ALMOST OPTIMAL NUMERICAL METHOD

SOMOGYI ILDIKO

Abstract

This paper investigates an algorithm presented by Smolyak (1963), who studied tensor product problems.

1. Introduction

The essence of these algorithms is that it is enough to know how to solve the tensor product problem for $d=1$ efficiently. The algorithms for arbitrary d are fully determined in terms of the algorithms for generally, arbitrary linear functionals.

The choice of function values is especially interesting, since for arbitrary linear functionals we know how to solve multivariate problems.

The algorithms are linear. They depend linearly on the information. This property makes their implementation easier. In fact, the weights of the algorithm for $d \geq 2$ are given by linear combinations of the corresponding tensor product weights of the one dimensional algorithms. Information used by the algorithms is called hyperbolic cross information and had been successfully applied for a number of problems.

2. Formulation of the problem

In this section a tensor product problem will be define for a class of functions of d variables.

For $d=1,2, \ldots$ consider

$$
S_{d}: X_{d} \rightarrow Y_{d}
$$

where X_{d} is a separable Banach space of functions $f: D^{d} \rightarrow \mathbf{R}, D \subset \mathbf{R}, Y_{d}$ is either a separable Hilbert space of functions, or \mathbf{R}, and S_{d} is a continuous linear operator.

We assume that Y_{d} is a tensor product,

$$
\begin{equation*}
Y_{d}=Y_{1} \otimes Y_{1} \otimes \ldots \otimes Y_{1} \tag{1}
\end{equation*}
$$

and X_{1} is a Hilbert space

$$
\begin{aligned}
X_{d} & =X_{1} \otimes X_{1} \otimes \ldots \otimes X_{1} \\
S_{d} & =S_{1} \otimes S_{1} \otimes \ldots \otimes S_{1}
\end{aligned}
$$

The tensor product $f=f_{1} \otimes \ldots \otimes f_{d}=\bigotimes_{k=1}^{d} f_{k}$ for numbers f_{k} is just the product $\prod_{k=1}^{d} f_{k}$. When f_{k} are scalar functions, f is a function of d variables, $f\left(t_{1}, \ldots, t_{d}\right)=\prod_{k=1}^{d} f_{k}\left(t_{k}\right)$.

The element $S_{d}(f)$ is approximated by $A(f)=\phi(N(f))$, where the information about f,

$$
\begin{equation*}
N(f)=\left[L_{1}(f), \ldots, L_{n}(f)\right] \tag{2}
\end{equation*}
$$

consists of n values of continuous linear functionals L_{i}, and $\phi: \mathbf{R}^{n} \rightarrow G_{d}$ is a linear mapping. This results from linearity of A,

$$
\begin{equation*}
A(f)=\sum_{i=1}^{n} y_{i} L_{i}(f), \quad \text { for some } y_{i} \in Y_{d} \tag{3}
\end{equation*}
$$

The error of the algorithm A is given as

$$
\begin{equation*}
e(A)=\sup \left\{\left\|S_{d}(f)-A(f)\right\|_{Y_{d}}:\|f\|_{X_{d}} \leq 1\right\} \tag{4}
\end{equation*}
$$

Due to linearity of S_{d} and A, we have

$$
e(A)=\left\|S_{d}-A\right\|
$$

The cost of A does not depend on the setting and it is defined as follows. We assume that the cost of computing $L_{i}(f)$ equals $c(d)$ for any $f \in X_{d}$ and any L_{i}. Also assume that basic arithmetic operations on reals and multiplication and addition in Y_{d} have a unit cost. Assuming that the elements y_{i} can be precomputed, the cost of the algorithm $A, \operatorname{cost}(A)$, is bounded by

$$
\operatorname{cost}(A) \leq n(c(d)+2)-1
$$

The precomputation of the elements y_{i} is usually easy since they depend only on the corresponding elements for $d=1$.

3. Smolyak's algorithm

As it was mentioned in the introduction, the essence of these algorithms is that they give a general construction that leads to almost optimal approximations for any dimension $d>1$ from optimal approximation for the univariate case $d=1$.

