ON α-TYPE UNIFORMLY CONVEX FUNCTIONS

IOANA MAGDAS

Abstract

We determine necessary and sufficient condition for a function f with negative coefficients to be n-uniformly starlike of type α and we obtain a conection between the class of all such functions $U T_{n}(\alpha)$ and the class of the functions n-starlike of order α and type β with negative coefficients $T_{n}(\alpha, \beta)$. Distortion bounds and extreme points are also obtained.

1. Introduction

Denote by S the family of functions

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

that are analytic and univalent in the unit disk $U=\{z:|z|<1\}$ and by S^{*}, respectively $S^{c}(\alpha)$ the usual class of starlike functions, respectively convex functions of order $\alpha, \alpha \geq 0$.

Definition 1. A function f is said to be uniformly convex in U if f is in S^{c} and has the property that for every circular arc γ contained in U, with center ζ also in U, the arc $f(\zeta)$ is a convex arc.

Let be $U C V$ or $U S^{c}$ denote the class of all such functions.
Goodman gave the following two-variable analytic characterizations of this class, then Ma and Minda [1] and Rønning [2] independently found a one variable characterization for $U S^{c}$.

Theorem A. Let f have the form (1). Then the following are equivalent:

[^0](i) $f \in U S^{c}$
(ii) $\operatorname{Re}\left\{1+\frac{(z-\zeta) f^{\prime \prime}(z)}{f^{\prime}(z)}\right\} \geq 0$ for all pairs $(z, \zeta) \in U \times U$
(iii) $\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\} \geq\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|$, for all $z \in U$
(iv) $1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec q$, where $q(z)=1+\frac{2}{\pi^{2}}\left(\log \frac{1+\sqrt{z}}{1-\sqrt{z}}\right)^{2}$ is a Riemann mapping function from U to $\Omega=\left\{w=u+i v: v^{2}<2 u-1\right\}=\{w: \operatorname{Re} w>|w-1|\}$.

Note that Ω is the interior of a parabola in the right half-plane which is symmetric about the real axis and has vertex at $(1 / 2,0)$.

Denote by T the subclass of S consisting of functions f of the form

$$
\begin{equation*}
f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n}, \quad a_{n} \geq 0(n \in \mathbb{N} \backslash\{0,1\}), z \in U \tag{2}
\end{equation*}
$$

and denote by $T^{*}(\alpha)$ and $T^{c}(\alpha)$ the class of functions of the form (2) that are, respectively, starlike of order α and convex of order $\alpha, \alpha \in[0,1)$, and denote by $U T^{c}=U S^{c} \cap T$ the class of functions uniformly convex with negative coefficients.

Definition 2. A function f of the form (1) is said to be uniformly convex of α-type, $\alpha \geq 0$ if

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\} \geq \alpha\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \tag{3}
\end{equation*}
$$

for all $z \in U$.

We let $U S^{c}(\alpha)$ denote the class of all such functions.
Note that $U S^{c}(0)=S^{c}, U S^{c}(1)=U S^{c}$ and $U S^{c}(\alpha) \subset U S^{c}$ for $\alpha>1$.

Remark. A function f of the form (1) is in $U S^{c}(\alpha)$ if and only if $1+z f^{\prime \prime}(z) / f^{\prime}(z) \in D$ for all $z \in U$, where D is:
i) for $\alpha>1$ bounded by the ellipse

$$
\frac{\left(u-\frac{\alpha^{2}}{\alpha^{2}-1}\right)^{2}}{\frac{\alpha^{2}}{\left(\alpha^{2}-1\right)^{2}}}+\frac{v^{2}}{\frac{1}{\alpha^{2}-1}}=1
$$

ii) for $\alpha=1$ bounded by the parabola

$$
v^{2}=2 u-1
$$

iii) for $\alpha \in(0,1)$ bounded by the positive branch of the hyperbole

$$
\frac{\left(u+\frac{\alpha^{2}}{1-\alpha^{2}}\right)^{2}}{\frac{\alpha^{2}}{\left(1-\alpha^{2}\right)^{2}}}-\frac{v^{2}}{\frac{1}{1-\alpha^{2}}}=1
$$

iv) for $\alpha=0$ the half-plane $u \geq 0$

In conclusion $U S^{c}(\alpha) \subset S^{c}(\alpha /(\alpha+1))$ for $\alpha \geq 0$.
In [5] is defined $U T^{c}(\alpha)=U S^{c}(\alpha) \cap T$ and it is given a coefficient characterization for this class.

Theorem A. Let f have the form (1) and $\alpha \geq 0 . f$ is in $U T^{c}(\alpha)$ if and only if

$$
\begin{equation*}
\sum_{j=2}^{\infty} j[j(\alpha+1)-\alpha] a_{j} \leq 1 \tag{4}
\end{equation*}
$$

hence $U T^{c}(\alpha)=T^{c}(\alpha /(\alpha+1))$.

