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FUZZY SYSTEMATIC SPACES

M.R. MOLAEI

Abstract. In this paper fuzzy systematic spaces are considered. In terms
of definitions of fuzzy cover and fuzzy sheaf it will be defined fuzzy coho-

mology in the sense of Cech.

1. Introduction

In philosophy [1,2,3] there are some definitions of systems. These definitions
help us to define fuzzy systematic spaces, which are suitable spaces for description of
language [6]. It will be shown that on a consistent fuzzy systematic space the notion
of fuzzy cover is acquired, so we can define fuzzy sheaf cohomology in the sence of
Cech.

Fuzzy relations have been studied by Zadeh [8], Kaufman [5], Rosenfeld [7]
and in this paper in the one hand the fuzzy relations are used and in the other hand

a fuzzy systematic space is explained.

Definition 1.1. A fuzzy system for the fuzzy set X is a collection S = {Ry}, y €T
which satisfies the following conditions:

(?) Ry C X x Y, are fuzzy relations;

(¢2) for every & € X there exist v € I and y, such that (z,y,) € R,.

A fuzzy systematic space is an order pair (X, S).

Ezample 1.2. Let (C, C) be a Site [4], for all a € C define R, = {(a,b) : b C a} and
My, (@,0) == max{p(a), pc(b)}. Then (C,{R.}) is a fuzzy systematic space. (u is a

membership function.)
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Definition 1.3. Let (X,S) be a fuzzy systematic space. Then an object R € S is
called a speciality of S if forally e I', RNR, € S.

Definition 1.4. A consistent fuzzy systematic space is a fuzzy systematic space with

the following condition:

For all R; and R; belong to S, Ry N Ry € S and [T

= “RzlnlnRg
An inconsistent fuzzy systematic space is a fuzzy systematic space which is

not consistent.

Theorem 1.5. Let (X,S) be a fuzzy systematic space. Then there are subsets, X,
Xr of X and S., Sy of S such as:

(i) X = X, UXy;

(#5) S=S.USr, and Sc.NSr=0;

(222) (Xe¢, Se) 15 a consistent fuzzy systematic space and (X, Sy) 1s an inconsistent

fuzzy systematic space that has no speciality.

Proof. Let S = {R,} put
Se = {Ry:(VBET)(RyNRs € S)};

Sy = S-S,
X = {zeX:(z,y) € Ry forsome Ry € S.};
X; = {z€X:(z,y) € Ry forsome R, €S} M

O

Definition 1.6. If §’ C S, then the fuzzy systematic space (X,S’) is called a sub-

systematic space of (X, .S).
2. Fuzzy Sheaf
There must be a definition of fuzzy Grothendieck topology on S, define as a
map:
”Element of S — A subset of the powerset”

with the following conditions:
(a) {R} € G(R) for all R€ S;
(b) It {R;} € G(R) then R; C Rand pp = pip, -
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A fuzzy cover for R € S is an element of G(R).

Definition 2.1. A subset U of the fuzzy system S is a fuzzy cover for S if for all

R € S,U contains at least one fuzzy cover of R.

A fuzzy cover U’ is a finer fuzzy cover than U, if for all R’ € U’ there exists
Re U so that R C R and p,, be equal to u, on R'.

We define a fuzzy presheaf P on a fuzzy systematic space (X, S) as a map;

Object in S —— Fuzzy abelian groups
R — T(R,P) '

together with restriction maps
Pur T(F,P)—T(R,P) f RCF

that satisfies the following properties;
(¢) The restrictions are fuzzy group homomorphisms;
() H R C F and G C R then p,, = id, p5r0prr = Por-

A fuzzy presheaf P on systematic space (X,S) is a sheaf if satisfies the fol-
lowing conditions:
(i11) For every fuzzy cover {R;} of R and a,b € T'(R, P), if a|r; = b|r, for all ¢, then
a=b;
(v) For every fuzzy cover {R;} of R, if a; € T'(R;, P) and a;|r; = aj|g, for all 4, j,
then there exists a € I'(R, P) such that a|g; = a;.

Ezample 2.2. Suppose that X is an n-dimensional complex fuzzy manifold
S={Ryv =UxV:U and V are charts of X}

and py (v, v) = max{p, (uv), py (v)} for all (u,v) €U x V;
(a) If T(U x V, B) be the fuzzy group of bounded holomorphic functions on chart
UxVof X x X then the map, R,, — I'(U x V, B) is a fuzzy presheaf that is not

a fuzzy sheaf.
(b) ¥ T(U x V,0(m)) be the fuzzy group of homogeneous holomorphic functions of
degree m on chart U x V then the map R, — I'(U x V,0(m)) is a fuzzy sheaf.

25




M.R. MOLAEI

3. Fuzzy Cohomology

Now we define fuzzy cohomology in the sence of Cech for a consistent fuzzy
systematic space.

Suppose that U is a fuzzy cover for a consistent fuzzy systematic space (X, S).
A g¢-simplex is a ¢ + 1 tuple of elements of U. For § = (Ro, Ry,...,Rq) define
[0] = RoN Ry N---N Ry A g-cochain with respect to U with coefficients in a fuzzy
sheaf P is a map;

{6 :6 is a ¢ — simplex} N UT(é, P)

§ — f(9)
If 6 = (Riy, Riy,..., Ri,) then we denote f(8) by fi,..i, and {fivir..i, € T(Rip 0
R;, N---NR;,, P)} is a called g-cochain. The set of these g-cochains is denoted by
CY(U, P). The coboundary operator is:

P
{fioiv.ig} 5 {P[.-o,,.l .,..-q+11}

where p, is restriction to R;,.

As usual we define Z9(U, P) = Kerdgy1 and BY(U, P) = Indy. The set
HY(U, P) = Z9(U, P)/B3(U, P) is called the fuzzy Cech cohomology of P with re:-
spected to U and the set H9(S, P) = li&n indHI(U, P) is called the fuzzy Cech coho-
mology of (X, S) with cofficients in the fuzzy sheaf P, where limind is the inductive

limat.

Theorem 3.1. Let (X,S) be a fuzzy systematic space and suppose that there exists
R € S so that R is the mazimal element of S with respected to the inclusion. Then
HY(S, P) =T(R, P).

Proof. Let d € H°(S, P) = (U°H®(U, P)/ ~) that ~ is the usual equivalence relation.
So d = [(gi)] where g; € T'(R;, P) for some fuzzy cover V of S. By the condition ég = 0,
we have;

(09)i; =9; —9i =0 on R;NR;
Therefore there is a global section g € T'(R, P) which agrees with the g; locallym O
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