Assume, therefore, that for $d=1$, we know linear algorithms (operators) $U^{i}, i \geq 1$, which approximate the problem $\left\{X_{1}, Y_{1}, S_{1}\right\}$ such that $\left\|S_{1}-U^{i}\right\| \rightarrow 0$ as $i \rightarrow \infty$. Introducing the notation

$$
\begin{equation*}
\Delta_{0}=U_{0}=0, \quad \Delta_{i}=U_{i}-U_{i-1} \tag{5}
\end{equation*}
$$

for $d>1$ we approximate the tensor product problem $\left\{X_{d}, Y_{d}, S_{d}\right\}$ by the algorithm

$$
\begin{equation*}
A(q, d)=\sum_{0 \leq i_{1}+i_{2}+\cdots+i_{d} \leq d} \Delta_{i_{1}} \otimes \ldots \otimes \Delta_{i_{d}} \tag{6}
\end{equation*}
$$

Hence $f\left(t_{1}, t_{2}, \ldots t_{d}\right)=f_{1}\left(t_{1}\right) f_{2}\left(t_{2}\right) \ldots f_{d}\left(t_{d}\right)$ then

$$
(A(q, d) f)\left(t_{1}, t_{2}, \ldots t_{d}\right)=\sum_{0 \leq i_{1}+i_{2}+\cdots+i_{d} \leq d}\left(\Delta_{i_{1}} f_{1}\right)\left(t_{1}\right)\left(\Delta_{i_{2}} f_{2}\right)\left(t_{2}\right) \ldots\left(\Delta_{i_{d}} f_{d}\right)\left(t_{d}\right)
$$

where q is a nonnegativ integer, and $q \geq d$, because when $q<d$ one of the indices is zero, say $i_{j}=0$, and $\Delta_{i_{j}}=0$ implies that $A(q, d)=0$.

We use the notation $|i|=i_{1}+\cdots i_{d}$ for $i \in N^{d}$ and $i \geq j$ if $i_{k} \geq j_{k}$ for all k. By $Q(q, d)$ we mean

$$
Q(q, d)=\left\{i=\left(i_{1}, i_{2}, \ldots i_{d}\right): 1 \leq i,|i| \leq q\right\}
$$

with $1=(1,1 \ldots 1)$ and $|Q(q, d)|=\binom{q}{d}$.
We have

$$
\begin{align*}
A(q, d) & =\sum_{i \in Q(q, d)} \bigotimes_{k=1}^{d} \Delta_{i_{k}}=\sum_{i \in Q(q-1, d-1)}\left(\bigotimes_{k=1}^{d} \Delta_{i_{k}}\right) \otimes \sum_{i_{d}=1}^{g-|i|} \Delta_{i_{d}} \\
& =\sum_{i \in Q(q-1, d-1)}\left(\bigotimes_{k=1}^{d-1} \Delta_{i_{k}}\right) \otimes U_{q-|i|} \tag{7}
\end{align*}
$$

since $\sum_{i=1}^{m} \Delta_{i}=U_{m}$ for any $m \geq 1$.
Observe that

$$
\bigotimes_{k=1}^{d}\left(U_{i_{k}}-U_{i_{k-1}}\right)=\sum_{\alpha \in\{0,1\}^{d}}(-1)^{|\alpha|} \bigotimes_{k=1}^{d} U_{i_{k}-\alpha_{k}}
$$

${\underset{k=1}{d}}_{\otimes}^{j_{j_{k}}}$ appears in $A(q, d)$ for all indices i for which $i_{k}=j_{k}+\alpha_{k}$ with $\alpha \in\{0,1\}^{d}$ and $|\alpha| \leq q-|j|$. The sign of $\bigotimes_{k=1}^{d} U_{j_{k}}$ in this case is $(-1)^{|\alpha|}$.

Let

$$
b(i, d)=\sum_{\alpha \in\{0,1\}^{d},|\alpha| \leq i}(-1)^{|\alpha|}
$$

This yield

$$
A(q, d)=\sum_{j \in Q(q, d)} b(q-|j|, d) \bigotimes_{k=1}^{d} U_{j_{k}} .
$$

We now compute $b(i, d)$. Since $|\alpha|=j$ corresponds to $\binom{d}{j}$ terms, we have

$$
b(i, d)=\sum_{j=0}^{\min \{i, d\}}\binom{d}{j}(-1)^{j}=(-1)^{i}\binom{d-1}{i} .
$$

In particular, $b(i, d)=0$ for $i \geq d$. This yields the explicit form of $A(q, d)$:
Lema 1.

$$
\begin{equation*}
A(q, d)=\sum_{q-d+1 \leq|i| \leq q}(-1)^{q-|i|}\binom{d-1}{q-|i|}\left(U_{i_{1}} \otimes \ldots \otimes U_{i_{d}}\right) \tag{8}
\end{equation*}
$$

