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3D DEFORMABLE OBJECT MATCHING USING GRAPH
NEURAL NETWORKS

MIHAI-ADRIAN LOGHIN

ABSTRACT. Considering the current advancements in computer vision it
can be observed that most of it is focused on two dimensional imagery. This
includes problems such as classification, regression, and the lesser known
object matching problem. While object matching ca be viewed as a solved
problem in a two dimensional space, for a three dimensional space there is
a long way to go, especially for non-rigid objects. The problem is focused
on matching a given object to a target object. We propose a solution
based on Graph Neural Networks that tries to generalize over multiple
objects at once, based on self-attention and cross-attention blocks for the
network. To test our solution, we utilised five convolutional operators
for the layers of the model. The convolutional operators we compared
included GCNConv, ChebConv, SAGEConv, TAGConv, and FeaStConv.
This paper aims to find the best operators for our architecture and the task.
Our approach obtained favourable results for predicting the barycentric
weights for the model, while struggling on predicting the triangle indexes.
The best results were obtained for the models using GCNConv, for the
triangles index prediction and FeaStConv for the barycentric coordinates
prediction.

1. INTRODUCTION

In the most recent years we have observed multiple new technologies that
require or are improved by usage of 3D models. This ranges from applications
in medicine [13] to research oriented papers about simulations of 3D environ-
ments. Still, very few papers talk about how we can relate 3D objects to
real-world objects. By creating a solution for relating 3D objects to real-world
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objects, software such as NextMed [13] could be improved. On a similar as-
pect, the validity of such an application is given by frameworks like the one
presented in [26]. By starting this research we could end up with applica-
tions that would easily allow to overlap digital reconstructions over real-world
objects automatically. This could be especially useful in medicine, where we
could have a 3D recreation of an organ that could be moulded automatically
over the real organ.

In this paper, we will explore one of the first steps in relating real-world
objects to those from a virtual world. The process consists of first seeing if it
is even possible to relate 3D objects to one another by focusing on deformable
objects. While 2D image matching or object matching can be considered
an optimised problem [16, 19, 30], the same cannot be said for cases where
the objects can suffer various deformations such as cuts, holes, or surface
changes. Furthermore, very few, if any, experiments have focused on creating
a reference-object agnostic solution for the problem.

Throughout this paper, we will present the overall field of study, how we
constructed a dataset for the problem and how the model for different kinds
of solutions have been made. Our focus will be on exploring solutions that
work based on multiple inputs, data from multiple datasets, and multiple
shape classes for the objects. We aim to obtain a good comparison between
multiple model architectures for deformable object matching, mainly focusing
on comparing convolutional operators that work on graphs, representing 3D
objects. The solution that we provide will be based on using self and cross-
attention blocks in a graph neural network to take into account both the
deformed shape and the target shape.

Our paper is structured into eight sections starting with the introduction.
In Section 2 we present the current state-of-the-art and other approaches in
the field of study, to properly define it. Section 3 will be used to discuss the
problem of object matching, and which solutions and datasets for the problem
are currently available. After defining the problem, Section 4 will be used
to define what graph neural networks are and what the different convolution
operators for those networks are. We will present our proposed model design
and its evaluation in Section 5. The results and experimental setup will be
presented in Section 6 and then they will be further discussed in Section 7.
We will go over a few conclusions and further research possibilities in Section
8.
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2. RELATED WORK

To start off, we need to focus on what has already been accomplished in
this field. As such, in this section we will present the already solved problem
or existing models related to the problem at hand.

At the very beginning of research related to object matching, most of the
solutions were focused on works related to two dimensional images. While
articles such as [17,19, 32] have already solved the problem, they also indi-
cate possible approaches for solutions in higher dimensions. Article [16] in
particular shows the possibility of using graph neural networks (GNN) for the
problem with very promising results.

Deformable objects, especially if related to matching between three dimen-
sional objects, have been especially of interest in challenges for the field. A
clear example of this are the articles [4,8,9,22] related to the SHREC event
in various years. The results from the challenge show that the current state-
of-the-art is represented by Partial Functional Maps, followed closely behind
by an approach using Random Forests. This indicates the possibility of us-
ing a machine learning approach for the problem and creating a model that
can learn to associate one model to multiple objects. With partial functional
maps, the authors of [22] managed to obtain a matching percentage of around
80% for deformations involving both cuts and holes. This method creates a
form of mapping between the points of one object to another, treating them
like functions.

On the side of usefulness for the field, we do not need to look further than
the field of robotics. Matching a predefined 3D object to a real-world counter-
part has been essential in multiple papers [20,31,34], including even solutions
outside of robotics [26] based on rigid objects. Still, the problem in robotics
is that it relies heavily on using an almost perfect environment and object
representation to the 3D counterpart.

