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NOTE ON SPREADS AND PARTIAL SPREADS

DANUT MARCU

Abstract. The aim of this note is to give an answer to a question of [1].

1. Introduction

In this note, we show the existence of a spread, which is not a dual spread,
thus answering to a question in [1]. We also obtain some related results on spreads
and partial spreads.

Let P = PG(2t — 1, F) be a projective space of odd dimension (2t —1, t > 2)

over the field F'. In accordance with [1], we use the following definitions. A partial

spread S of P is a collection of (t — 1)-dimensional projective subspaces of P, which
are pairwise disjoint. S is maximal, if it is not properly contained in any other partial
spread. In particular, if every point of P is contained in some member of S, then S is
a spread. If each (2t — 2)-dimensional projective subspace of P contains exactly one

member of S, then S is called a dual spread.

2. Main results

In the sequel, |S| will denote the number of subspaces in S.
Theorem 1. If F is finite, then S is a spread if and only if S is a dual spread.
Proof. Suppose that S is a spread, which is not a dual spread of P. Let § be any
correlation of P (for the existence of such a §, see [2, p.41]). Then, S¢, the image of
S under 4, ia a partial spread, which is not a spread. But, |S®| = |S| and F is finite.

So, we obtain a contradiction. Similarly, every dual spread is a spread. O
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For simplicity, we now specialize to the case t = 2 and we assume that F is
commutative, to facilitate the notion of regulus.

We say that a spread S is regular provided that, for every line ! of P which
is not in S, the lines of S meeting ! form a regulus R of P.

Not al spreads are regular. We can obtain a new non-regular spread S’ from
S, by the process of replacing some regulus R by its opposite regulus R’. If S’ can be
obtained from a regular spread S by finitely many iterations of such a process, then
S is called subregular.
Theorem 2. Every regular spread S of |bfP is a dual spread.
Proof. Let 7 be any plane of P. Then, 7 contains at most one line of S. To show that
there must be one, let | be any line of 7, which is not in S. The lines of S, meeting [,
form a regulus R. Let p and ¢ be any two lines of the opposite regulus R’, different
from l. Then, p and ¢ meet 7 in distinct point P and @, not on l. The line PQ of
meets | and, hence, meets three lines of R’. Thus, PQ is a line of R, that is, of S. O

A straightforward extension of this argument yields the following
Theorem 3. Let S be a spread, which is a dual spread. Suppose that S contains-
a requlus R. Then, the spread S’', obtained from S by replacing the regulus R by its
opposite regulus R', is also a dual spread.
Corollary 1. Every subregular spread is a dual spread.
Theorem 4. There exists a spread S of P, such that S is not a dual spread and no
four lines of S are contained in a regulus.
Proof. Let F be infinite and countable. Choose any plane 7 and list the points in
7(Py, P2, Pa, ...) and the points not in 7(Q1, @2, @3, ...). Through Py, construct the
line I} = P1@;. Suppose that I1,1s,...,l, have been constructed, such that:

(a) no l; isin m,

(b) no two [; intersect and

(c) no four I; are in a regulus.

We now show that I, can be constructed in such a way, that (a)-(c) are

satisfied also by {l1,ls,...,ln4+1}.
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If n is odd, let X = P; be the first pint in m, which is on none of the lines
li,l,...,l, and Y = @y the first point not in m, such that:

(d) Y is on none of the n planes X/;, ¢ =1,2,...,n and

(€) XY does not belong to any one of the (n3) reguli determined by l1,1s,...,l,.

Then, put l,41 = XY = P;Qx.

If n is even, let X = @, be the first point not in 7, which is on none of the
l;iyi=1,2,...,nand Y = P, the first point in 7, such that (d) and (e) are satisfied.
Then, put Iy = XY = Q,P;.

Clearly, l1,15,...,ln41 satisfy the conditions (a)-(c). Furthermore, our con-
struction guarantees that each point of P is on a line of S. Thus, the theorem is
proved. O

There is an interesting consequence of the Theorem 4, that is,

Corollary 2. Mazimal partial spreads W, which are not spreads, ezist in P.

Proof. Consider the image W of S, under any correlation of P. O

Remark. the above corollary is also true if F is finite (for an example in PG(3,4), see
(3])-

We end this note with the following
Conjecture. There exist such mazimal partial spreads W, with ¢> — ¢+ 1 < |W| <
¢*—q+2 in PG(3,q), for any q.

References

[1] R.J. Bruck and R.C. Bose, The construction of translation planes from projective spaces,
J. Algebra, 1(1964), 85-102.

[2] P. Dembowski, Finite Geometries, Springer Verlag, 1968.

[3] D.M. Mesner, Sets of disjoint lines in PG(3,q), Canad. J. Math., 19(1967), 273-280.

STR. PAsuLUl 3, SECT.2, 70241 BUCHAREST, ROMANIA

21




