ON α -TYPE UNIFORMLY CONVEX FUNCTIONS

IOANA MAGDAŞ

Abstract. We determine necessary and sufficient condition for a function f with negative coefficients to be *n*-uniformly starlike of type α and we obtain a connection between the class of all such functions $UT_n(\alpha)$ and the class of the functions *n*-starlike of order α and type β with negative coefficients $T_n(\alpha, \beta)$. Distortion bounds and extreme points are also obtained.

1 Introduction

Denote by S the family of functions

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \tag{1}$$

that are analytic and univalent in the unit disk $U = \{z : |z| < 1\}$ and by S^* , respectively $S^c(\alpha)$ the usual class of starlike functions, respectively convex functions of order $\alpha, \alpha \geq 0$.

Definition 1. A function f is said to be uniformly convex in U if f is in S^c and has the property that for every circular arc γ contained in U, with center ζ also in U, the arc $f(\zeta)$ is a convex arc.

Let be UCV or US^c denote the class of all such functions.

Goodman gave the following two-variable analytic characterizations of this class, then Ma and Minda [1] and Rønning [2] independently found a one variable characterization for US^c .

Theorem A. Let f have the form (1). Then the following are equivalent:

¹⁹⁹¹ Mathematics Subject Classification: 30C45. Key words and phrases: starlikeness, α-convexity.

IOANA MAGDAŞ

$$\begin{aligned} (i) \ f \in US^{c} \\ (ii) \ \operatorname{Re} \left\{ 1 + \frac{(z-\zeta)f''(z)}{f'(z)} \right\} &\geq 0 \ \text{for all pairs } (z,\zeta) \in U \times U \\ (iii) \ \operatorname{Re} \left\{ 1 + \frac{zf''(z)}{f'(z)} \right\} &\geq \left| \frac{zf''(z)}{f'(z)} \right|, \ \text{for all } z \in U \\ (iv) \ 1 + \frac{zf''(z)}{f'(z)} \prec q, \ \text{where } q(z) = 1 + \frac{2}{\pi^{2}} \left(\log \frac{1+\sqrt{z}}{1-\sqrt{z}} \right)^{2} \ \text{is a Riemann} \\ \text{mapping function from } U \ \text{to } \Omega = \{ w = u + iv : \ v^{2} < 2u - 1 \} = \{ w : \ \operatorname{Re} w > |w-1| \}. \end{aligned}$$

Note that Ω is the interior of a parabola in the right half-plane which is symmetric about the real axis and has vertex at (1/2, 0).

Denote by T the subclass of S consisting of functions f of the form

$$f(z) = z - \sum_{n=2}^{\infty} a_n z^n, \quad a_n \ge 0 \ (n \in \mathbb{N} \setminus \{0, 1\}), \ z \in U$$
(2)

and denote by $T^*(\alpha)$ and $T^c(\alpha)$ the class of functions of the form (2) that are, respectively, starlike of order α and convex of order α , $\alpha \in [0,1)$, and denote by $UT^c = US^c \cap T$ the class of functions uniformly convex with negative coefficients.

Definition 2. A function f of the form (1) is said to be uniformly convex of α -type, $\alpha \geq 0$ if

$$\operatorname{Re}\left\{1+\frac{zf''(z)}{f'(z)}\right\} \ge \alpha \left|\frac{zf''(z)}{f'(z)}\right|,\tag{3}$$

for all $z \in U$.

We let $US^{c}(\alpha)$ denote the class of all such functions.

Note that $US^{c}(0) = S^{c}$, $US^{c}(1) = US^{c}$ and $US^{c}(\alpha) \subset US^{c}$ for $\alpha > 1$.

Remark. A function f of the form (1) is in $US^{c}(\alpha)$ if and only if $1+zf''(z)/f'(z) \in D$ for all $z \in U$, where D is:

i) for $\alpha > 1$ bounded by the ellipse

$$\frac{\left(u - \frac{\alpha^2}{\alpha^2 - 1}\right)^2}{\frac{\alpha^2}{(\alpha^2 - 1)^2}} + \frac{v^2}{\frac{1}{\alpha^2 - 1}} = 1$$

ii) for $\alpha = 1$ bounded by the parabola

$$v^2 = 2u - 1$$

iii) for $\alpha \in (0, 1)$ bounded by the positive branch of the hyperbole

$$\frac{\left(u + \frac{\alpha^2}{1 - \alpha^2}\right)^2}{\frac{\alpha^2}{(1 - \alpha^2)^2}} - \frac{v^2}{\frac{1}{1 - \alpha^2}} = 1$$

iv) for $\alpha = 0$ the half-plane $u \ge 0$

In conclusion $US^{c}(\alpha) \subset S^{c}(\alpha/(\alpha+1))$ for $\alpha \geq 0$.