In particular, for

$$
U_{i}(f)=\sum_{j=1}^{m_{i}} a_{i, j} L_{i, j}(f)
$$

with $a_{i, j} \in G_{1}$ and continuous functionals $L_{i, j}$ we have

$$
A(q, d) f=\sum_{q-d+1 \leq|i| \leq q}(-1)^{q-|i|}\binom{d-1}{q-|i|} \sum_{j \leq m_{i}} L_{i, j}(f) g_{i, j}
$$

where $L_{i, j}=\bigotimes_{k=1}^{d} L_{i_{k}, j_{k}}, g_{i, j}=\bigotimes_{k=1}^{d} a_{i_{k}, j_{k}}$ and $m_{i}=\left(m_{i_{1}}, \ldots, m_{i_{d}}\right)$.
Furthermore we consider the case in which for $d=1$ we have one of the spaces

$$
F_{1}^{r}=C^{r}([-1,1]), \quad r \in N
$$

with the norm

$$
\|f\|=\max \left(\|f\|_{\infty}, \ldots,\left\|f^{(r)}\right\|_{\infty}\right)
$$

For $d>1$ consider the tensor product

$$
F_{d}^{r}=\left\{f:[-1,1]^{d} \rightarrow \mathbf{R} / D^{\alpha} f \text { continuous if } \alpha_{i} \leq r \forall i\right\}
$$

with the norm

$$
\|f\|=\max \left\{\left\|D^{\alpha} f\right\|_{\infty} / \alpha \in N_{0}^{d}, \alpha_{i} \leq r\right\} .
$$

Let

$$
\begin{equation*}
I_{d}(f)=\int_{[-1,1]^{d}} f(x) d x, \quad \text { with } f \in F_{d}^{r} \tag{9}
\end{equation*}
$$

We wish to find good approximation to the functional I_{d} on the basis of good approximation in the univariate case, using the algorithm of Smolyak.

In the multivariate case $d \geq 1$, define

$$
U_{i_{1}} \otimes \ldots \otimes U_{i_{d}}=\sum_{j_{1}=1}^{m_{i_{1}}} \ldots \sum_{j_{d}=1}^{m_{i_{d}}} f\left(x_{j_{1}}^{i_{1}}, \ldots, x_{j_{d}}^{i_{d}}\right)\left(a_{j_{1}}^{i_{1}}, \ldots, a_{j_{d}}^{i_{d}}\right)
$$

where we assume that a sequence of quadrature formulas

$$
U_{i}(f)=\sum_{j=1}^{m_{i}} f\left(x_{j}^{i}\right) a_{j}^{i}
$$

is given with $m_{i} \in N$.
On the basis of Lemma 1 with given quadrature formulas U^{i} we can write the approximation formula $A(q, d)$ for general d.
$A(q, d)$ is a linear functional, and for $f \in F_{d}^{r}, A(q, d)(f)$ depends only through function values at a finite number of points.

Let $X^{i}=\left\{x_{1}^{i}, \ldots, x_{m_{i}}^{i}\right\} \subset[-1,1]$ denote the set of points that correspond to U^{i}. Then $U_{i_{1}} \otimes \ldots \otimes U_{i_{d}}$ is based on the grid $X^{i_{1}} \times \ldots \times X^{i_{d}}$, and therefore $A(q, d)(f)$ depends on the values of f at the union

$$
H(q, d)=\bigcup_{q-d+1 \leq|i| \leq q}\left(X^{i_{1}} \times \ldots \times X^{i_{d}}\right) \in[-1,1]^{d}
$$

If $X_{i} \subset X_{i+1}$, than $H(q, d) \subset H(q+1, d)$ and $H(q, d)=\bigcup_{|i|=q}\left(X^{i_{1}} \times \ldots \times X^{i_{d}}\right)$. Therefore this kind of sets seems to be the most economical choice.

In the general case we assume that the algorithm

$$
U_{i}(f)=\sum_{j=1}^{m_{i}} a_{i, j} L_{i, j}(f)
$$

use nested information $N_{i}=\left[L_{i, 1}, L_{i, 2}, \ldots, L_{i, m_{i}}\right]$. That is,

$$
\begin{equation*}
\left\{L_{i, 1}, L_{i, 2}, \ldots, L_{i, m_{i}}\right\} \subset\left\{L_{i+1,1}, L_{i+1,2}, \ldots, L_{i+1, m_{i+1}}\right\}, \forall i=1,2, \ldots \tag{10}
\end{equation*}
$$

Since X_{1} is now a Hilbert space, $L_{i, j}=<f, f_{i, j}>$ for some element $f_{i, j}$ of X_{1}. Hence, there exists a sequence $\left\{f_{i}\right\}$ in F_{1} such that

$$
N_{i}(f)=\left\{<f, f_{1}>,<f, f_{2}>, \ldots,<f, f_{m}>\right\}_{1}=1,2, \ldots
$$

