GENERALIZED CONTRACTIONS FOR SOLVING RIGHT FOCAL POINT BOUNDARY VALUE PROBLEMS

VASILE BERINDE

Abstract

The main goal of the present paper is to use the generalized contraction mapping principle [4] instead of the classical contraction mapping principle, in order to obtain a more general existence and uniqueness theorem for the $\mathbf{n}^{\text {th }}$ order ordinary differential equation with deviating arguments (1.1) - (1.3).

1. Introduction

Second order as well as higher order boundary value problems with deviating arguments arise naturally in several engineering applications. In spite of their practical importance, only a few papers are devoted to boundary value problems(see [2] and references therein), even if initial value problems for higher order differential equations with deviating arguments have been studied intensively. Consequently, let us consider, as in [2] (all concepts and notations related to ODE are taken from this paper), the $\mathrm{n}^{\text {th }}$ order ordinary differential equation with deviating arguments

$$
\begin{equation*}
x^{(n)}(t)=f(t, x \circ w(t)), t \in[a, b], \tag{1.1}
\end{equation*}
$$

where $x \circ w(t)$ stands for $\left(x\left(w_{0,1}(t)\right), \ldots, x\left(w_{0, p(0)}(t)\right), \ldots, x^{(q)}\left(w_{q, p(q)}(t)\right)\right)$, $0 \leq q \leq n-1$ (but fixed), and $p(i), 0 \leq i \leq q$, are positive integers.

The function $f(t,\langle x\rangle)$ is assumed to be continuous on $[a, b] \times \mathbf{R}^{N}$, where $<x>$ represents $\left(x_{0,1}, \ldots, x_{0, p(0)}, \ldots, x_{q, p(q)}\right)$ and $N=\sum_{i=0}^{q} p(i)$. The functions

$$
w_{i, j}, 1 \leq j \leq p(i), 0 \leq i \leq q
$$

1991 Mathematics Subject Classification. 34K 10.
Key words and phrases. generalized contraction, deviating argument, boundary value.
are continuous on $[a, b]$ and $w_{i, j}(t) \leq b$ for all $t \in[a, b]$;
Also, they assume the value a at most a finite number of times as t ranges over $[a, b]$.

Let

$$
\alpha=\min \left\{a, \inf _{a \leq t \leq b} w_{i, j}(t), \quad 1 \leq j \leq p(i), \quad 0 \leq i \leq q\right\}
$$

If $\alpha<a$, we assume that a function $\varphi \in C^{(q)}[\alpha, a]$ is given.
Let k be a fixed integer such that $1 \leq k \leq n-1$ and let $r=\min \{q, k-1\}$.
We seek a function

$$
x \in \mathcal{B}=C^{(r)}[\alpha, b] \cap C^{(q)}[\alpha, a] \cap C^{(q)}[a, b]
$$

having at least a piecewise continuous $\mathrm{n}^{\text {th }}$ derivative on $[a, b]$, and such that:

$$
\begin{align*}
& \text { if } \\
& \alpha<a \quad \text { and } \quad q \geq k-1, \text { then } \quad x^{(i)}(t)=\varphi^{(i)}(t), 0 \leq i \leq q, \quad t \in[\alpha, a] \tag{1.2}
\end{align*}
$$

if $\alpha<a$ and $q<k-1$, then

$$
\begin{aligned}
& x^{(i)}(t)=\varphi^{(i)}(t), \quad 0 \leq i \leq q, \quad t \in[\alpha, a] ; \\
& x^{(i)}(a)=A_{i}, \quad q+1 \leq i \leq k-1 ;
\end{aligned}
$$

if $\alpha=a$, then

$$
x^{(i)}(a)=A_{i}, \quad 0 \leq i \leq k-1
$$

and

$$
\begin{equation*}
x^{(i)}(b)=B_{i}, \quad k \leq i \leq n-1 ; \tag{1.3}
\end{equation*}
$$

Also, x is a solution of (1.1) on $[a, b]$.