Other methods for deformable object matching are based on point cloud
data. One of those solutions can be found in [23], focusing on human-shaped
3D objects. The authors present a method that uses learning based on func-
tional maps, focusing only on heaving self-attention blocks that embed the
objects. They claim to achieve state-of-the-art results obtaining an error of
5.4e—2. A similar solution, closer in structure to what we propose, for learning
point cloud matching is presented in [12]. This solution provides a network
based on self and cross-attention blocks using the Chamfer distance as its loss
function. Compared to the previous solution, the authors validate their ap-
proach on multiple shape classes for the 3D objects. On SHREC 2019, they
obtained an accuracy of 15.3% and an error of 5.6, beating the other methods
they compared with. Given that both approaches obtained state-of-the-art
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results, it is easy to say that in regards to using point clouds the solutions are
well optimised. Still, the discrepancy between the error and accuracy for the
last method shows the need for further investigation of the architecture and
of the results obtained by other methods.

Considering everything that has been mentioned so far, it should be clear
that the problem itself still requires a lot of improvements. This is especially
true when it comes to constructing a machine learning approach for the prob-
lem, as we will be doing in the following sections.

3. DEFORMABLE OBJECT MATCHING

In this section, we will discuss the problem of 3D deformable object match-
ing, some already existing solutions for the problem and how a dataset for
the problem looks like. To do all of this, we will separate our findings into
two subsections. The first subsection will be for the larger problem, while the
second will be dedicated to defining our dataset.

3.1. Problem definition. Deformable object matching, compared to match-
ing rigid bodies, is a lot more complicated than it might seem. It requires
finding a way to transform the given object into something that more closely
resembles the reference object. The main problem here is finding the correct
type of transformation needed, as it goes beyond basic transformations such
as translation, rotation and scaling [5, 26, 29]. Regarding this, we can use
barycentric weights to solve the problem [4,8,22].

3 3
(1) p= Z/\i * v, where : Z/\i =1 [14]
i=1 i=1

Considering Equation 1, we can transform any point from a deformed object
to a position that more closely matches that of the target object. In the
equation, \; with ¢ € {1,2,3} represents the barycentric weights for a given
triangle from target object. The weights are chosen in such a way that by
multiplying each weight to the vertices of the triangles and then summing
them we get a approximation of a node from the deformed object to the
target object [4,8,14,22]. The transformation could lead to an association like
that from Fig. 3, given the rightmost result.

3.2. Dataset. An important part of our project was gathering relevant and
consistent data from across multiple datasets. In the end, we have found
two datasets with very similar formats that still offered their own unique
elements for the problem. The datasets that were used are SHREC 2016 [4,22]
and SHREC 2019 [8]. The first dataset offers deformations such as body
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movements, holes and cuts. On the other hand, the second dataset offers
deformations such as surface changes, wrinkles, and joint movements.

In total, the datasets offer 276 three dimensional objects spread across 11
classes. The classes are for the most part evenly distributed, with the main
exceptions being the human class having the highest number of objects and
the glove class having the lowest number of objects [4,8,22]. For our testing
environment, we have constructed a dataset with a 70-30 train-test split. We
have split the dataset evenly for all the classes.

4. GRAPH NEURAL NETWORKS (GNN)

As stated in Section 2, the current state-of-the-art is represented by the
use of Functional Maps, closely followed behind by the use of Random Forests
[4,8,9,22]. Both of the mentioned approaches fail to properly generalize to
different types of damage. While there is another approach using Graph Neural
Networks [21], even that one still bases its final layer on Functional Maps. We
are researching the possibility of using GNNs without any other attachments.
For that, we will look into how different types of convolutions can improve the
results.

Defining graph neural networks is essential for our research. As such, we
will be looking into the general definition for this machine learning architecture
and how it can be used to suit our needs. We defined multiple subsections for
this case, to understand not just the general definition, but also the subsequent
definitions needed for our model architecture.

4.1. Definition. Graph neural networks are a variant of neural networks such
that they can work on graphs. In our case, a graph is defined as G = (V, E),
where V' represents the set of nodes in the graph and FE is the set of edges
that connect the nodes. We can also associate a matrix A € RV*N to the
graph, representing the adjacency matrix. Using this, and the power of neural
networks we can create predictions at node, edge, and graph level [18,35,37].