In [5] is defined $UT^{c}(\alpha) = US^{c}(\alpha) \cap T$ and it is given a coefficient characterization for this class.

Theorem A. Let f have the form (1) and $\alpha \ge 0$. f is in $UT^{c}(\alpha)$ if and only if

$$\sum_{j=2}^{\infty} j[j(\alpha+1)-\alpha]a_j \le 1,$$
(4)

hence $UT^{c}(\alpha) = T^{c}(\alpha/(\alpha+1)).$

Sălăgean [4] introduced the differential operator

$$D^n : A \to A, \quad n \in \mathbb{N}, \ A = \{f \in H(U) : \ f(0) = f'(0) - 1 = 0\}$$

IOANA MAGDAŞ

defined by $D^0 f(z) = f(z)$, $D^1 f(z) = Df(z) = zf'(z)$, $D^n f(z) = D(D^{n-1}f(z))$, for $n \ge 2$ and it is easy to prove that

$$D^n f(z) = z + \sum_{j=2}^{\infty} j^n a_j z^j.$$
(5)

He also defined the class $S_n(\alpha,\beta)$ of *n*-starlike functions of order α and type β by

$$S_n(\alpha,\beta) = \{f \in A : |J(f,n,\alpha;z)| < \beta\}, \quad \alpha \in [0,1), \ \beta \in (0,1], \ n \in \mathbb{N}$$

where

$$J(f, n, \alpha; z) = \frac{D^{n+1}f(z) - D^n f(z)}{D^{n+1}f(z) + (1 - 2\alpha)D^n f(z)}, \quad z \in U.$$
 (6)

Denote by $T_n(\alpha, \beta) = S_n(\alpha, \beta) \cap T$ the class of functions *n*-starlike of order α and type β with negative coefficients.

Sălăgean [4] gave a coefficient characterization for this class.

Theorem B. Let f have the form (2), $\alpha \in [0,1)$, $\beta \in (0,1]$. f is in $T_n(\alpha,\beta)$ if and only if

$$\sum_{j=2}^{\infty} j^{n} [j-1+\beta(j+1-2\alpha)] a_{j} \le 2\beta(1-\alpha).$$
(7)

The result is exactly and the extremal functions are

$$f_j(z) = z - \frac{2\beta(1-\alpha)}{j^n[j-1+\beta(j+1-2\alpha)]} z^j, \quad j \in \mathbb{N}_2 = \mathbb{N} \setminus \{0,1\}.$$
(8)

Definition 3. A function f of the form (1) is said to be *n*-uniformly starlike of type $\alpha, \alpha \geq 0$ and $n \in \mathbb{N}$ if

$$\operatorname{Re}\left\{\frac{D^{n+1}f(z)}{D^{n}f(z)}\right\} \ge \alpha \left|\frac{D^{n+1}f(z)}{D^{n}f(z)} - 1\right|$$
(9)

for all $z \in U$.

We let $US_n(\alpha)$ denote the class of all such functions.

Note that $US_0(1) = S_p$ introduced in [3], $US_1(1) = US^c$ and because $US_n(\alpha) \subset S_n(0,1) \subset S^*$ follow that the uniformly functions of type α are univalents.

Remark. f is in $US_n(\alpha)$ if and only if $D^{n+1}f(z)/D^n f(z) \in D$ for all $z \in U$.

Denote by $UT_n(\alpha) = US_n(\alpha) \cap T$ the class of *n*-uniformly starlike functions of type α with negative coefficients.

We will give a coefficient characterization for this class.

2. Main results

Theorem 1. Let f have the form (2), $\alpha \ge 0$, $n \in \mathbb{N}$. Then f is in $UT_n(\alpha)$ if and only if

$$\sum_{j=2}^{\infty} j^n [j(\alpha+1) - \alpha] a_j \le 1.$$
(10)

The result is exactly and the extremal functions are

$$f_j(z) = z - \frac{1}{j^n [j(\alpha+1) - \alpha]} z^j, \quad j \in \mathbb{N}_2 = \mathbb{N} \setminus \{0, 1\}.$$

Proof. Assume that $f \in UT_n(\alpha)$, then

$$\operatorname{Re}\left\{\frac{D^{n+1}f(z)}{D^{n}f(z)}\right\} \ge \alpha \left|\frac{D^{n+1}f(z)}{D^{n}f(z)} - 1\right|$$
(11)

for all $z \in U$.

