed with the quotient topology. Since Hb is a 

compact topological group and since f ( Z b) is a closed normal subgroup of it, K  is a 

compact HausdorfF topological group. Denote by q : Hb -> K  the canonical quotient 

map.

We now show that there is a continuous homomorphism <j>: G —► K  such that 

the diagram

(2 .6)
H — ï— ► G

K K
commutes. For this we observe that

(2.7) ker p C ker(g o iH).

Indeed, kerp =  f (Z)  and we know by (2.1) that

iH(kexp) =  iH(f(Z))  =  f ( i z (Z ) )  C f\ Z b).

Since f ( Z b) =  kerg, one obtains from the above relation that

(gotn)(kerp) Ç {1},

i.e., (2.7) holds. Applying Lemma 2.3, there exists a continuous homomorphism 

<j> \ G - »  K  such that (2.6) is commutative.

Since Gb =  {1 }, we must have that

(f>(g) =  1, for all g G G.

Thus

(<j> op)(h) =  1, for all h G H.

From the commutative diagram (2.6) we now get that

(q o ijj)(A) =  1, for all h G H,
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i.e.,

%h {H) C k erq =  f f(Zb).

Since ker g is closed and since iff is dense, it follows that Hb =  f ' (Zb). According 

to condition (ii) of the hypotheses we know that Z is abelian. Then so are Zb and 

f ( Z b). Thus Hb is abelian. □

We recall that for a group G, the commutator subgroup is denoted by G'.

Lem m a 2.7. Let G be a connected Lie group. Then Gb is abelian if and only if 

ker ic  =  G'.

P roo f. First suppose that keria =  G'. The inclusion G' Ç ker %q implies that 

ï‘g (G) is abelian. Then so is z’g (G) =  Gb.

Now assume that Gb is abelian. This implies the inclusion

(2.8) G7 Ç ker î’g -

To prove the converse inclusion, consider T := G /G '. Thus T  is a connected abelian 

Lie group. According to Korollar III.3.25 of [3] there are natural numbers m and n 

such that T is both algebraically and topologically isomorphic to the direct product 

Mm x (® /Z )n. It follows that iy : T  —> T6 is injective.

Denote by q : G -> T  the canonical quotient map. The universality of (îg , G6) 

implies the existence of a continuous homomorphism q : Gb -+ Tb which makes the 

diagram
G —Î2_> G6

’ i  i«
T  — — ► Tb

*T

commutative. Now consider an arbitrary element g G kerio- Thus q o io{g) =  1, or, 

by the commutativity of the above diagram, î‘t (ç(<7)) =  Since iy is injective, it 

follows that q(g) =  1, i.e., g G ker g =  G'. Thus

(2.9) k e r ic C G 7.

By (2.8) and (2.9) one obtains the desired conclusion. □
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The following result is a consequence of Theorem 2.6 and Lemma 2.7.

C orollary  2.8. Add to the hypotheses of Theorem 2.6 that H is a connected Lie 

group. Then ker in =  Hf.

We define now a special type of topological groups, which will enable us to 

give an answer to the problem of the triviality of the Bohr-compactification presented 

in the previous section.

D efin ition  2.9. A topological group G is called topologically perfect if G = Gf.

The next result gives a class of Lie groups for which the converse of Corollary 

2.2 is true.

T heorem  2.10. Let G be a connected Lie group satisfying the property that the sim­

ply connected covering group G of it is topologically perfect. Then Gb =  {1 } if and 

only if (G)b =  {1 }.

P roo f. If (G)b =  {1 }, then Corollary 2.2 yields that Gb =  {1 }. For the converse 

statement let p: G -*  G be a covering morphism and denote by Z := kerp. It is 

known that Z is an abelian subgroup of G. Denote by i: Z -> G the inclusion map. 

The map p is a quotient map since it is a covering morphism. Thus the sequence

z

satisfies the conditions (i)-(iv) of Theorem 2.6. Applying Corollary 2.8, one obtains 

that

ker i5 =  (G)’ .

Since G is topologically perfect, one concludes that ker = G, i.e., (G)b =  {1 }. □

Connected semisimple Lie groups are common examples of topologically per­

fect groups. Thus the following result is a direct consequence of Theorem 2.10.

Corollary 2.11. Let G be a connected semisimple Lie group and G the simply con­

nected covering group of it. Then Gb =  {1 } if and only if (G)b =  {1 }.
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3. The structure o f  the B ohr-com pactification  o f  Lie groups

As we shall see, Corollary 2.11 implies statements about the structure of the 

Bohr-compactification of connected simple Lie groups and of connected semisimple 

Lie groups. For this we also need the following theorem, which is a consequence of a 

deep result by Ruppert .

T heorem  3.1. The Bohr-compactification of a non-compact connected simple Lie 

group G with finite center is trivial.