Defining a mathematical expression for GNNs requires taking into consid-
eration information about graph structures and neural networks at once. This
consists of using information regarding nodes, edges, and learnable weights,
which are represented in the following equation:

1
(2) Wt = F(hiWi+ Y ;hﬁ-W» [35,37]

jeN;
To understand GNNs even better, we will analyse Equation 2. In this equa-
tion h! represents the vector representation of node i at time ¢, W; represents

the learnable weights for the given node i (which are not always present), c¢;;
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represents a non-weighted connection between nodes ¢ and j, N; is considered
the node neighbourhood of node 7 and W, represents the learnable weights for
the given node j. In the equation, f represents a propagation function and
if needed, can be interpreted as an activation function. This equation stands
at the base of how most, if not all, GNNs are constructed [35,37]. While it
might suffer changes from implementation to implementation, the main idea
remains the same.

4.2. GCNConv. This graph convolution was created for the task of semi-
supervised classification. Still, this does not mean it can not be used for
scenarios such as ours. Considering this, we will look at what the main aspects
of this convolutional operator are and what kind of results were obtained using
it in the original presentation of the method [18,37]. If we were to start from
equation 2, we can form a new equation, with a similar structure.

(3) H'* = o(D 2 AD"2 H'W?) [18]

Equation 3 represents the propagation rule of the network. Similarly, we
work just like before with the node level information, like in Equation 2. Here
H? represents the activation results of layer [ and for ¢ = 0 it represents
the results of the initial graph, similarly to how h} was used in the previous
equation. W? represents, just as before, the learnable weights for layer I. o
denotes the activation function for the layer, and it can take multiple forms. In
the original paper, the authors have used both softmax and ReLLU as possible
approaches. Dy = > =0 ﬁij is considered a diagonal degree matrix, for which

A = A+ 1 is the adjacency matrix with self inserted loops [18].

In the original evaluation, the authors of the method have shown through
rigorous testing that their method could beat other approaches. In their ex-
periments, they have noted improvements over multiple runs. They have also
shown how their method can get over 80% accuracy where other methods
would only get at most 75% [18].

This convolutional operator has also been proven to be time-efficient. It
was shown that for the most part it performs the same on GPU and CPU,
only slowing in performance when there are more edges in the graph. For
a number of 1k edges the authors have noted a performance of around 1073
seconds/epoch and only at 10M nodes did they reach 10 seconds/epoch on
GPU [18].

4.3. ChebConv. The ChebConv operator was created with the idea of cre-
ating GNNs with fast localized spectral filtering. This means that the authors
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implemented ideas similar to pooling in their approach [6]. Those can be
better portrayed by the following equation:

K1
(4) H™* = Z OxTi(A) [6]
k=0

This convolutional operator is described in full in Equation 4. Here, ©
is a_vector of polynomial coefficients, more precisely Chebyshev coefficients.
Ti(A) is a Chebyshev polynomial of order k and it is determined recurrently.
To start the recurrent process we consider A = % — I, where I is the
identity matrix and A is the diagonal matrix formed by the frequencies of the
graph, To(A) = H, and T1(A) = AH. We can then consider the recurrent
function Tk(K) = 2KTk,1(K) — Tk,g(K). The authors have noted that the
entire operation would have a computation cost of O(K|e|) [6].

For the experimental phase of the research, the authors have revisited var-
ious datasets for which solutions exist using classical CNNs and other ma-
chine learning methods. Those datasets include MNIST and 20NEWS. For the
MNIST dataset, they have shown an almost exact performance with CNNs.
Still, the proposed architecture outperformed other methods in terms of time
efficiency. As for the 20NEWS dataset, the model did not manage to out-
perform the Multinomial Naive Bayes approach. Although it did not perform
better in this case, the authors noted that their proposed architecture still
outperforms other fully connected neural networks [6].

In their research, they have also tackled the influence of graph quality on
the results. They have noted that the way the graph is constructed is the
most important part for their operator to work. For this, they considered a
comparative use of image and text graphs. What their study has shown is
that the method works best on image graphs, but due to the limitation of text
graphs, it cannot outperform the current state-of-the-art [6].

4.4. SAGEConv. This method was created on the assumption that not all
nodes in the graph need to be used for determining the embedding of one
node. SAGEConv came as a way to essentially improve the already existing
approach of using low-dimensional node embeddings for large graphs. As
such, they proposed a framework called GraphSAGE [15]. The framework
also stands as one of the more popular approaches for graph convolutions [37].
In our research we are only interested in the convolutional operator of this
framework and how it can help us. We will detail our findings and explain
what we will be using from this framework.
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The SAGEConv operator can be described in the form of two equations, of
which the latter is optional. This idea comes from showing the operator in
two ways, a standard equation operator and an optimised operator that can
be used for further improving the model [15].

