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SOME APPLICATIONS OF ORE’S GENERALIZED THEOREMS IN 
THE FORMATION THEORY

R O D I C A  C O V A C I

A b stra ct. Ore’s theorems [9] are a powerful tool in the formation theory 

of finite solvable groups. In [4] we obtained a generalization of some of 

these theorems on finite 7r-solvable groups, where n is an arbitrary set of 

primes. The present paper applies Ore’s generalized theorems to prove the 

existence and conjugacy of covering subgroups in finite 7r-solvable groups.

1. Preliminaries

All groups considered in the paper are finite. We denote by 7r an arbitrary 

set of primes and by 7r‘ the complement to 7r in the set of all primes.

Definition 1.1. 1. A class X of groups is a homomorph if X is closed under

homomorphisms.

2. A group G is primitive if G has a stabilizer, i.e. a maximal subgroup H 

with coreoH =  1, where corecH =  fl { H51 /  gEG }.

3. A homomorph X is a Schunck class if X is primitively closed, i.e. if any 

group G, all of whose primitive factor groups are in X, is itself in X-

4. If X is a class of groups anâ G is a group, a subgroup E of G is called an 

X-covering subgroup of G if: (i) EE X; (ii) E < V < G, Vo < V, V / Vo E 

X imply V =  E V0.

Definition 1.2. a) A group G is n-solvable if every chief factor of G is either a solv­

able 7r-group or a 7r‘-group. When 7r is the set of all primes, we obtain the notion of
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solvable group.

b) A class X of groups is said to be n-closed if:

G /O AG ) G X => G G X,
where 07r‘ (G) denotes the largest normal ^‘-subgroup of G. We shall call n-homomorph 

a 7r-closed homomorph and n-Schunck class a 7r-closed Schunck class.

Let X be a homomorph. The following properties given in [8] are also true 

for any finite group:

P roposition  1.3. If E is an X-covering subgroup of G and E < H < G, then E is 

an X-covering subgroup of H.

P roposition  1.4. Let E be an X-covering subgroup of G and N a normal subgroup 

of G. Then EN/N is an X-covering subgroup of G/N.

P roposition  1.5. If N is a normal subgroup of G, E*/N is an X-covering subgroup 

of G/N and E is an X-covering subgroup of E*f then E is an X-covering subgroup of

G.

Finally, we shall use a result of R. Baer [1] which we give below:

T heorem  1 .6. A solvable minimal normal subgroup of a group is abelian.

2. O re ’s generalized theorem s

In [3] we gave some properties of finite primitive groups, among which we 

remind the following:

P roposition  2.1 . If G is a primitive group and W is a stabilizer of G, then for any 

minimal normal subgroup M of G we have MW = G.

In [4] we proved the following theorems generalizing Ore’s theorems from [9]:

Theorem  2.2. Let G be a primitive ir-solvable group. If G has a minimal normal 

subgroup which is a solvable w-group, then G has one and only one minimal normal 
subgroup.
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Corollary 2.3. If G is a primitive n-solvable group, then G has at most one minimal 
normal subgroup which is a solvable n-group.

Corollary 2.4. If a primitive n-solvable group G has a minimal normal subgroup 
which is a solvable n-group, then G has no minimal normal subgroups which are n - 

groups.

Theorem 2.5. If G is a primitive n-solvable group and N is a minimal normal sub­

group of G which is a solvable it-group, then Cq (N) = N.

Theorem 2.6. Let G be a K-solvable group such that:

(i) there is a minimal normal subgroup M of G which is a solvable n-group and Cg (M) 

= M;

(ii) there is a minimal normal subgroup L/M of G/M such that L/M is a n ‘-group. 
Then G is primitive.

Theorem 2.7. If G is a n-solvable group satisfying (i) and (ii) from 2.6., then any 

two stabilizers W and W* of G are conjugate in G.

Theorem 2.8. If G is a primitive tt-solvable group, V < G such that there is a min­

imal normal subgroup M of G which is a solvable n-group and MV = G, then V is a 
stabilizer of G.

