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GENERALIZED CONTRACTIONS FOR SOLVING RIGHT FOCAL
POINT BOUNDARY VALUE PROBLEMS

VASILE BERINDE

Abstract. The main goal of the present paper is to use the generalized
contraction mapping principle [4] instead of the classical contraction map-
ping principle, in order to obtain a more general existence and uniqueness
theorem for the n*® order ordinary differential equation with deviating

arguments (1.1) - (1.3).

1. Introduction

Second order as well as higher order boundary value problems with deviat-
ing arguments arise naturally in several engineering applications. In spite of their
practical importance, only a few papers are devoted to boundary value problems(see
[2] and references therein), even if initial value problems for higher order differential
equations with deviating arguments have been studied intensively. Consequently, let
us consider, as in [2] ( all concepts and notations related to ODE are taken from this

paper), the n** order ordinary differential equation with deviating arguments
™ (t) = f(t,z o w(t)),t € [a,b], (1.1)

where z o w(t) stands for (z(wo,1(t)), ..., #(wo p(0)()), .-, (D (wg p(g) (),
0 < ¢ <n~—1 (but fixed), and p(i),0 < i < g, are positive integers.
The function f(t,< z >) is assumed to be continuous on [a,b] x R, ,where

q
< z > represents (Zo,1, .-, £0,p(0); -» Lq,p(q)) and N = Y p(é). The functions
1=0
w;j,1<j<p(i),0<i<yg,
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GENERALIZED CONTRACTIONS

are continuous on [a, b] and w; ; (t) < b for all t € [a, b];
Also, they assume the value a at most a finite number of times as ¢ ranges
over [a, b].
Let
o =minfa, inf wi;(t) 1<i<p(i),  0<Li<q)
If @ < a, we assume that a function ¢ € C9|[a, d] is given.
Let k be a fixed integer such that 1 <k < n—1 and let » = min{q, & — 1}.

We seek a function
z € B=CMa,b]n CD[a,a)n C[q,],
having at least a piecewise continuous n** derivative on [a, b], and such that:
if
a<a and ¢>k—1then z(t)=¢0)(t),0<i<q, t€]a,a; (1.2)

ifa<aand ¢g<k—1,then
20(t)=pl)(t), 0<i<yq, t€le,al;
ea)=A; ¢+1<i<k-1;
if @ = a, then
e@a)=4; 0<i<k-1
and
eD®)=B; k<i<n-1; (1.3)

Also, z is a solution of (1.1) on [a, b].

2. Equivalent integral equation

To obtain an existence and uniqueness theorem for the boundary value prob-
lem (1.1)-(1.3) we shall convert it into its equivalent integral equation representation.
To this end we need the Green’s function expression, g(t,s), for the boundary value

problem
g™ =0, 2D@)=0, 0<i<k-1, zO@F) =0, k<i<n-1. (2.1)
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From Lemma 2.1 [2], we have that g(t, s) is given by

z,.—;‘—mg(":‘)(t—a)‘(a—s)"“"-‘, if s<t,

y(t’s)z n-1 . .
—zni—mg; Nt —a)i(a—s)"—"L, if s>t

It is known [2] that

(=D)"*gO(t,5) >0, 0<i<k, (t,5) € [a,b] x [a, b];

(=D)"g@(t,s) >0, k+1<i<n-—1, (t,s) € [a,b] x [a, b];

b
sup / |g(i)(t,s)ldSSC,.,;(b—a)"", 0<i<n-1,

a<lt<b
a

where g()(t,s) = 8g(t,s)/0t and

k—i=1 . .

' (nilj! DY (n;-l)(—l)"-]_l l 0<i<k—-1,
Cn,c' = j=0

In—ll)!’ k<i<n-1.

The boundary value problem (1.1)-(1.3) is equivalent to the integral equation

b

2(t) = ¥(t) + 0(t) / 9(t, ) (s, 2 0 w(s))ds,

a

(2.2)

where

, otherwise,

O(t):{ 0, t € [a,ad]
1

and the function 1 is defined as follows.

Ifa<aand ¢g>k—1,then

o0 = { elt) t€fma,
Pn—-l(t)) tE[a,b],
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where a; = p()(a), 0<i< k-1, B;=B;, k<i<n-—1l,and ps_i(t) is the unique
polynomial (see Lemma 2.2,[2]) of degree n — 1 satisfying

PO (@)=a;, 0<i<k—1land P ()=pi,k<i<n-—1.
If a < aand ¢ < k— 1,then
(1), L€ [, a],
¥(t) =
Pn_l(t), te [a,b],
where a; = p()(a),0< i< ¢q, s = A;, g+1<i<k-1,and fi =B;, k<i<n-1.
If a = a, then ¥(t) = Pa-1(t),t € [a,a], where
a;=A;,0<i<k-land ;=B ,k<i<n-1
It is easy to see that ¢ € B, and for all ¢ € [a, b],with

wi j(8) = a, ¥ (wi3(t) = P (a +0).