Sălăgean [4] introduced the differential operator

$$
D^{n}: A \rightarrow A, \quad n \in \mathbb{N}, A=\left\{f \in H(U): f(0)=f^{\prime}(0)-1=0\right\}
$$

defined by $D^{0} f(z)=f(z), D^{1} f(z)=D f(z)=z f^{\prime}(z), D^{n} f(z)=D\left(D^{n-1} f(z)\right)$, for $n \geq 2$ and it is easy to prove that

$$
\begin{equation*}
D^{n} f(z)=z+\sum_{j=2}^{\infty} j^{n} a_{j} z^{j} \tag{5}
\end{equation*}
$$

He also defined the class $S_{n}(\alpha, \beta)$ of n-starlike functions of order α and type β by

$$
S_{n}(\alpha, \beta)=\{f \in A:|J(f, n, \alpha ; z)|<\beta\}, \quad \alpha \in[0,1), \beta \in(0,1], n \in \mathbb{N}
$$

where

$$
\begin{equation*}
J(f, n, \alpha ; z)=\frac{D^{n+1} f(z)-D^{n} f(z)}{D^{n+1} f(z)+(1-2 \alpha) D^{n} f(z)}, \quad z \in U \tag{6}
\end{equation*}
$$

Denote by $T_{n}(\alpha, \beta)=S_{n}(\alpha, \beta) \cap T$ the class of functions n-starlike of order α and type β with negative coefficients.

Sălăgean [4] gave a coefficient characterization for this class.
Theorem B. Let f have the form (2), $\alpha \in[0,1), \beta \in(0,1] . f$ is in $T_{n}(\alpha, \beta)$ if and only if

$$
\begin{equation*}
\sum_{j=2}^{\infty} j^{n}[j-1+\beta(j+1-2 \alpha)] a_{j} \leq 2 \beta(1-\alpha) \tag{7}
\end{equation*}
$$

The result is exactly and the extremal functions are

$$
\begin{equation*}
f_{j}(z)=z-\frac{2 \beta(1-\alpha)}{j^{n}[j-1+\beta(j+1-2 \alpha)]} z^{j}, \quad j \in \mathbb{N}_{2}=\mathbb{N} \backslash\{0,1\} \tag{8}
\end{equation*}
$$

Definition 3. A function f of the form (1) is said to be n-uniformly starlike of type $\alpha, \alpha \geq 0$ and $n \in \mathbb{N}$ if

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{D^{n+1} f(z)}{D^{n} f(z)}\right\} \geq \alpha\left|\frac{D^{n+1} f(z)}{D^{n} f(z)}-1\right| \tag{9}
\end{equation*}
$$

for all $z \in U$.
We let $U S_{n}(\alpha)$ denote the class of all such functions.
Note that $U S_{0}(1)=S_{p}$ introduced in [3], $U S_{1}(1)=U S^{c}$ and because $U S_{n}(\alpha) \subset S_{n}(0,1) \subset S^{*}$ follow that the uniformly functions of type α are univalents.

Remark. f is in $U S_{n}(\alpha)$ if and only if $D^{n+1} f(z) / D^{n} f(z) \in D$ for all $z \in U$.
Denote by $U T_{n}(\alpha)=U S_{n}(\alpha) \cap T$ the class of n-uniformly starlike functions of type α with negative coefficients.

We will give a coefficient characterization for this class.

2. Main results

Theorem 1. Let f have the form (2), $\alpha \geq 0, n \in \mathbb{N}$. Then f is in $U T_{n}(\alpha)$ if and only if

$$
\begin{equation*}
\sum_{j=2}^{\infty} j^{n}[j(\alpha+1)-\alpha] a_{j} \leq 1 \tag{10}
\end{equation*}
$$

The result is exactly and the extremal functions are

$$
f_{j}(z)=z-\frac{1}{j^{n}[j(\alpha+1)-\alpha]} z^{j}, \quad j \in \mathbb{N}_{2}=\mathbb{N} \backslash\{0,1\} .
$$

Proof. Assume that $f \in U T_{n}(\alpha)$, then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{D^{n+1} f(z)}{D^{n} f(z)}\right\} \geq \alpha\left|\frac{D^{n+1} f(z)}{D^{n} f(z)}-1\right| \tag{11}
\end{equation*}
$$

for all $z \in U$.
For $z \in[0,1)$ the inequality become

$$
\begin{equation*}
\frac{1-\sum_{j=2}^{\infty} j^{n+1} a_{j} z^{j-1}}{1-\sum_{j=2}^{\infty} j^{n} a_{j} z^{j-1}} \geq \alpha\left|\frac{\sum_{j=2}^{\infty} j^{n}(j-1) a_{j} z^{j-1}}{1-\sum_{j=2}^{\infty} j^{n} a_{j} z^{j-1}}\right| \tag{12}
\end{equation*}
$$