3. Existence and conjugacy of covering subgroups in finite 7r-solvable groups

We give here a new proof of the existence and conjugacy theorems of covering 

subgroups in finite 7r-solvable groups [2]. The proof from [2] is based on some R. 

Baer’s theorems (see [1]). According to the importance of Ore’s theorems in the 

formation theory of finite solvable groups, we put the question if Ore’s generalized 

theorems could not be used to prove the existence and conjugacy theorems of covering 

subgroups in finite 7r-solvable groups. The answer is affirmative as we show below.

Theorem 3.1. If X  is a 7r-homomorph and G is a 7r-solvable group, then any two 

X-covering subgroups of G are conjugate in G.
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Proof. By induction on |G|. Let E and F be two X-covering subgroups of G.

If G gX j using 1.1.d) we obtain E =  F =  G and so E and F are conjugate in G. Let 

now G^X. If N is a minimal normal subgroup of G, by 1.4. we have that EN/N 

and FN/N are X-covering subgroups of G/N. By the induction, EN/N and FN/N are 

conjugate in G /N  and so EN/N =  (FN/N)X̂ , where x G G . But this imply EN =  F^N. 

We distinguish two cases:

1) There is a minimal normal subgroup M of G such that EM ^  G. We put N =  M. 

By 1.3., E and Fx are X-covering subgroups of EM, hence by the induction E and F* 

are conjugate in EM and so E and F are conjugate in G.

2) For any minimal normal subgroup N of G we have EN =  G =  FN. We prove that 

any minimal normal subgroup N of G is a solvable ;r-group. Indeed, since G is 7r- 

solvable, N is either a solvable 7r-group or a 7r‘-group. Supposing that N is a 7r‘-group, 

we obtain N < On^G). From

G / 0*r‘ (G) £  (G /N )/(  Ott‘ (G)/N) 

and

G /N  =  EN/N £  E/EHN G X

it follows G / 0 7 t‘ (G ) G X. By the 7r-closure c fX  we obtain the contradiction G G X.. 

Thus N is a solvable 7r-group and by 1.6. N is abelian.

Now E is a stabilizer of G. Indeed, E is a maximal subgroup of G since E ^  G (EgX but 

G £ X ) and if E < H < G then E =  H, because otherwise let h G H—E, h =  en, eGE, 

nGN and n =  e—xh G NOH =  1 (N being abelian) which means the contradiction 

h=eGE. Further core^E =  1, for supposing corecE ^1 we have a minimal normal 

subgroup M of G with M <  corecE, hence G =  EM =  E core^E =  E, in contradiction 

with E g X and G ^ X- So E is a stabilizer of G and G is a primitive 7r-solvable 

group. Since F < G

( FgX but G^X ) and since, for any minimal normal subgroup N of G, N is a solvable 

7r-group and FN =  G, applying 2.8. we obtain that F is also a stabilizer of G.

By 2.2., G has one and only one minimal normal subgroup N. By 2.5., C g (N ) =  N. So 

condition (i) from 2.6. is valid. Further, we shall prove below that condition (ii) from

2.6. is also true. Indeed, let us suppose that (ii) is not valid. It means that there is
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not a minimal normal subgroup L/N of G /N  such that L/N is a 7r‘-group. G /N  being 

7r-solvable, we deduce that any minimal normal subgroup L/N of G /N  is a solvable 

7r-group. But N being a solvable 7r-group, it follws that L is a solvable 7r-group. L 

being normal in G, we have two possibilities, both leading to a contradiction:

a) L is a minimal normal subgroup of G. But G having one and only one minimal 

normal subgroup N, we deduce that L =  N, a contradiction with L/N ^  1.

b) L is not a minimal normal subgroup of G. Then N < L, hence 

G =  EN < EL < G,

a contradiction.

We proved that G is a 7r-solvable group satisfying conditions (i) and (ii) from 2.6. 

