NOTE ON SPREADS AND PARTIAL SPREADS

DĂNUŢ MARCU

Abstract. The aim of this note is to give an answer to a question of [1].

1. Introduction

In this note, we show the existence of a spread, which is not a dual spread, thus answering to a question in [1]. We also obtain some related results on spreads and partial spreads.

Let $\mathbf{P} = PG(2t-1, F)$ be a projective space of odd dimension $(2t-1, t \ge 2)$ over the field F. In accordance with [1], we use the following definitions. A partial spread S of \mathbf{P} is a collection of (t-1)-dimensional projective subspaces of \mathbf{P} , which are pairwise disjoint. S is maximal, if it is not properly contained in any other partial spread. In particular, if every point of \mathbf{P} is contained in some member of S, then S is a spread. If each (2t-2)-dimensional projective subspace of \mathbf{P} contains exactly one member of S, then S is called a dual spread.

2. Main results

In the sequel, |S| will denote the number of subspaces in S.

Theorem 1. If F is finite, then S is a spread if and only if S is a dual spread.

Proof. Suppose that S is a spread, which is not a dual spread of **P**. Let δ be any correlation of **P** (for the existence of such a δ , see [2, p.41]). Then, S^{δ} , the image of S under δ , is a partial spread, which is not a spread. But, $|S^{\delta}| = |S|$ and F is finite. So, we obtain a contradiction. Similarly, every dual spread is a spread. \Box

¹⁹⁹¹ Mathematics Subject Classification: 51E14, 51E23.

Key words and phrases: projective spaces, spreads.

DĂNUŢ MARCU

For simplicity, we now specialize to the case t = 2 and we assume that F is commutative, to facilitate the notion of regulus.

We say that a spread S is regular provided that, for every line l of **P** which is not in S, the lines of S meeting l form a regulus R of **P**.

Not al spreads are regular. We can obtain a new non-regular spread S' from S, by the process of replacing some regulus R by its opposite regulus R'. If S' can be obtained from a regular spread S by finitely many iterations of such a process, then S is called subregular.

Theorem 2. Every regular spread S of |bfP| is a dual spread.

Proof. Let π be any plane of \mathbf{P} . Then, π contains at most one line of S. To show that there must be one, let l be any line of π , which is not in S. The lines of S, meeting l, form a regulus R. Let p and q be any two lines of the opposite regulus R', different from l. Then, p and q meet π in distinct point P and Q, not on l. The line PQ of π meets l and, hence, meets three lines of R'. Thus, PQ is a line of R, that is, of S. \Box

A straightforward extension of this argument yields the following

Theorem 3. Let S be a spread, which is a dual spread. Suppose that S containsa regulus R. Then, the spread S', obtained from S by replacing the regulus R by its opposite regulus R', is also a dual spread.

Corollary 1. Every subregular spread is a dual spread.

Theorem 4. There exists a spread S of \mathbf{P} , such that S is not a dual spread and no four lines of S are contained in a regulus.

Proof. Let F be infinite and countable. Choose any plane π and list the points in $\pi(P_1, P_2, P_3, ...)$ and the points not in $\pi(Q_1, Q_2, Q_3, ...)$. Through P_1 , construct the line $l_1 = P_1Q_1$. Suppose that $l_1, l_2, ..., l_n$ have been constructed, such that:

- (a) no l_i is in π ,
- (b) no two l_i intersect and
- (c) no four l_i are in a regulus.

We now show that l_{n+1} can be constructed in such a way, that (a)-(c) are satisfied also by $\{l_1, l_2, \ldots, l_{n+1}\}$.

If n is odd, let $X = P_j$ be the first pint in π , which is on none of the lines l_1, l_2, \ldots, l_n and $Y = Q_k$ the first point not in π , such that:

(d) Y is on none of the n planes Xl_i , i = 1, 2, ..., n and

(e) XY does not belong to any one of the (n_3) reguli determined by l_1, l_2, \ldots, l_n . Then, put $l_{n+1} = XY = P_iQ_k$.

If n is even, let $X = Q_s$ be the first point not in π , which is on none of the $l_i, i = 1, 2, ..., n$ and $Y = P_t$ the first point in π , such that (d) and (e) are satisfied. Then, put $l_{n+1} = XY = Q_s P_t$.

Clearly, $l_1, l_2, \ldots, l_{n+1}$ satisfy the conditions (a)-(c). Furthermore, our construction guarantees that each point of **P** is on a line of S. Thus, the theorem is proved. \Box

There is an interesting consequence of the Theorem 4, that is,

Corollary 2. Maximal partial spreads W, which are not spreads, exist in \mathbf{P} .

Proof. Consider the image W of S, under any correlation of **P**. \Box

Remark. the above corollary is also true if F is finite (for an example in PG(3, 4), see [3]).

We end this note with the following

Conjecture. There exist such maximal partial spreads W, with $q^2 - q + 1 \le |W| \le q^2 - q + 2$ in PG(3, q), for any q.

References

- R.J. Bruck and R.C. Bose, The construction of translation planes from projective spaces, J. Algebra, 1(1964), 85-102.
- [2] P. Dembowski, Finite Geometries, Springer Verlag, 1968.
- [3] D.M. Mesner, Sets of disjoint lines in PG(3,q), Canad. J. Math., 19(1967), 273-280.

STR. PASULUI 3, SECT.2, 70241 BUCHAREST, ROMANIA