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PERIHELION AD VAN CE AND M AN EFF’S FIELD

V A S IL E  U R E C H E

A b s tr a c t . W e compute the advance of the perihelion of a planetary orbit 

as predicted by the Maneff’s gravitational law and we compare the result 

with the results of the general relativity theory, as well as with the obser­

vational data for Mercury and for the binary pulsar PSR 1913+16. The 

effects resulting from the adoption of the Maneff’s potential are analysed 

both in the classical and the relativistic case. For the relatistic analysis 

we propose a new form of the metric associated to Maneff’s gravitational 

potential.

The results show that in the classical case the advance of the per­

ihelion (periastron) predicted in the Maneff’s model is exactly half of the 

observed one, while putting the prediction of this model in accord with the 

prediction of general relativity requires a modification of the perturbating 

factor in Maneff’s potential with a factor of 2.

The computation made in the relativistic case with the Maneff 

potential give a result which is not in concordance with the observational 

data, because in this case the advance of the perihelion is a superposi­

tion of the value due to the relativistic effect and that resulting from the 

modification of the potential in the Maneff case.

1. Introduction

G. Maneff considered a post-Newtonian nonrelativistic law of gravitation, 

assuming that the gravitational interaction between two masses mi and m2 is given
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by the ” force function” ([5]):

U = Gmirri2
r

\ , 3G(mj +  m2 )] 
+  2c2r J ’ (1)

where r is the distance between m\ and m2, G is the Newtonian gravitational constant, 

and c is the speed of light.

Recently, several theoretical approaches considered that the study of the con­

sequences of adopting ManefF’s potential, would be an ideal method to investigate the 

susceptibility to generalization of the mathematical models and techniques developed 

in Celestial Mechanics ([6],[1]) and Stellar Astrophysics ([9], [10]).

In this paper, we analyze the way in which the Maneff’s gravitational inter­

action responds to one of the most important observational facts that have become a 

milestone in the evolution of the theory of gravitation: the advance of the planetary 

perihelion.

This phenomenon was discovered by Le Verrier in 1859 as a discrepancy be­

tween the observations and the theoretical predictions for the shift of Mercury’s per­

ihelion. Present-day measurements indicate that Mercury exhibits an excess motion 

in the perihelion shift of about 43” per century. The attempts to explain this phe­

nomenon have to consider that either a hidden planet or some sort of diffuse material 

should orbit in the neighborhood of the Sun - or Newton’s theory of gravity should 

suffer some adjustments. All the models involving hidden mass within Newton’s the­

ory of gravitation have constantly failed, while the excellent correlation between the 

observations and the theoretical predictions of Einstein’s General Relativity became 

one of the great successes of this theory.

This paper analyses the problem of perihelion advance in a potential-independent 

fashion, i.e. we infer the expression for the perihelion advance as a functional of the 

potential expression. In section 2, we develop the Binet-like differential equation for 

the orbit of a body moving in a central spherical symmetric field. The form of the 

potential $ (r) is not specified, so the equation explicitly depends on 4>. The potential 

is then particularized to Maneff’s expression and the perihelion advance is computed 

in this case. Section 3, after introducing a general relativistic metric to be associated
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with a spherical symmetric potential function $ (r), proceeds in a similar fashion to 

derive the perihelion advance in the relativistic framework. The problem of periastron 

advance for the binary pulsar is considered in Section 4. In section 5 we summarize 

the results, compare the observational values for the Mercury’s orbit and for binary 

pulsar PSR 1913+16 with those theoretically predicted and drop the conclusions.

2. T he classical fram ew ork

2.1. T he B inet-like equation. We shall consider a massive body of mass M and a 

test particle of mass m < M  in the gravitational field of M . The effects of this field 

on m can be descried by the following potential <$, which is attached to U from (1) 

(mi =  M , m2 =  m):

3>(r) =  —GM
r

3 G2M 2 
2 c2r2 (2)

The spherical symmetry implies that the orbit is planar, so we restrict our 

considerations to the two-dimensional problem, i.e. finding the equation of the orbit 

in the form r =  r(6) We shall start the derivation of the differential equation of the 

trajectory from the laws of conservation for energy and angular momentum:

|2 4- r 2 4 - =  h

(3)-2d£ _  Q

After the change of unknown function to u — 1 /r we obtain from (3) the 

Binet-like equation:

d2u _  1 d$
d02 ~ ~ u ~ C 2 l b (4)

2.2. Solution  for N ew tonian potential. If the potential is Newtonian we find the 

well-known conic solution:

GM  n /„ mu — -çp  [1 +  e cos(0 -  w)J.