Assume that the algorithms U_{i} are optimal, i.e. they minimize the error among all algorithms that use the information $N_{i} . U_{i}$ is optimal if

$$
\begin{equation*}
L_{i}=S_{1} \mathcal{P}_{\mathrm{i}} \tag{11}
\end{equation*}
$$

where \mathcal{P} is the orthogonal projection on the linear subspace $\operatorname{span}\left\{f_{j}, j=1,2, \ldots, m_{i}\right\}=$ $\left(\operatorname{ker} N_{i}\right)^{\perp}$. Then (11) implies optimality of the algorithm $A(q, d)$ for any d. If we note $N_{q, d}(f)=\left[L_{i, j}(f): 1 \leq i, q-d+1 \leq|i| \leq q, j \leq m_{i}\right]$ the information used by the algorithm $A(q, d)$, then for nested information N_{i} and optimal U_{i} of (11), $A(q, d)=S_{d} \mathcal{P}(q, d)$ where $\mathcal{P}(q, d)$ is the orthogonal projection on the linear subspace $\left(\operatorname{ker}(N(q, d))^{\perp}\right.$. Thus, in particular, $A(q, d)$ minimizes the error among all algorithms that use the same information $N_{q, d}$.

4. The Clenshaw-Curtis method

For any cubature formula Q we have the error bound

$$
\left|I_{d}(f)-Q(f)\right| \leq\left\|I_{d}-Q\right\| \cdot\|f\|
$$

In the univariate case $d=1$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{r} \cdot \inf _{Q_{n}}\left(\left\|I_{1}-Q_{n}\right\|\right)=\beta_{r} \tag{12}
\end{equation*}
$$

where $\beta_{r}>0$ are known constants for any $\forall r \in N$, (Strau $\left.\beta, 1979\right)$, and Q_{n} are formulas which use n function value.

Novak and Ritter suggest to use the Clenshaw-Curtis method, with a suitable choice of the sequence m_{i}, where m_{i} denotes the number of function value used by U_{i}, and assume that $m_{i}<m_{i+1}$. In light of (12) they are interested in formulas U_{i} with

$$
\begin{equation*}
\lim _{i \rightarrow \infty} \sup \left(m_{i}^{r}\left\|I_{1}-U_{i}\right\|\right)<\infty, \quad \forall i \in N \tag{13}
\end{equation*}
$$

and the property is true, for interpolatory formulas U_{i}, with positive weights.
To obtain nested sets of points, they choose

$$
\begin{equation*}
m_{i}=2^{i-1}+1, \quad i>1 \text { and } m_{1}=1 \tag{14}
\end{equation*}
$$

Let

$$
x_{j}^{i}=-\cos \frac{\pi(j-1)}{m_{i}-1}, \quad j=1,2, \ldots, m_{i}
$$

and $x_{1}^{1}=0$, then $U_{1}(j)=2 j(0)$.
The weights of the Clenshaw-Curtis formula

$$
U_{i}(f)=\sum_{j=1}^{m_{i}} f\left(x_{j}^{i}\right) a_{j}^{i}
$$

are caracterized by the demand that U_{i} is exact for all polinomials of degree less than m_{i}, and for $i>1$ they are given by

$$
a_{j}^{i}=a_{m_{i}+1-j}^{i}=\frac{2}{m_{i}-1}\left(1-\frac{\cos (\pi(j-1)}{m_{i}\left(m_{i}-2\right.}-2 \sum_{k=1}^{m_{i}-3 / 2} \frac{1}{4 k^{2}-1} \cdot \cos \frac{2 \pi k(j-1)}{m_{i}-1}\right)
$$

for $j=2, \ldots, m_{i}$ and $a_{1}^{i}=a_{m_{i}}^{i}=\frac{1}{m_{i}\left(m_{i}-2\right)}$.
For delimitation of the error, they start from the estimate in the univariate case

$$
\left\|I_{1}-U_{i}\right\| \leq \gamma_{r} \cdot 2^{-r \cdot i} .
$$

From (6) we get

$$
\begin{aligned}
A(q+1, d+1) & =\sum_{|i| \leq q}\left(\Delta^{i_{1}} \otimes \ldots \otimes \Delta^{i_{d}} \otimes \sum_{k=1}^{q+1-|i|} \Delta^{i_{k}}\right) \\
& =\sum_{|i| \leq q}\left(\Delta^{i_{1}} \otimes \ldots \otimes \Delta^{i_{d}} \otimes U_{q+1-|i|}\right)
\end{aligned}
$$