(5) hz;—&-l — Wlh’z? + Wy % m@anjeNi(hé‘) [15]

(6) Wit = o (Wsh +b) [15]

We can formulate the equation for the convolutional operator based on the
information from Equations 5 and 6. In those equations W; for i € {1,2,3}
represent the weight matrices that will change during the training process.
As previously used, o can represent any activation function. In the original
article, the authors have not presented any functions that would be more
favourable to be used. h; represents the feature vector for a node v; [15].

In the implementation of the convolutional operator, the most interesting
part is the relation between Equation 5 and Equation 6. By that, we are re-
ferring to the fact that the relations can work independently of one another,
at least according to the PyTorch Geometric implementation. We can then
consider that the combined use of the two equations is an improved version of
the convolutional operator over the graph [10,15]. In our work, we only con-
sidered the base version, without the additional improvement to the method.
This is due to it requiring a more complicated implementation of our model.

For the qualitative evaluation of the operator, the authors have noted a
comparison against four other methods. Those methods include the DeepWalk
algorithm, a random classifier, logistic regression, and a hybrid between raw
features and DeepWalk embeddings. They have also noted extended versions
of their algorithm that use the operator from Subsection 4.2, an LSTM, a
mean operator, and a pooling operator [15,18].

The testing took place on three datasets. Those datasets were based on
citations, Reddit posts, and the PPI dataset. On all three of those, the pro-
posed algorithm has outperformed all other methods, with the most notable
results being from the GCNConv and LSTM variants. The algorithms were
tested on both supervised and unsupervised environments. The authors have
noted that their method does generalize across graphs [15].

4.5. TAGConv. In the previous three subsections, we have considered the
use of the more popular convolutional operators. Now it is time to get into
more problem-specific operators, mainly those that were created to work di-
rectly with 3D objects. Graph convolutions can defined on the spectral or
vertex domains, of which the authors of TAGConv have chosen the latter.
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The name of the model stands for Topology Adaptive Graph Convolution and
it is mainly based on the idea that the network/operator will adapt to the
topology of the graph [7].

K
(7) H* =" (D2 AD2)FH'W, [7,10]
k=0

Since we are interested in the convolutional operator from the entire net-
work, we will only look at that part of its equation. The operator is represented
by Equation 7 and it is adjusted to fit its PyTorch Geometric implementation.
In this case, we consider K to have the base value of 3, representing the number
of hops. A represents the adjacency matrix of the graph and D;; = ) =0 Ajj

the diagonal degree matrix. Considering that, D=2 AD"? is the normalization
of the diagonal matrix. As always, W represents the learnable weights for the
convolutional operator [7,10].

This operator, like the previous ones, has been tested mainly on standard
benchmark datasets. Those datasets include Pubmed, Citeseer, and Cora.
While the model was tested against other standard methods such as DeepWalk
and deep convolutional neural networks, it also tested against other graph
neural networks such as ChebNet and GCN, presented in the first two subsec-
tions. According to the authors, TAGConv outperforms the other methods on
all three datasets, with an accuracy of over 80% on two of the datasets [7].

While topology is an important part of defining geometric forms, it is not
enough. For the next subsection, we will be looking at our final operator,
created to work perfectly with 3D objects. Just like now, we will be looking
at it from a theoretical and applied perspective.

4.6. FeaStConv. For our final operator, as previously stated, we will focus
on direct applications to 3D objects. This operator was constructed from the
need to create something like convolutional neural networks, but for 3D shapes.
Its name stands for Feature-Steered Graph Convolutions and its original eval-
uation was done directly on 3D meshes for a variety of problems regarding
shape analysis [33].

FeaStConv can be better described in the following equation:

(8) hitt =

L bWkt [10,33]

jENkl
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The equation, like in the previous subsection, is defined according to its
implementation in the original article and the PyTorch Geometric implemen-
tation. Equation 8 describes the convolutional operator in full. The most
unique elements of the equation are represented by K and ¢ representing the
number of attention heads and an activation function, respectively. In this
equation gi(hi, hj) = softmaa:j(u;‘g(hj — h;) + ¢i), where Wy, uy and ¢ are
trainable parameters [10, 33].

As mentioned, above, the operator was tested and experimented with using
problems related to 3D shape analysis. Those problems included 3D shape
correspondence and part labelling. For 3D shape correspondence, the model
was compared to other methods such as PointNet, ACNN, GCNN and MoNet.
The model proposed by the authors outperformed all other models by a lot,
having an accuracy of 98% at most and 88% at least. For the part labeling
problem, they used a dataset based on ShapeNet [2] and compared it with
four other methods, some of which were mentioned before. While it did not
outperform any of the other methods, except one where the difference was of
0.1%, the model still got overall similar results [33].