P roof. This statement follows from two results of [7], namely from Theorem 

III.1.19 and assertion (i) of Theorem III.6.3. □

T heorem  3.2. Let g be a simple non-compact Lie algebra and let G be a connected 

Lie group with Lie algebra g. Then Gb =  {1 }.

P roof. Let G be a simply connected covering group of G. According to Satz 1.5.19 

and Satz II.7.1 of [3] there is a connected linear Lie group G* possessing a Lie algebra 

isomorphic to 0. Since G* is a simple linear Lie group, Proposition 5.1 of Chapter 1 of 

[6] implies that it has finite center. Applying Theorem 3.1, we get that (G*)6 =  {1 }. 

Now consider a simply connected covering group G* of G*. Corollary 2.11 yields that 

(G*)6 =  {1 }. On the other hand, the Lie groups G* and G are isomorphic having 

isomorphic Lie algebras. Thus (G)6 =  {1 } and so the assertion follows from Corollary 

2.2. □

Now we turn our attention to connected semisimple Lie groups. A first step in 

determining the structure of their Bohr-compactification is contained in the following 

result:

Lem m a 3.3. Let n >  1 be a natural number and let s be a semisimple Lie algebra 
with the property that

s =  si 0  • • •©*„,

where are simple and non-compact ideals of s. If S is a connected Lie group with 

Lie algebra s, then Sb =  {1 }.
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Proof. For i G { 1 , . . . ,  n}  let Si be a simply connected Lie group with Lie algebra 

. Put

S:=n&.
1=1

Then 5  is a simply connected Lie group whose Lie algebra is isomorphic to s. Denote 

by fi : Si —» S (i =  1, n) the canonical injections. The subgroup fi(Si) (i G { 1 , . . . ,  n}) 

of S' is a connected Lie group whose Lie algebra is isomorphic to s». Thus, ac­

cording to Theorem 3.2, the group fi(Si) has trivial Bohr-compactification for each 

i G { 1 , . . . ,  n}.  It follows that

*5 (/*(■$)) =  {1 } f°r each i G {1, . .  . ,n} .

Since

S =  f 1(S1) . . . f n(Sn) i

one obtains that ig(S) =  {1 }, i.e., (£ )fe =  {1 }. Since the group S is a simply connected 

covering group of 5, Corollary 2.2 yields that Sb =  {1 }. □

In stating the structure theorem for the Bohr-compactification of connected 

semisimple Lie groups we need the following result about the structure of connected 

semisimple Lie groups. In the proof of this result one uses the structure theorem of 

semisimple Lie algebras (see Satz II.3.7 of [3]).

Lemma 3.4. Let G be a connected semisimple Lie group and q its Lie algebra. Then 
the following statements hold:

(1) There are two finite sets I and J and simple ideals t, (i G I) and Sj 

(j G J) ° f  0 satisfying the properties that is compact for each i G / ,  Sj 

is non-compact for each j  G J, and

0 =  0 ® i  © 0 S j .
i e i  j e J

(By definition, if I =  0, then 0,-ç/tj {0 } and similarly, if J =  0, then

■■= { o } . ;
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(2) There is a compact connected normal subgroup K  of G and there is a closed 

connected normal subgroup S of G such that

U K ) =  0 * „  L(S) =  and G =  KS.
*€/ jeJ

Moreover, K  (IS is a discrete subgroup of G.

We are now prepared for the structure theorem of the Bohr-compactification 

of a connected semisimple Lie group.

Theorem  3.5. Let G be a connected semisimple Lie group and g its Lie algebra. 

There is a compact connected normal subgroup K of G and there is a closed connected 
normal subgroup S of G such that the following assertions hold:

(i) G =  KS.

(ii) The groups G/S and K/K C\S are algebraically and topologically isomor­

phic.

(iii) / /  q : G —> G/S denotes the canonical quotient map, then (q,G/S) is the 

Bohr-compactification ofG.

P roo f. Let K  and S be the subgroups of assertion (2) of Lemma 3.4. Then (i) 

obviously holds.

(ii) This assertion follows from (i) and Corollary 2.5.

(ii) According to (ii) the pair (q,G/S) is a topological group compactifica­

tion of G. Consider an arbitrary continuous homomorphism / :  G -*  T of G into 

a compact Hausdorff topological group T. We know by Lemma 3.3 that Sh =  {1}, 

hence f(S)  =  {1 }, i.e., ker q =  S Ç ker/ .  Applying Lemma 2.3, we find a continuous 

homomorphism / :  G/S —> T such that the diagram

G — g— > G/S

4 \l
T =  T

is commutative. This means that (q,G/S) is the universal topological group com­

pactification of G, hence also the Bohr-compactification of G. □
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For the sake of completeness we finish this section with some considerations 

on the Bohr-compactification of another important class of Lie groups, namely the 

solvable Lie groups. We determine even the structure of the Bohr-compactification 

of solvable connected topological groups. For this we state first the following useful 

result:

P roposition  3.6. A compact connected Hausdorff topological group G which is solv­

able is abelian.