2. Equivalent integral equation

To obtain an existence and uniqueness theorem for the boundary value problem (1.1)-(1.3) we shall convert it into its equivalent integral equation representation. To this end we need the Green's function expression, $g(t, s)$, for the boundary value problem

$$
\begin{equation*}
x^{(n)}=0, \quad x^{(i)}(a)=0, \quad 0 \leq i \leq k-1, \quad x^{(i)}(b)=0, \quad k \leq i \leq n-1 . \tag{2.1}
\end{equation*}
$$

From Lemma 2.1 [2], we have that $g(t, s)$ is given by

$$
g(t, s)=\left\{\begin{array}{c}
\frac{1}{(n-1)!} \sum_{i=0}^{k-1}\binom{n-1}{i}(t-a)^{i}(a-s)^{n-i-1}, \\
\text { if } \\
s \leq t \\
-\frac{1}{(n-1)!} \sum_{i=k}^{n-1}\binom{n-1}{i}(t-a)^{i}(a-s)^{n-i-1},
\end{array} \text { if } \quad s \geq t .\right.
$$

It is known [2] that

$$
\begin{gathered}
(-1)^{n-k} g^{(i)}(t, s) \geq 0, \quad 0 \leq i \leq k, \quad(t, s) \in[a, b] \times[a, b] \\
(-1)^{n-i} g^{(i)}(t, s) \geq 0, \quad k+1 \leq i \leq n-1, \quad(t, s) \in[a, b] \times[a, b] \\
\sup _{a \leq t \leq b} \int_{a}^{b}\left|g^{(i)}(t, s)\right| d s \leq C_{n, i}(b-a)^{n-i}, \quad 0 \leq i \leq n-1
\end{gathered}
$$

where $\quad g^{(i)}(t, s)=\partial^{i} g(t, s) / \partial t^{i}$ and

$$
C_{n, i}= \begin{cases}\frac{1}{(n-1)!}\left|\sum_{j=0}^{k-i-1}\binom{n-1}{j}(-1)^{n-j-1}\right|, & 0 \leq i \leq k-1 \\ \frac{1}{(n-1)!}, & k \leq i \leq n-1\end{cases}
$$

The boundary value problem (1.1)-(1.3) is equivalent to the integral equation

$$
\begin{equation*}
x(t)=\psi(t)+\theta(t) \int_{a}^{b} g(t, s) f(s, x \circ w(s)) d s \tag{2.2}
\end{equation*}
$$

where

$$
\theta(t)=\left\{\begin{array}{cc}
0, & t \in[\alpha, a] \\
1, & \text { otherwise }
\end{array}\right.
$$

and the function ψ is defined as follows.
If $\alpha<a$ and $q \geq k-1$, then

$$
\psi(t)=\left\{\begin{array}{lr}
\varphi(t), & t \in[\alpha, a] \\
P_{n-1}(t), & t \in[a, b]
\end{array}\right.
$$

where $\alpha_{i}=\varphi^{(i)}(a), 0 \leq i \leq k-1, \quad \beta_{i}=B_{i}, k \leq i \leq n-1$, and $p_{n-1}(t)$ is the unique polynomial (see Lemma 2.2,[2]) of degree $n-1$ satisfying

$$
P_{n-1}^{(i)}(a)=\alpha_{i}, \quad 0 \leq i \leq k-1 \text { and } P_{n-1}^{(i)}(b)=\beta_{i}, k \leq i \leq n-1 .
$$

If $\alpha<a$ and $q<k-1$, then

$$
\psi(t)=\left\{\begin{array}{lc}
\varphi(t), & t \in[\alpha, a] \\
P_{n-1}(t), & t \in[a, b]
\end{array}\right.
$$

where $\alpha_{i}=\varphi^{(i)}(a), 0 \leq i \leq q, \alpha_{i}=A_{i}, q+1 \leq i \leq k-1$, and $\beta_{i}=B_{i}, k \leq i \leq n-1$.
If $\alpha=a$, then $\psi(t)=P_{n-1}(t), t \in[\alpha, a]$ where

$$
\alpha_{i}=A_{i}, 0 \leq i \leq k-1 \text { and } \beta_{i}=B_{i}, k \leq i \leq n-1 .
$$

It is easy to see that $\psi \in \mathcal{B}$, and for all $t \in[a, b]$, with

$$
w_{i, j}(t)=a, \psi^{(i)}\left(w_{i, j}(t)\right)=P_{n-1}^{(i)}(a+0)
$$

3. Generalized contraction mapping principle and main result

We shall use a local variant of the generalized contraction mapping principle [4, Theorem 1.5.1.] to state our main result.