5. MODEL AND EVALUATION

We need to properly define the model architecture and evaluation on our
data. We will explore this in two subsections, dedicated to each subject.
Following that, we will focus on the experiments defined by us.

All of the implementation effort was done using PyTorch and PyTorch Geo-
metric for the loss function and for the implementation of the convolutional
operators, respectively. We have chosen those frameworks, based on the num-
ber of operations that they had implemented and their usage in other pa-
pers [10,25].

5.1. Model. Our model architecture is based on the idea of using self and
cross-attention blocks. Those blocks are a necessity for the problem, as we
have to work with multiple 3D objects at once for one result. As a reference
for constructing our model we have used SuperGlue [30] and later validated it
based on articles that came out during our research that tried to use similar
architectures for the use of self-attention and cross-attention blocks [21]. To
further emphasise the validity of our approach, we also considered looking into
approaches that try to solve the problem in other contexts, such as point cloud
data [12]. We only used other models as architectural references, rather than
for specific layer parameters.

Fig. 1 is a visualization of our model and how it works. The desired out-
put, as referenced in Section 3 is an [n,4] vector. In this case, n represents the
number of nodes in the graph and 4 is the size of the output for each node,
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Deformed Self-Attention Block
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[¥'1.X'2X 3.1, Y2, Ynl
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baryc_z] for
each node

{[aCN layer ] [¥1.¥z ¥l
Cross-Attention Block

Target Self-Attention Block

FicURre 1. A diagram describing the Graph Convolution Net-
work (GCN) created to address the problem of object matching.
The model works using a dual input: the deformed object and
the reference object. In the third layer of the model, the two
outputs are concatenated and the final result will be a tensor
of size four representing: the triangle of correspondence, and
the barycentric weights for the given triangle.

representing the triangle index and barycentric weights. The self-attention
blocks are meant for reinterpreting the object graphs based on node neigh-
bourhoods and the cross-attention block is meant to learn how the two graphs
can interact.

For the cross-attention block and deformed self-attention block we have used
the approach of reducing the number of hidden channels after each individual
convolution. First, it is divided by 2 and then by 4. In the case of the
reference/target self-attention block, we used the opposite approach as we
wanted to obtain a larger embedding of the graph at the end. As such, we
first multiply the number of hidden channels by 2 and then by 4. Between the
convolutions, we have used a ReLLU activation function and for the output we
have used the ReLU for the triangle output and SoftMax for the barycentric
part of the output.

5.2. Training and evaluation. We have decided to evaluate our model us-
ing three loss functions. The loss functions were determined based on the
required outputs of the model in regard to the dataset. As such, we have
determined that there needs to be a loss for the triangle index L17,4ngie, One
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for the barycentric weights L1p4y. and one for the combined loss of the two
LlCombmed-

(9) L1 compined = thriangle + learyc

For our experiments, we have used the standard definition for the loss func-
tion, which is used to determine Llpyigngle and L1pgrye. In Equation 9 we
can observe the combined loss function which represents the sum of the other
loss functions and which was used to train the model [3,11,24]. To complete
the training requirements, we also need to mention the use of the Adam op-
timizer with a learning rate of 3e — 4, which was chosen based on its proven
improvements in performance [1,36].

We also consider the mean geodesic error as a possible loss function, as
it was used on the SHREC 2016 dataset [22]. In the end, we opted against
this. After further research, the function did not seem standard enough to be
selected.

6. EXPERIMENTS

6.1. Setup. To cover all possible architectural and data combinations, we
have decided to explore the problem in four main ways. Each of the three
experiment types will have a role in the evaluation of the model in a new
environment to see how it reacts under new conditions. The experiments
are: [4,8,22]

e Fxperiments on the combined dataset from SHREC 2016 and 2019
[4,8,22]

e Experiments on the SHREC 2016 dataset [4,22]. To evaluate if the
standalone dataset offers a better training environment.

e Experiments on the SHREC 2019 dataset [8]. Just like the previous
point, it will be used to evaluate the consistency of the results on a
standalone dataset. Additionally, it will also help in defining which
dataset is better as a training set,

e Fxperiments on some of the single classes from the SHREC 2016
dataset [4,22]. An experiment type that will help determine if the
problems that we found are related to the use of multiple classes or
due to the model that is being used.