For the adequate values of k and C this orbit will be an ellipse.

(5)
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2.3. Solution for ManefF case. For ManefF potential the equation (4) becomes:

d2d2u /  G2M 2\ GM
d92 ~  “  V 3 C2c2 )  C2 (6)

One observes that this equation has an exact analytic solution. If we use the

notation:

a =  3
G2M 2
C2c2

with a <  1 for the realistic astrophysical situations (noncollisional orbits), the solution 

of (6) is:

GM
u —

C 2(l — a)
[l +  e cos(\/l — a 0 — u;)] . (7)

For 0 <  e <  1 and a 1 this represents approximately an allipse. If we try to 

identify the perihelion advance in (7) by putting it in the form:

GM
[1 -f e cos(0 — u — £(#))].

C2{ l - a )

and if we take into account the fact that usually a 1, we get:

. . . .  1 3 G2M 2
SW  =  2a 6 = 2

(8)

(9)

The perihelion advance predicted by ManefPs field is proportional with the 

value obtained by Einstein’s relativity (see below eq. (17)), i.e. Einstein’s expression 

for perihelion advance is twice as big as ManefF’s. This problem can easily be solved 

by scaling the ’’ perturbative” term in ManefF’s formula. Thus, if we took the potential 

of the form:

*(r) = - GM
r

G2M 2 
6 c2r2 ( 10)

we would obtain the exact relativistic formula for the perihelion advance within the 

classical framework.
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3. The relativistic framework

3.1. The potential-dependant metric. Let x° =  ct be the temporal coordinate 

and x1 =  r, æ2 =  #, xs =  <p the spherical (Schwarzschild) coordinates. Then, we shall 

associate to the potential $  the following general relativistic metric ([4])

ds2 =  ^1 +  c2 dt2 —  ̂ — r2 d02 — r2 sin2 0 d<p2, (11)

where ds is the elementary interval.

One should note that the metric given by eq. (11) does not satisfy Einstein’s 

field equations ([8], [2]) unless the potential $  is Newtonian, i.e. it has an expression 

of the form:

$ (r) =  —
r

Therefore, any attempt to extend this approach beyond the problem of the motion in a 

central field (e.g. modeling massive relativistic bodies as it is required in astrophysical 

or cosmological applications) should start from defining a proper adjustment to the 

field equations. Fortunately, it is not the case for the matter of perihelion advance, 

since the equation of the orbit will be straightly inferred from the equations of the 

geodesics.

3.2. The Binet-like equation. Once the relativistic metric of the field is specified 

the derivation of the Binet-like equation for the trajectory proceeds by computing 

Christoffel’s symbols and then writing the equations of the geodesics. One should 

refer to Tolman ([8]) for the details of this derivation for the general Schwartzschild 

metric:

ds2 =  evM dt2 -  eAM  dr2 -  r 2 d02 -  r2 sin2 9 dy>2, (12)

noting that our metric (3) is a particular case of (12).
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The system of 10 geodesic equations for the metric (12), finally reduces to 

the following two equations:
k 2 / j  x 2

e i ( & )  + r2 ( - i : )  - « - ' K 2 +  i =  o
(13)

where K  is a dimensionless constant and He is the relativistic equivalent of C constant 

in the classical approach.

For the metric (3), eqs. (13) become:

. 2  d»

 ̂ K 3) - Ï + W + 1 = 0
(14)

Taking the new unknown function u =  l/r we obtain the Binet-like equation: 

d2u /  2$\ u2 d$  1 d $d2u (  24>\ _  u2 d $ ____ 1_
d62 U \ c2 /  c2 du c2H (15)dû2 \ c2 J c2 du c2H2 du

3.3. N ew tonian potential. In the case of Newtonian potential, eq. (15) becomes:

d2u GM  3GM  2 =  —u +  - 0 H--------—u . (16)d02 c2H2 c-

This equation cannot be integrated in terms of elementary functions. The 

approximate approach in solving equation (16) takes into account the fact the the 

bounded (noncollisional) orbit is quasi-elliptical, so the solution can be put in the 

following form ([8]):

u =  [1 +  e cos(0 — uj J(0)]

where 6(0) <^0.