Since $U T_{n}(\alpha) \subset T_{n}(0,1)$ we have:

$$
\sum_{j=2}^{\infty} j^{n+1} a_{j}<1
$$

then

$$
\sum_{j=2}^{\infty} j^{n} a_{j} z^{j-1}<1
$$

Inequality (13) reduce to

$$
1-\sum_{j=2}^{\infty} j^{n+1} a_{j} z^{j-1} \geq \alpha \sum_{j=2}^{\infty} j^{n}(j-1) a_{j} z^{j-1}
$$

and letting $z \rightarrow 1^{-}$along the real axis, we obtain the desired inequality

$$
\sum_{j=2}^{\infty} j^{n}[j(\alpha+1)-\alpha] a_{j} \leq 1
$$

Conversely we assume the inequality (11) and it suffices to show that:

$$
\text { - } \quad \alpha\left|\frac{D^{n+1} f(z)}{D^{n} f(z)}-1\right|-\operatorname{Re}\left\{\frac{D^{n+1} f(z)}{D^{n} f(z)}-1\right\} \leq 1 .
$$

We have

$$
\begin{gathered}
\alpha\left|\frac{D^{n+1} f(z)}{D^{n} f(z)}-1\right|-\operatorname{Re}\left\{\frac{D^{n+1} f(z)}{D^{n} f(z)}-1\right\} \leq(\alpha+1)\left|\frac{D^{n+1} f(z)}{D^{n} f(z)}-1\right| \leq \\
\leq(\alpha+1) \frac{\sum_{j=2}^{\infty} j^{n}(j-1) a_{j}|z|^{j-1}}{1-\sum_{j=2}^{\infty} j^{n} a_{j}|z|^{j-1}} \leq(\alpha+1) \frac{\sum_{j=2}^{\infty} j^{n}(j-1) a_{j}}{1-\sum_{j=2}^{\infty} j^{n} a_{j}} \leq 1
\end{gathered}
$$

according to (11), and the proof is complete.

Remark. For $n=1$ we obtain the Theorem A.

Corollary 1. Let f have the form (2). If f is in $U T_{n}^{\prime}(\alpha)$ then

$$
\begin{equation*}
a_{j} \leq \frac{1}{j^{n}[j(\alpha+1)-\alpha]}, \quad j \in \mathbb{N}_{2} \tag{13}
\end{equation*}
$$

Corollary 2. For $\alpha \geq 0$ and $n \in \mathbb{N}, U T_{n}(\alpha)=T_{n}(\alpha / \alpha+1,1)$.

Proof. Replacing α with $\alpha / \alpha+1, \beta$ with 1 in the necessary and sufficient coefficient conditions in Theorem B, we obtain the corresponding coefficient condition of Corollary 2.

Theorem 2. If $f \in U T_{n}(\alpha), \alpha \geq 0$ then

$$
\begin{aligned}
& r-\frac{1}{2^{n}(\alpha+2)} r^{2} \leq|f(z)| \leq r+\frac{1}{2^{n}(\alpha+2)} r^{2} \\
& 1-\frac{1}{2^{n-1}(\alpha+2)} r \leq\left|f^{\prime}(z)\right| \leq 1+\frac{1}{2^{n-1}(\alpha+2)} r^{2} \quad, \quad|z|=r .
\end{aligned}
$$

The results are the best possible.

Let f and g be two functions of the form (2)

$$
f(z)=z-\sum_{j=2}^{\infty} a_{j} z^{j} \quad \text { and } \quad g(z)=z-\sum_{j=2}^{\infty} b_{j} z^{j}
$$

then we define the (modified) Hadamard product or convolution of f and g by

$$
(f * g)(z)=z-\sum_{j=2}^{\infty} a_{j} b_{j} z^{j}
$$

Theorem 3. If $f, g \in U T_{n}(\alpha), \alpha \geq 0$ then $f * g \in U T_{n}\left(\frac{\rho}{1-\rho}\right)$, where

$$
\rho=1-\frac{1}{2^{2 n}(\alpha+2)^{2}-1} .
$$

This result is sharp.

References

[1] W. Ma and D. Minda, Uniformly convex functions, Ann. Polon. Math., 57(1992), 166175.
[2] F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., 118(1992), 449-454.
[3] F. Rønning, Integral representations of bounded starlike functions, Arn. Polon. Math., LX3(1995), 289-297.
[4] G.S. Sălăgean, Subclasses of univalent functions, Lect. Notes in Math., 1013, Springer Verlag, 1983, 362-372.
[5] K.G. Subramanian, G. Murugusundaramoorthy, P. Balasubrahmanyam and H. Silverman, Subclasses of uniformly convex and uniformly starlike functions, Math. Japonica, No.3(1996), 517-522.
"Babes-Bolyai" University, Faculty of Mathematics and Computer Science, 3400 Cluj-Napoca, Romania.

[^0]: 1991 Mathematics Subject Classification: 30C45.
 Key words and phrases: starlikeness, α-convexity.