Additionally, the experiments will be done for all the convolutional layers
defined in Section 4. Besides the change in convolutional layers, we also applied
changes in terms of hidden channels, for a number of 20 epochs each and a
batch size of 20. An exception for the batch size was used in the case of the
single class experiments, where we used a batch size of one.
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For the experiments done on the entire dataset we have only used the best
combinations obtained from the other experiments. We also reduced the num-
ber of epochs by five and expended the batch size by ten, due to time con-
straints and computational availability in the used environment.

Conv. type | Ch. | Embed Llrriangte L1paryc Llcombined
train test train test train test
16 100 7.4E403 | 2.2E404 | 4.2E-01 | 1.3E+00 | 7.4E+03 | 2.2E+04
GONCony 500 5.7TE403 | 1.7TE404 | 4.3E-01 | 1.4E+00 |5.7E+03 | 1.7E+04
32 100 7.3E403 | 2.3E4+04 | 4.1E-01 | 1.3E+00 | 7.3E+03 | 2.3E+04
500 5.3E403 | 1.6E4+04 | 4.6E-01 | 1.4E+00 |5.3E+03 | 1.6E+04
16 100 1.1E+07 | 2.7E+07 |4.4E-01 | 1.4E400 |1.1E407 |2.7E4+07
ChebConv 500 7.0E406 | 1.6E407 4.4‘E—()1 1.4E+00 | 7.0E+06 | 1.6E+07
32 100 2.9E407 | 6.7TE407 | 4.6E-01 | 1.4E+00 |2.9E+07 |6.7E+07
500 8.6E4+06 | 1.9E407 |4.5E-01 | 1.4E+00 |8.6E+06 | 1.9E+07
16 100 7.4E403 | 2.3E404 | 4.5E-01 | 1.4E+00 | 7.4E+03 | 2.3E+04
SAGECony 500 6.8E4+03 | 2.0E404 | 4.4E-01 | 1.4E+00 |6.8E+03 | 2.0E+04
32 100 5.9E403 | 1.8E4+04 | 4.0E-01 | 1.2E400 | 5.9E+03 | 1.8E+04
500 5.7E4+03 | 1.7E+04 | 4.2E-01 | 1.3E+00 |5.7E403 | 1.7E404
16 100 7.8E403 | 2.3E404 | 4.2E-01 | 1.2E+00 | 7.8E+03 | 2.3E+04
TAGConv 500 7.1E403 | 2.3E404 | 4.1E-01 | 1.3E+00 | 7.1E+03 | 2.3E+04
32 100 7.2E403 | 2.3E404 | 4.3E-01 | 1.3E+00 | 7.2E+03 | 2.3E+04
500 6.0E403 | 1.9E404 | 4.2E-01 | 1.3E+00 | 6.0E+03 | 1.9E+04
16 100 9.9E403 | 3.1E404 | 3.5E-01 | 1.1E+00 |9.9E+03 | 3.1E+04
FeaStCony 500 9.4E403 | 2.9E404 | 3.6E-01 | 1.1E+00 |9.4E+03 |2.9E+04
32 100 9.5E4+03 | 3.0E404 | 3.6E-01 | 1.1E+00 |9.5E+03 | 3.0E+04
500 8.0E4+03 | 2.5E4+04 | 3.8E-01 | 1.2E+00 |8.0E+03 | 2.5E+04

TABLE 1. The results for a single class in the SHREC 2016
dataset [22]. The class was chosen so that it would have a
single reference object.

6.2. Results. Table 4 is the table that contains the evaluation of the model
in the context of the full dataset that was originally presented in Section 3.
As for Tables 2 and 3, they represent the results for individual datasets that
formed the full dataset. Finally, Table 1 presents the model aggregated results
when evaluated on a single class.