P roof. Proposition 9.4 of [4] implies that G" =  G'. Since G is solvable, it follows 

that G' =  {1 }. Thus G is abelian. □

We are now able to give the structure of the Bohr-compactification of solvable 

topological groups. For a topological group G denote by T the quotient group G /G ' 

and by q : G -> T the canonical quotient map.

Theorem  3.7. Let G be a solvable connected topological group. Then (ix o qyTb) is 

the Bohr-compactification of G .

P roof. It is clear that (ix o q,Tb) is a topological group compactification of G. 

Now consider an arbitrary continuous and dense homomorphism /  : G —> K  of G into 

a compact Hausdorff topological group K.  Since G is connected and solvable, so is 

/(G ). Thus the group /(G ) =  K  is also connected and solvable. Hence Proposition 

3.6 yields that K  is abelian. It follows that

ker q =  G' C ker / .

In view of Lemma 2.3 there exists a continuous homomorphism / '  : T —} K  such that 

the diagram

G -—5— > T

(3.1) 4 V
K  . --------- K
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commutes. The universality of (z't  , Tb) implies the existence of a continuous homo­

morphism /  : Tb —> K  such that the diagram

r ji  * T   ̂ r p b

(32)  ''J . 1 '
K  =  K

commutes. The diagrams (3.1) and (3.2) yield

foiT oq = f'oq = f,

i.e., the following diagram
G *r -? > Tb

4  y
K =  K

is commutative. This shows that (%t oq ,Tb) is the universal topological group com­

pactification of G, hence also the Bohr-compactification of G. □

Rem ark. Suppose in addition to the hypotheses of Theorem 3.7 that G is locally 

compact. In view of assertion (iii) of Theorem 7.57 of [4] the connected locally com­

pact abelian group T is both algebraically and topologically isomorphic to the direct 

product Mn x C with a compact connected group G. Since the Bohr-compactification 

of this direct product is known, it is now clear what the Bohr-compactification of a 

solvable connected locally compact topological group looks like.

4. An example

We give now the example promised in the remark after Corollary 2.2 for 

a connected topological group satisfying the conditions that it has a trivial Bohr- 

compactification and the simply connected covering group of it has a non-trivial Bohr- 

compactification. Let G = l x  S1(2,M) be the direct product of the additive group of 

real numbers (endowed with the usual topology) and the simply connected covering 

group of the special linear group. Let T =  Z +  \/5Z. We know by Lemma 1.3.14 of [3] 

that T  is a dense subgroup of M. It is known (see, for example, Theorem V.4.37 of [2]) 

that S1(2,M) has a discrete center which is isomorphic to 7L. Denote by z 6 S1(2,M)
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the generator of this center. Now consider the subgroup Z of G generated by the 

elements (1, 1) and (y/2, z). Then

Z =  {(m  +  n\PÎ, zn) I m, n G Z }.

The subgroup Z of G is discrete and normal in G. We consider the quotient group 

G := G/Z. For this group we can state the following proposition:

P roposition  4.1. The topological group G has a trivial Bohr-compactification. The 

Bohr-compactification of its simply connected covering group G satisfies (G)b ~  M6.

P roof. Denote by q : G —► G the canonical quotient map. Since q is a homomor­

phism, we have

q ((G ) ')= G '.

Thus Gf =  (GYZ/Z. Applying Corollary 2.4, there is a continuous isomorphism 

<£: (G )7 ((G )' fl Z) -> (GYZ/Z. Hence <j> : (G )7((G )' D Z) -+ Gf is a continuous 

isomorphism. On the other hand, since S1(2,M) is simple, we have the following 

equality

(G); =  {0 } x S1(2,M).

Thus (G)f fl Z =  {(0 ,1 )}. It follows that (G )7 ((G )' fl Z) is both algebraically 

and topologically isomorphic to S1(2,M). Thus (G )7 ((G )' H Z) has a trivial Bohr- 

compactification by Theorem 3.2. Applying Lemma 2.1 to the map <£, we conclude 

that (G')b =  {1 }. Let us observe that

G' =  q ((G)'Z) .

Since

T x S1(2,M) C (G)fZ 

and since T =  M, we deduce that

(ôyz = G.

The continuity of q and the above relations yield that

G =  q(G )Cq((G )'Z) =  Gi.
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Thus G ' =  G. Taking into account that (G')6 =  {1 }, it follows that îg(G') =  {1}. 

Since G1 =  G, the continuity of %q implies that z‘c?(G) =  { 1}, i.e., Gb =  { 1}. Since q 

is open and since ker q =  Z is discrete, it follows that q is a covering morphism. Since 

G is simply connected, it is a simply connected covering group of G. On the other 

hand, since S1(2,M) has a trivial Bohr-compactification, one has that (G)6 ~  Mb. □

Note. This paper is a part of the author’s doctoral dissertation written at Darmstadt

University of Technology under the direction of Professor Karl H. Hofmann.
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