In the first-order analysis, one obtains for <5(0) the expression:

g 2m 2 .(17)

Then, the Einstein’s formula for the perihelion advance for one period will be:

G2M 2 247T3a2Aw =  6tt-
C2c2 c2P 2( 1 -  e2)

(18)
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It is well-known that equation (18) accounts for the observed orbits with an excellent 

accuracy.

Taking into account the Kepler’s third law, the expression (18) can be put in 

the form ([3]) :

Ato = 67tGM  
c2a( 1 — e2)

or in the terms of Schwarzschild radius:

Rs =
2 GM

(19)

(20 )

we have

3tt Rs
1 — e2 a

(2 1 )

3.4. M aneff potential. For Maneff’s potential, eq. (15) becomes:

d2 
d02

u /  nG2M 2\ GM  3GM  2 6G2M 2 3
« = - “ 1 3W j  + J f 5 ? + - « + - ? - » • ( 22)

In this case, the computation of the small perihelion advance gives the fol­

lowing result:

9 G2M 2
m  =  5 (23)

One observes that the value of the perihelion advance is a sum of the values given by 

eqs. (9) and (17). The effect of changing the potential in the relativistic framework is 

a simple superposition of the relativistic effect and the effect of changing the potential.

The prediction of eq. (23) is not in agreement with the observational data 

and seems not to justify the intricacies which a relativistic Maneff approach implies 

(such as adjusting Einstein’s field equations).

4. Periastron advance o f  b inary pulsar

The obtained reults can also be applied for the binary systems having the 

two components of comparable masses M\ and M2. In this case the product GM
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must to be changed in fi =  G(M\ +  M2). Then, using the Kepler’s third law, from 

the equation (18) we obtain the rate of the periastron advance ([11])

" = 3 (t T  + (24>
The equation (21) shows that in the binary pulsars, where the semimajor 

axis a is small, the periastron advance is large. For the binary pulsar PSR 1913+16, 

taking Mi =  Mp =  1.4M0 , M2 =  Mc =  1.4M0 , P =  27 907 sec, the observed rate of 

periastron advance will be obtained, namely ù — 4.23 deg yr“ l.

If we shall use the equation (9), only half of the observed value will be ob­

tained. This means that the ManefT gravitational field explains the periastron advance 

in the binary pulsar PSR 1913+16 only qualitatively but not quantitatively, as this 

was considered,in a recent paper ([7]). We observe that, if the equation (7c) from 

the cited paper will be used (noncollisional orbits) the same expression (9) from our 

paper will be obtained.

In conclusion, if we take the Maneff gravitational field as an alternative post- 

Newtonian nonrelativistic law of gravitation, the ’’ perturbative” term in the Maneff 

potential (2) must to be scaled by the factor 2 as in the expression (10). I11 this way 

the Maneff gravitational field will explain the perihelion advance of the planetary 

orbits as well as the periastron advance for the binary pulsars.

5. Conclusions

Analyzing the Binet-like equations (6), (16), (22) and the perihelion advance 

formulae (9), (17), (23), we come to the following conclusions:

• The theoretical results of Einstein’s relativity are in perfect agreement with 

the observational evidence. No corrections are necessary for this theory. 

It explains the planetary perihelion advance, as well as the periastron 

advance of binary pulsars.

• In the classical framework, Maneff’s field can explain the phenomenon of 

perihelion advance qualitatively. A scaling of the second term in Maneff’s 

formula would lead to the exact relativistic result for the angular advance
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formula. The main strength of ManefTs formalism is, in our opinion, its 

simplicity that makes relativistic effects such as the perihelion advance 

amenable to the analysis of Celestial Mechanics.

• Within the relativistic framework, ManefTs potential predicts a result 

which is in disagreement with the observed data. It seems that there 

is no need to change Einstein’s equations in a manner that would affect 

Schwartzschild solution.

• One should note, however, that the derivation of the formula for the per­

ihelion advance was carried out within the first-order analysis. This is 

perfectly justified at the scale of the Solar System as well as for the binary 

pulsars, where the components are close to the mass points.
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