The scope of the results is to determine the best possible combination.
Our research has so far only focused on determining the best architectural
combination for a graph neural network for the task. We only considered longer
amounts of training for the best combination, due to our limited computational
power. Furthermore, the experiments were designed in such a way as to allow
us to find the weakest links in our dataset and approach. We will touch up
more on our decisions in the next section.
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Conv. type Ch. | Embed LlTriangle LlBaryc LlCombincd
train test train test train test
16 100 6.3E403 | 1.9E404 | 4.2E-01 | 1.3E+00 | 6.3E+03 | 1.9E+04
GONConv 500 5.5E+03 | 1.7TE4+04 | 4.3E-01 | 1.3E+00 |5.5E4+03 | 1.7TE+04
39 100 5.9E+03 | 1.8E4+04 |4.3E-01 | 1.4E+00 |5.9E4+03 | 1.8E+04
500 5.4E+03 | 1.7E4+04 | 4.6E-01 | 1.4E+00 |5.4E+403 | 1.7E+04
16 100 6.3E+03 | 1.9E4+04 | 4.6E-01 | 1.4E+00 |6.3E403 | 1.9E+04
SAGEConv 500 6.2E+03 | 1.9E4+04 | 4.4E-01 | 1.4E+00 |6.2E4+03 | 1.9E+04
39 100 5.8E+03 | 1.7E4+04 | 4.1E-01 | 1.3E+00 |5.8E4+03 | 1.7TE+04
500 5.5E403 | 1.6E+04 | 4.3E-01 | 1.3E+00 | 5.5E+03 | 1.6E404
16 100 6.7E+03 | 2.1E4+04 | 4.2E-01 | 1.3E+00 |6.7E403 | 2.1E+04
TAGCony 500 6.3E+03 | 2.0E4+04 | 4.2E-01 | 1.3E+00 |6.3E4+03 | 2.0E+04
39 100 6.2E+03 | 1.9E4+04 | 4.3E-01 | 1.3E+00 |6.2E403 | 1.9E+04
500 6.2E+03 | 2.0E4+04 |4.6E-01 | 1.4E+00 |6.2E4+03 | 2.0E+04
16 100 8.3E+03 | 2.6E4+04 | 3.8E-01 | 1.2E400 | 8.3E4+03 | 2.6E+04
500 - - - - - -
FeaStConv
39 100 - - - - - -
500 - - - - - -

TABLE 2. Our model’s results on the SHREC 2016 dataset

22].
Conv. type Ch. | Embed LlTM(m,gle LlBaryc LlCnmbined
train test train test train test
16 100 6.3E403 | 2.0E404 |4.7E-01 | 1.5E+00 | 6.3E+03 | 2.0E+04
GCNConv 500 5.7TE4+03 | 1.8E4+04 | 4.5E-01 | 1.4E+00 |5.7E+03 | 1.8E+04
32 100 5.5E4+03 | 1.7TE404 | 4.3E-01 | 1.4E+00 |5.5E+03 | 1.7E+04
500 5.5E+03 | 1.8E4+04 |4.1E-01 | 1.3E400 | 5.5E4+03 | 1.8E+04
16 100 6.6E4+03 | 2.1E404 | 4.2E-01 | 1.3E+00 |6.6E+03 | 2.1E+04
SAGEConv 500 6.1E403 | 1.9E4-04 4'?TE_01 14E+00 |6.1E+03 | 1.9E+04
32 100 5.8E4+03 | 1.8E4+04 | 4.6E-01 | 1.5E+00 |5.8E+03 | 1.8E+04
500 5.5E403 | 1.7E+04 | 4.4E-01 | 1.4E+00 |5.5E403 | 1.7E404
16 100 6.5E4+03 | 2.2E404 | 4.5E-01 | 1.5E+00 | 6.5E+03 | 2.2E+04
TAGCony 500 §.1E+03 2.1E+04 |4.6E-01 | 1.5E+00 |6.1E4+03 |2.1E4+04
32 100 6.2E403 | 2.0E404 | 4.5E-01 | 14E+00 |6.2E+03 | 2.0E+04
500 6.1E403 | 4.0E-01 4.5E-01 | 1.5E+00 | 6.1E+03 | 2.1E+04
16 100 7.9E403 | 2.6E404 | 4.5E-01 | 1.4E+00 |8.0E+03 | 2.6E+04
FeaStConv 500 _ _ - — _ _
32 égg 7.6E+03 |2.5E4+04 |4.4E-01 | 1.4E+00 |7.6E403 | 2.5E+04

TABLE 3. Our model’s results on the SHREC 2019 dataset [8].

Conv. type | Ch. | Embed | Llpyiangte L1arye L1combined

train test train test train test
GCNConv 5.4E403 | 1.7E+04 | 4.5E-01 | 1.4E+00 |5.4E+03 | 1.7E404
SAGEConv | 32 | 500 5.6E4+03 | 1.7TE4+04 | 4.3E-01 | 1.3E+00 |5.6E+03 | 1.7E+04
TAGConv 6.2E403 | 2.0E404 |4.5E-01 | 14E+00 |6.2E+03 | 2.0E+04
FeaStConv | 16 | 100 8.3E403 | 2.6E4+04 | 3.8E-01 | 1.2E400 | 8.3E+03 | 2.6E+04

TABLE 4. Our model’s results on the dataset formed by com-
bining the SHREC 2016 and 2019 datasets [8,22].
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7. DISCUSSION

When confronted with the problem of predicting large numbers for the
triangle indexes, we have determined a shortcut for the training procedure.
The outputs here are in the tens of thousands and are rather hard to learn
for a neural network. To simplify the process we have tested multiplying the
output with multiples of ten. The best results were obtained when multiplying
the output by 100.