Then for the error we can obtain the following estimate:

$$
I_{d+1}-A(q+1, d+1)=\left(I_{d}-A(q, d)\right) \otimes I_{1}+\sum_{|i| \leq q} \Delta^{i_{1}} \otimes \ldots \otimes \Delta^{i_{d}} \otimes\left(I_{1}-U_{q+1-|i|}\right)
$$

Furthermore

$$
\left\|\Delta^{i_{k}} \leq\right\| I_{1}-U_{i_{k}}\|+\| I_{1}-U_{i_{k}-1} \| \leq \gamma_{r} \cdot 2^{-r i_{k}}\left(1+2^{r}\right)
$$

We get

$$
\sum_{|i| \leq q}\left\|\Delta^{i_{1}}\right\| \cdot \ldots \cdot\left\|\Delta^{i_{d}}\right\| \cdot\left\|I_{1}-U^{q+1-|i|}\right\| \leq\binom{ q}{d} \cdot \gamma_{r}^{d+1} \cdot\left(1+2^{r}\right)^{d} \cdot 2^{-r(q+1)}
$$

Inductively the following theorem can be obtained.
Theorem 1. Let $\theta_{r}=\max \left\{2^{r+1}, \gamma_{r} \cdot\left(1+2^{r}\right)\right\}$. The error of the cubature formula $A(q, d)$ satisfies the following estimates:

$$
\left\|I_{d}-A(q, d)\right\| \leq \gamma_{r} \theta_{r}^{d-1}\binom{q}{d-1} \cdot 2^{-r \cdot q}
$$

Corollary 1. Let $n=n(q, d)$ denote the number of knots used by $A(q, d)$. Then

$$
\left\|I_{d}-A(q, d)\right\|=\mathcal{O}\left(n^{-r} \cdot(\log n)^{(d-1)(r-1)}\right)
$$

This corrolary gives the error of $A(q, d)$ related to the number of knots from $H(q, d)$ and also gives the best error bound for Smolyak's algorithm which holds for arbitrary tensor product problems. On the other hand this method yields error of order $n^{r}(\log n)^{(d-1)(r-1)}$ for all classes F_{d}^{r}, hence this methods are almost optimal up to logarithmic factors on a whole scale of spaces of nonperiodic functions.

Property (15) is the essential requirement for the U_{i} in the univariate case. Relation which also holds for the Gauss formulas. These formulas yield methods
$A(q, d)$ with a higher degree of exactness. Still Novak and Ritter prefer the ClenshawCurtis formulas because in this case the number of knots from $H(q, d)$ is reduced. Weights of different signs at common points are partially cancelled.

To determine the polynomial exactness they start from the fact that the Clenshaw-Curtis formula U_{i} is exact on $V^{i}=P_{m_{i}}$, where m_{i} is odd.

Theorem 2. The cubature formula $A(q, d)$ is exact on

$$
\sum_{|i|=q}\left(V^{i_{1}} \otimes \ldots \otimes V^{i_{d}}\right)
$$

The theorem can be proved by induction over d.
Remark. Theorem 2 holds for general tensor product problems if the space

$$
V^{i}=\left\{f \in F_{1}^{r} / I_{1}(f)=U^{i}(f)\right\}
$$

of exactness for the univariate problem is nested, $V^{i} \subset V^{i+1}$.

References

[1] Brass, H., Error bounds based on approximation theory, in Espelid, T.O.,Genz,A.,eds., Numerical Integration, pp.147-163. Kluwer Academic Publishers,Dordrecht, 1992.
[2] Delvos, F.-J., d-variate Boolean interpolation, J.Approx.Th. 34 (1982), 99-114
[3] Delvos, F.-F., Boolean methods for double integration, Math. of Comp., 55 (1990),683692
[4] Engels, H., Numerical Quadrature and Cubature, Academic Press, London, 1980
[5] Novak, E., Ritter, K., High-dimensional integration of smooth functions over cubes, Numer. Math., 75 (1996), 79-97
[6] Smolyak, S.A., Quadrature and interpolation formulas for tensor products of certain classes of function, Soviet Math. Dokl., 4 (1963), 240-243
[7] Strauß, H., Optimal quadrature formulas, in Meinardus,G., Approximation in Theory und Praxis, pp. 239-250, Bibliographisches Institut, Mannheim, 1979
[8] Temlyakov, V.N., On approximate recovery of functions with bounded mixed derivative, J. Complexity, 9 (1987), 41-59
"Babes-Bolyai" University, Faculty of Mathematics and Computer Science, 3400 Cluj-Napoca, Romania.