Then, by theorem 2.7., we obtain that the two stabilizers E and F are conjugate in 

G. □

Theorem  3.2. Let X be a n-homomorph. X is a Schunck class if and only if any 

n-solvable group G has X-covering subgroups.

Proof Let X be a 7r-Schunck class. We prove by induction on |G| that any 7r-solvable 

group G has X-covering subgroups. Two cases are considered:

1) There is a minimal normal subgroup M of G such that G /M  ^ X- By the induction, 

G/M has an X-covering subgroup H*/M. Since G /M  ^ X we have H* < G. By the 

induction, H* has an X-covering subgroup H. Applying now 1.5., H is an X-covering 

subgroup of G.

2) For any minimal normal subgroup M of G we have G /M  G X. Two possibilities 

can be considered again:

a) G is not primitive. Let G /K  be a primitive factor of G. Since K ^  1, there is a 

minimal normal subgroup M of G such that M C K. We have G /M  G X- Hence 

G/K £  (G /M )/(K /M ) G X.

By the primitively closure of X, G G X- So G is its own X-covering subgroup.

b) G is primitive. Let S be a stabilizer of G. If G gX, then G is its own X-covering 

subgroup. Let now G ^ X- We shall prove that S is an X-covering subgroup of G. 

First
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S 6 X- Indeed, let M be a minimal normal subgroup of G. Since G is primitive and S 

is a stabilizer of G, by 2.1. we have MS =  G. On the other side, G being ^--solvable, 

M is either a solvable 7r-group or a 7r‘-group. But if we suppose that M is a 7r‘-group 

we have

M < O n>(G)

and

G/OAG) =  (G/M)/(OAG)/M) e  x ,

hence by the 7r-closure of X we deduce that G £ X, a contradiction. Thus M is a 

solvable 7r-group. Applying 1.6., M is abelian. This and G =  MS lead to MflS =  1. 

Then

S =  5 /1  =  S/M r\S “  MS/M =  G/M £ X.

So S£ X- Further if S < V <  G, Vo < V, V /Vo £ X, we shall prove that V =  SVo- 

Because S is a maximal subgroup of G, two possibilities can happen: V =  S or V =  

G. If V =  S, we have V =  W o  =  S Vo- If V =  G, we notice that Vo is a normal 

subgroup of G and Vo 1 (else, G =  V =  V/1 =  V/Vo G X ,a  contradiction). Then 

let Mo be a minimal normal subgroup of G such that Mo Ç Vo. Applying 2.1., MoS 

=  G. Hence

V =  G =  M0S =  V0S =  SV0.

Conversely, let X be a 7r-homomorph such that any 7r-solvable group has X-covering 

subgroups. We prove that X is primitively closed. Suppose that X is not primitively 

closed and let G be a 7r-solvable group of minimal order with respect to the conditions: 

any primitive factor of G is in X but G ^ X . Let M be a minimal normal subgroup 

of G. By the minimality of G we have G/M  £ X. G being 7T-solvable, G has an 

X-covering subgroup H. From H < G =  G, M < G, G /M  £ X follows G =  MH. By 

the 7r-closure of X, M is a solvable 7r-group and so by 1.6. M is abelian. From this 

and from G=MH we obtain MHH =1. Like in the proof of theorem 3.1., we obtain 

that H is a maximal subgroup of G. Two cases are possible:

1) G is primitive. Then G =  G /l  is a primitive factor of G and by the choice of 

G, we obtain G =  G /l  £ X, in contradiction with G £ X- So this case leads to a
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contradiction.

2) G is not primitive. Then coreaH ^ 1, else H is a stabilizer of G and G is primitive.

By the minimality of G we have G /c o r e ^ H  g X. By 1.4., H /c o r e ^ H  is an X-covering

subgroup of G/coreGH. It follows that H/coreGH =  G/coreGH, hence H =  G, in

contradiction with H G X but G ţ  X. This case leads also to a contradiction.

It follows that X is primitively closed and so X is a Schunck class. □
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