In our approach, we have encountered several benefits and some downfalls.
To start off, we have observed a huge under-performance while using Cheb-
Conv as observed in Table 1. Since we started with single class experiments
to get an initial idea of how to continue the rest of the experiments, we have
removed all experiments using ChebConv architectures from the other ex-
periment types. We motivate this choice by arguing that if an architecture
under-performance on a single class, it has no way of performing better when
put against multiple classes.

train L1 Triangle Loss test L1 Triangle Loss

— FeaStConv_16_100_20_8_2023-06-10 = FeaStConv_16_100_20_3_2023-06-10 — FeaStConv_16.100_20_8.2023-06-10 — FeaStConv_16.100_20_3.2023-06-10

10 15 5 10

(A) Train results. (B) Test results.

FIGURE 2. A visual representation of the triangle index loss
results using FeaStConv for the individual datasets. The purple
line represents the results for the SHREC 2016 [4,22] dataset,
while the green line represents the results for the SHREC 2019
[8] dataset.

To further remove some of the experimental difficulties for our complete
dataset, we have experimented with the individual datasets too. The experi-
ments can be seen in Tables 2 and 3. We have come to understand that there
is not a huge performance difference between the models on the two datasets,
some of which are further established by the results from Fig 2. Related to the
graphical results are the results for the FeaStConv architecture. We have ob-
served that this convolutional operator performs poorly for the triangle index
prediction, but outperforms all other models on the barycentric predictions.
Furthermore, it is the only architecture that works better with a smaller size
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embedding and smaller size channels. Some problems can observed, as there
are empty cells in the tables. The model seemed to have caused a memory
overflow for the GPU in our environment. Considering this, we had to give
up on running some of our experiments.

Deformed Target

F P

~—

| |

Full Prediction Oniy Barve Ground Truth
Frediction

FIGURE 3. An illustration of the predictions for the seventh
image with holes type damage from SHREC 2016 [4,22]. This
diagram contains, from left to right, the full prediction of the
model after 20 epochs, only the barycentric prediction with
correct triangles and the ground truth for this case.

For our final few experiments, one with each adequate model, we have
chosen the bigger size architectures. The only exception to this rule is the
previously presented model. In Table 4, one can observe the results for what
we considered to be the best model. The observations made so far, on the
smaller datasets, have remained true. As such, we can consider that the best
model architecture is the one using GCNConv, followed by the one using
FeaStConv.

To get a better representation of our model’s performance, we will now be
referring to Fig. 3. Here the reader is free to observe how the model performs
when only using the barycentric predictions together with the correct triangle
indexes. When using the full output, the shape ends up being clustered to
something alike a centre of gravity. This does not mean that all the predictions
are wrong, but the wrong prediction can have a huge effect on the model’s
performance.
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Considering only the barycentric part of the output, the model’s perfor-
mance becomes almost indistinguishable from the ground truth. This further
indicates that the next steps of our research should be focused on making
the model perform better on the triangle index part of the output. Several
methods could be used here, such as using an output that gives the indexes of
three nodes and only later validating the correctness of this output.

8. CONCLUSIONS AND FURTHER RESEARCH

In our experiments, we have shown the potential of using various model
architectures for deformable object matching. The best overall results were
obtained using the GCNConv model with 32 starting hidden channels and an
embedding size of 500, for the prediction of the triangle index. In the case of
predicting the barycentric weights, the best results were obtained using the
FeaStConv model, with of 16 starting hidden channels and an embedding size
of 100.

We consider that the results give the right direction to continue developing
the GNN model. Seeing that two distinct architectures have given the best
results on the two targets of the model, we might want to look more into
using them. A combined environment for the two convolutions is not out of
the question, nor verifying their hyper-parameters.

Considering the conclusions and every experiment done so far, we have
taken into consideration a few possible approaches for further research. Those
approaches consist of changes and additions to the model and the dataset.

A possible improvement to the dataset is to consider several basic geometric
forms such as cubes, spheres, and cones and then apply random deformations
over them. This could show the potential of using synthetic data to train a
more robust model.

As mentioned in the very first section, the final scope of this research would
be to see if it can match a complex 3D object to a partial reconstruction of the
object from a 2D image. This could be done by considering the use of a state-
of-the-art depth estimation model such as MiDaS [27,28], which would help us
evade the need to use cameras that already have the technology implemented.

Considering the possible new environment, starting from a picture, there
will also be the possibility of using a new dataset constructed from that. The
dataset could consist of the partial 3D objects given by the depth model and
an associated complete 3D object. The only problem with this idea is the need
to have more annotated data.
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