For $z \in [0, 1)$ the inequality become

$$\frac{1 - \sum_{j=2}^{\infty} j^{n+1} a_j z^{j-1}}{1 - \sum_{j=2}^{\infty} j^n a_j z^{j-1}} \ge \alpha \left| \frac{\sum_{j=2}^{\infty} j^n (j-1) a_j z^{j-1}}{1 - \sum_{j=2}^{\infty} j^n a_j z^{j-1}} \right|.$$
(12)

Since $UT_n(\alpha) \subset T_n(0,1)$ we have:

$$\sum_{j=2}^{\infty} j^{n+1} a_j < 1$$

then

$$\sum_{j=2}^{\infty} j^n a_j z^{j-1} < 1.$$

Inequality (13) reduce to

$$1 - \sum_{j=2}^{\infty} j^{n+1} a_j z^{j-1} \ge \alpha \sum_{j=2}^{\infty} j^n (j-1) a_j z^{j-1}$$

1	5
---	---

and letting $z \to 1^-$ along the real axis, we obtain the desired inequality

$$\sum_{j=2}^{\infty} j^n [j(\alpha+1) - \alpha] a_j \le 1.$$

Conversely we assume the inequality (11) and it suffices to show that:

$$\alpha \left| \frac{D^{n+1}f(z)}{D^n f(z)} - 1 \right| - \operatorname{Re} \left\{ \frac{D^{n+1}f(z)}{D^n f(z)} - 1 \right\} \le 1.$$

We have

Ŧ

$$\alpha \left| \frac{D^{n+1}f(z)}{D^n f(z)} - 1 \right| - \operatorname{Re} \left\{ \frac{D^{n+1}f(z)}{D^n f(z)} - 1 \right\} \le (\alpha+1) \left| \frac{D^{n+1}f(z)}{D^n f(z)} - 1 \right| \le \\ \le (\alpha+1) \frac{\sum_{j=2}^{\infty} j^n (j-1)a_j |z|^{j-1}}{1 - \sum_{j=2}^{\infty} j^n a_j |z|^{j-1}} \le (\alpha+1) \frac{\sum_{j=2}^{\infty} j^n (j-1)a_j}{1 - \sum_{j=2}^{\infty} j^n a_j} \le 1$$

according to (11), and the proof is complete.

Remark. For n = 1 we obtain the Theorem A.

Corollary 1. Let f have the form (2). If f is in $UT_n(\alpha)$ then

$$a_j \le \frac{1}{j^n [j(\alpha+1) - \alpha]}, \quad j \in \mathbb{N}_2.$$
(13)

Corollary 2. For $\alpha \geq 0$ and $n \in \mathbb{N}$, $UT_n(\alpha) = T_n(\alpha/\alpha + 1, 1)$.

Proof. Replacing α with $\alpha/\alpha + 1$, β with 1 in the necessary and sufficient coefficient conditions in Theorem B, we obtain the corresponding coefficient condition of Corollary 2.

Theorem 2. If $f \in UT_n(\alpha)$, $\alpha \ge 0$ then

$$\begin{aligned} r &- \frac{1}{2^n (\alpha + 2)} r^2 \le |f(z)| \le r + \frac{1}{2^n (\alpha + 2)} r^2 \\ 1 &- \frac{1}{2^{n-1} (\alpha + 2)} r \le |f'(z)| \le 1 + \frac{1}{2^{n-1} (\alpha + 2)} r^2 \end{aligned}, \quad |z| = r \end{aligned}$$

The results are the best possible.

16

Let f and g be two functions of the form (2)

$$f(z) = z - \sum_{j=2}^{\infty} a_j z^j$$
 and $g(z) = z - \sum_{j=2}^{\infty} b_j z^j$

then we define the (modified) Hadamard product or convolution of f and g by

$$(f * g)(z) = z - \sum_{j=2}^{\infty} a_j b_j z^j.$$

Theorem 3. If $f, g \in UT_n(\alpha)$, $\alpha \ge 0$ then $f * g \in UT_n\left(\frac{\rho}{1-\rho}\right)$, where

$$\rho = 1 - \frac{1}{2^{2n}(\alpha + 2)^2 - 1}.$$

This result is sharp.

References

- [1] W. Ma and D. Minda, Uniformly convex functions, Ann. Polon. Math., 57(1992), 166-175.
- F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., 118(1992), 449-454.
- [3] F. Rønning, Integral representations of bounded starlike functions, Ann. Polon. Math., LX3(1995), 289-297.
- [4] G.S. Sălăgean, Subclasses of univalent functions, Lect. Notes in Math., 1013, Springer Verlag, 1983, 362-372.
- [5] K.G. Subramanian, G. Murugusundaramoorthy, P. Balasubrahmanyam and H. Silverman, Subclasses of uniformly convex and uniformly starlike functions, Math. Japonica, No.3(1996), 517-522.

"BABEŞ-BOLYAI" UNIVERSITY, FACULTY OF MATHEMATICS AND COMPUTER SCI-ENCE, 3400 CLUJ-NAPOCA, ROMANIA.