Lemma 3.1. (Generalized contraction mapping principle [4]). Let (X, d) be a complete metric space and let $\mu>0, \mu \in \mathbf{R}, \bar{S}\left(u_{0}, \mu\right)=\left\{u \in X: d\left(u, u_{0}\right) \leq \mu\right\}$. Further, let T be an operator which maps $\bar{S}\left(u_{0}, \mu\right)$ into X, and
(i) for all $u, v \in \bar{S}\left(u_{0}, \mu\right), d(T u, T v) \leq \phi(d(u, v))$, where ϕ is a (c)-comparison function;
(ii) $\mu_{0}=d\left(T u_{0}, u_{0}\right) \leq \mu-\phi(\mu)$.

Then
(1) T has a fixed point u^{*} in $\bar{S}\left(u_{0}, \mu_{0}\right)$;
(2) u^{*} is the unique fixed point of T in $\bar{S}\left(u_{0}, \mu_{0}\right)$;
(3) the sequence $\left\{u_{m}\right\}$, where $u_{m+1}=T u_{m}, m=0,1, \ldots$, converges to u^{*} with

$$
d\left(u^{*}, u_{m}\right) \leq s\left(\phi^{m}\left(d\left(u_{0}, u_{1}\right)\right)\right)
$$

and

$$
d\left(u^{*}, u_{m}\right) \leq s\left(d\left(u_{m}, u_{m+1}\right)\right)
$$

where $s(t)$ is the sum of the series $\sum_{k=0}^{\infty} \phi^{k}(t)$.
(4) for any $u \in \bar{S}\left(u_{0}, \mu_{0}\right), u^{*}=\lim _{m \rightarrow \infty} T^{m} u$.

Remark. For the notion of (c)-comparison function we refer to [4]. A typical comparison function is

$$
\begin{equation*}
\phi(t)=\lambda t, \quad 0 \leq \lambda<1, \quad t \in[0, \infty) . \tag{3.1}
\end{equation*}
$$

For ϕ given by (3.1), from Lemma 3.1 we obtain Lemma 2.3 [2].
Let $\bar{A}_{i}, 0 \leq i \leq k-1$ and $\bar{B}_{i}, k \leq i \leq n-1$, be given fixed numbers and $\psi_{2} \in \mathcal{B}$ the function defined in [2], Section 4. Following [2], a function $\bar{x} \in \mathcal{B}$ is called an approximate solution of (2.2) if there exist nonnegative constants ϵ and δ such that wherever $\psi^{(i)}(t), \psi_{2}^{(i)}(t)$ and $\bar{x}^{(i)}(t)$ are defined,

$$
\begin{gather*}
\sup _{\alpha \leq t \leq b}\left|\psi_{2}^{(i)}(t)-\psi^{(i)}(t)\right| \leq \epsilon C_{n, i}(b-a)^{n-i}, \quad 0 \leq i \leq q \tag{3.2}\\
\sup _{\alpha \leq t \leq b}\left|\bar{x}^{(i)}(t)-\psi_{2}^{(i)}(t)-\theta(t) \int_{a}^{b} g^{(i)}(s, t) f(s, \bar{x} \circ w(s)) d s\right| \leq \delta C_{n, i}(b-a)^{n-i}, 0 \leq i \leq q \tag{3.3}
\end{gather*}
$$

If we consider the following norm on the space \mathcal{B} :

$$
\|x\|=\max _{0 \leq i \leq q}\left\{\left(\frac{C_{n, 0}(b-a)^{i}}{C_{n, i}}\right)_{\alpha \leq t \leq b}\left|x^{(i)}(t)\right| \text { wherever } \quad x^{(i)}(t) \quad \text { exists }\right\}
$$

and apply Lemma 3.1 we can prove in a standard way.