3. Generalized contraction mapping principle and main result

We shall use a local variant of the generalized contraction mapping principle

[4, Theorem 1.5.1.] to state our main result.

Lemma 3.1. (Generalized contraction mapping principle [4]). Let (X,d) be a com-
plete metric space and let > 0, p € R, S(uo, p) = {u € X : d(u,uo) < p}. Further,
let T be an operator which maps S(uog, pt) into X, and

(i) for all u,v € S(ug,p),d(Tu,Tv) < ¢(d(u,v)), where ¢ is a (c)-comparison

function;

(1) po = d(Tuo,uo) < pp — b(p)-
Then
(1) T has a fired point u* in S(ug, po);
(2) u* is the unique fized point of T in S(uo, fto);

(8) the sequence {un}, where umy1 = Tum, m = 0,1, ..., converges to u* with

d(u", um) < s(6™ (d(uo, 1))
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and

d(u*, um) < s(d(Um, Um+1));

where s(t) is the sum of the seriesgo: o*(t).
k=0
— .
(4) for any u € S(uo, po), u* = ”}%T u.

Remark. For the notion of (c)-comparison function we refer to [4]. A typical compar-

ison function is
$t)=x, 0<A<I, te[0,00). (3.1)

For ¢ given by (3.1), from Lemma 3.1 we obtain Lemma 2.3 [2].

Let 4;, 0 < i< k—1and B;, k < i< n—1,be given fixed numbers and
¥2 € B the function defined in [2], Section 4. Following [2], a function T € B is called
an approrimate solution of (2.2) if there exist nonnegative constants ¢ and § such that

wherever v (1), %$7 (1) and 7 (t) are defined,

sup |95(t) —9D(t)| < €Cai(b—a)™, 0<i<y, (3.2)
a<lt<b

b
sup 170(0) = 9§(0) — 6(0) [ 09(5,0)S(5, 0 w(e))ds < 6Cns(b-a)",0< i < g
a<t<b

a

(3.3)
If we consider the following norm on the space B:
| z ||= max {(%b;“)—‘) sup | z()(t) | wherever z0)(t) e:cists}
0<i<q Mt T aki<b
and apply Lemma 3.1 we can prove in a standard way.

Theorem 3.1.. Suppose that (2.2) has an approzimate solution T € B and

(1) f satisfies the Lipschitz condition

q p(4)
[flt,<z>)=f(t,<y>)|<Y -21 Lij| z; ;=yi 4l
].__‘

=0

Jorall (t,< z >),(t,<y>) € [a,b] x Dy, where
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Di={< 2> i~ 20(wi(0) I< b ooy, 15 <o), 0<i< a};
(1) ¢ is a (c)-comparison function and
(e +8)Cnolb - a)" < 1 — $(s) (34)
Then
(1) There exists a solution z*(t) of (1.1)-(1.8) in S(%, po);

(2) z*(t) is the unique solution of (1.1)-(1.3) in S(Z, po);
(3) The sequence {zm(t)} of successive approzimations, defined by

b .
Emts(t) = ¥(t) + 00) [ 9(t,)1(5,2m 0 w(e))ds, m=0,1,..

and zo(t) = Z(t), converges to z*(t) with

2" —2m ||< s(¢™ (Il wo — w1 1),

lz* = zm |I< s(ll um — um4a |]);

(4) for any zo(t) = z(t), where z € S(7, po), the iterative process converges to z*(t) .

Remarks

1) For ¢(t) as given by (3.1), from Theorem 3.1 we obtain Theorem 4.1 in [2];

2) If , for instance , we take the comparison function ¢ : Ry — R, given by :
1
L, 0<t<1
sit)=4 2"
t—1 t>1,

then an operator T, which satisfies all assumptions in Theorem 3.1, will be gen-
erally not a contractive operator ( with respect to the norm , see [4]), that is, an

operator satisfying for all u,v € S(Z, o), the classical contraction condition

NTu-Tv||[<Alju-v]|, 0<A<],
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but T is a generalized contractive operator. Consequently, Theorem 4.1 from [2]
does not apply, while Theorem 3.1 apply to this class of higher order differential

equation with deviating argument.
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