Theorem 3.1.. Suppose that (2.2) has an approximate solution $\bar{x} \in \mathcal{B}$ and
(i) f satisfies the Lipschitz condition

$$
|f(t,<x>)-f(t,<y>)| \leq \sum_{i=0}^{q} \sum_{j=1}^{p(i)} L_{i, j}\left|x_{i, j}-y_{i, j}\right|
$$

for all $(t,\langle x\rangle),(t,\langle y\rangle) \in[a, b] \times D_{1}$, where

$$
D_{1}=\left\{\langle x\rangle:\left|x_{i, j}-x^{(i)}\left(w_{i, j}(t)\right)\right| \leq \mu \cdot \frac{C_{n, i}}{C_{n, 0}(b-a)^{i}}, \quad 1 \leq j \leq p(i), \quad 0 \leq i \leq q\right\}
$$

(ii) ϕ is a (c)-comparison function and

$$
\begin{equation*}
(\epsilon+\delta) C_{n, 0}(b-a)^{n} \leq \mu-\phi(\mu) . \tag{3.4}
\end{equation*}
$$

Then
(1) There exists a solution $x^{*}(t)$ of (1.1)-(1.3) in $\bar{S}\left(\bar{x}, \mu_{0}\right)$;
(2) $x^{*}(t)$ is the unique solution of (1.1)-(1.3) in $\bar{S}\left(\bar{x}, \mu_{0}\right)$;
(3) The sequence $\left\{x_{m}(t)\right\}$ of successive approximations, defined by

$$
x_{m+1}(t)=\psi(t)+\theta(t) \int_{a}^{b} g(t, s) f\left(s, x_{m} \circ w(s)\right) d s, \quad m=0,1, \ldots
$$

and $x_{0}(t)=\bar{x}(t)$, converges to $x^{*}(t)$ with

$$
\begin{gathered}
\left\|x^{*}-x_{m}\right\| \leq s\left(\phi^{m}\left(\left\|u_{0}-u_{1}\right\|\right)\right) \\
\left\|x^{*}-x_{m}\right\| \leq s\left(\left\|u_{m}-u_{m+1}\right\|\right)
\end{gathered}
$$

(4) for any $x_{0}(t)=x(t)$, where $x \in \bar{S}\left(\bar{x}, \mu_{0}\right)$, the iterative process converges to $x^{*}(t)$.

Remarks

1) For $\phi(t)$ as given by (3.1), from Theorem 3.1 we obtain Theorem 4.1 in [2];
2) If, for instance, we take the comparison function $\phi: \mathbf{R}_{+} \rightarrow \mathbf{R}_{+}$, given by :

$$
\phi(t)=\left\{\begin{array}{l}
\frac{1}{2} t, \quad 0 \leq t \leq 1 \\
t-\frac{1}{3}, \quad t>1,
\end{array}\right.
$$

then an operator T , which satisfies all assumptions in Theorem 3.1, will be generally not a contractive operator (with respect to the norm, see [4]), that is, an operator satisfying for all $u, v \in \bar{S}\left(\bar{x}, \mu_{0}\right)$, the classical contraction condition

$$
\|T u-T v\| \leq \lambda\|u-v\|, \quad 0<\lambda<1
$$

but T is a generalized contractive operator. Consequently, Theorem 4.1 from [2] does not apply, while Theorem 3.1 apply to this class of higher order differential equation with deviating argument.

References

[1] Agarwal, R.P., Boundary Value Problems for Higher Order Differential Equations, Word Scientific, Singapore-Philadelphia, 1986
[2] Agarwal, R.P., Existence uniqueness and iterative methods for right focal point boundary value problems for differential equations with deviating arguments, Ann. Polon. Math. 52(1991), 211-230
[3] Berinde, V., Error estimates in the approximation of fixed points for a class of ϕ contractions, Studia Univ." Babes-Bolyai" Cluj-Napoca, 35(1990), 2, 86-89
[4] Berinde, V., Abstract ϕ-contractions which are Picard mappings, Mathematica(Cluj) , 34(57), No 2, 1992, 107-111
[5] Berinde, V., Generalized contractions and applications, Editura CUB PRESS 22, Baia Mare, 1997 (in Romanian)

E-mail address: vberinde@univer.ubm.ro
Department of Mathematics and Computer Science, Faculty of Sciences, North University of Baia Mare, Victoriei 76, 4800 Baia Mare, Romania

