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MATCHING APICTORIAL PUZZLE PIECES USING DEEP

LEARNING

RALUCA-DIANA CHIŞ

Abstract. Finding matches between puzzle pieces is a difficult problem
relevant to applications that involve restoring broken objects. The main
difficulty comes from the similarity of the puzzle pieces and the very small
difference between a pair of pieces that almost match and one that does.
The proposed solution is based on deep learning models and has two steps:
firstly, the pieces are segmented from images with a U-Net model; then,
matches are found with a Siamese Neural Network. To reach our goal, we
created our own dataset, containing 462 images and just as many masks.
With these masks, we built 3318 pairs of images, half of them representing
pieces that fit together and half that do not. Our most relevant result is
estimating correctly for 290 out of 332 pairs whether they match.

1. Introduction

The aim of this paper is to present the design and implementation of a
solution for the complicated problem of matching apictorial puzzle pieces. The
term apictorial is used in this work with the meaning that the pairs of puzzle
pieces are found only by looking at the shape of the pieces and neglecting the
model on top of them, as we aim for a robust solution, that could suit pieces
with any type of patterns. This problem is a complicated one, due to the
fact that the puzzle pieces are very resembling and it is hard to differentiate
between them. This requires a very well-defined puzzle piece edge extraction,
that does not compromise their shapes at all, according to [5]. Moreover, the
search space is considerably large, considering that for each side of a piece,
the program has to compute as many comparisons as images in the dataset.
Normally, the number of comparisons should have been multiplied by 4 (the
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number of possible rotations of a piece), but for this research it was considered
that all the pieces are oriented as in their final position from the puzzle.

This research topic revolves around finding pairs of puzzle pieces, that com-
plement each other perfectly. This has great applications in the reassembly
process of fragmented objects, which is a very time-consuming task for hu-
mans and of high interest in archaeology, according to [17] and [15]. The main
difference between solving a puzzle and restoring an object is that the former
can be treated as a two-dimensional problem. Willis et al. [20] associate the
reconstruction of ancient artefacts with solving a real-world geometric puzzle.
In the same paper, the authors present puzzle piece matching as a more regular
version of the problem of artefact piece matching, since puzzles have a more
predictable shape and were not exposed to erosion prior to the reconstruction.
Besides this, it is mentioned that the edges of jigsaw pieces are more simple
to separate, because the corners of each side are easily identifiable.

The main contribution of the current study refers to the creation of an au-
tomated pipeline designed for pairwise matching of puzzle pieces. The process
is done in two steps. Initially, images of puzzle pieces are segmented to extract
the shape of each piece. For training this model, an original dataset was cre-
ated, consisting of images of real puzzle pieces and corresponding masks. The
second step of the pipeline involves the creation of a deep learning model for
matching pairs of puzzle pieces according to their shape, which to our knowl-
edge has never been tried before. A Siamese neural network performs edge
matching for all segmented pieces and the matching score is computed for a
series of generated pairs of puzzle pieces. Our most relevant result gives an ac-
curacy of 87.34% for the edge-matching task on the test set, which means that
for the majority of the puzzle pairs, the model managed to correctly predict
if they match or not.

The current paper is structured in five sections as follows. The second
section details the existing literature in the field. Section 3 presents the devel-
opment of the segmentation and the edge-matching model. The fourth section
describes the environment in which the experiments were carried out, what
results we achieved and how they compare to the outcomes of other papers.
Finally, conclusions are drawn and possibilities for improvement in the future
are mentioned.

2. Related work

In this section we will review the most recent research papers on techniques
for finding matches between different pieces, using images of them. Since we
have established that our aim is not to solve a puzzle, we will only briefly
address the parts of the papers related to generating puzzle solutions. The
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methods presented in what follows expose both two and three-dimensional
approaches and are focused on image processing techniques. Some of them
are not completely automatic and require a specialist for constant feedback.
One can easily notice a common pattern for all papers exposed here. They
all follow a similar structure: photos or scans of the pieces (puzzle pieces or
other types) are taken, followed by instance segmentation or contour curve
extraction, and using the resulting features, edge matching between pieces is
performed. The results of the papers presented below will be presented in
Section 4.5 and they will be compared to the ones of the current research.

As far as the data used in the most relevant papers on edge-matching are
concerned, they consist of images of torn documents [2], patches of papyrus
or ostraca fragments images [18] and [14], images of unconventional puzzle
pieces [6] and [7], 3D scans of broken objects [1], and synthetically generated
three-dimensional objects [5]. Regarding the segmentation task, the authors
propose methods that differ slightly from each other. Grim et al. [5] use
Bezier curves with selected control points, while in [6] images were segmented
using active contours [9] and smoothed using a näıve spline algorithm. In [7]
the edge curvature is computed with integral invariants and Alagrami et al.
[1] proposed a graph-based method for extracting the breaking curves of an
object, with which the sides of the object were identified.

For the task of matching the edges, the approach proposed in [8] and in
[1] uses the Iterative Closest Points (ICP) algorithm. Authors of [6] and [5]
divided each boundary curve into a set of bivertex axes with the extended
Euclidean signature method. All sets of axes were compared to each other
and a confidence score on their matching was computed. In [2] the features
lists for each corner detected were joined with the Minkowski Sum.

In a recent survey addressing the solving of Jigsaw puzzles [13], emphasis is
placed on the utilization of deep learning techniques exclusively for method-
ologies employing square or rectangular patches extracted from images. This
particular perspective proves valuable for discerning the relationship between
two fragments belonging to the same object [18] or predicting the permuta-
tion of image patches to compose a comprehensive image [11]. However, our
objective diverges from this approach. Our model seeks puzzle pieces that
complement each other in shape rather than similarity, as the synergy of two
matching puzzle pieces lies in their complementarity. To our knowledge, there
are no previous experiments applying a Siamese network for comparing the
shapes of two puzzle pieces.

We focus specifically on the shape of the pieces in the images. In the con-
text of patches, continuity in terms of the patterns in the image is sought.
This represents the main difference between our edge-matching model and the
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Siamese neural network from [14]. Moreover, in the architecture proposed by
Ostertag et al., the two inputted images are passed through four convolutional
blocks and then 4 patches with a width of 10 pixels are extracted from the fea-
ture map of each branch. Each patch is subtracted from its opposite belonging
to the second branch, the results are concatenated and the output consists of
a 5 probabilities linear vector, each of them representing the similarity of each
side. The disadvantage of this method that we overcome with our proposed
architecture is that by creating those 10-pixel wide patches the overall context
is lost and important chunks might be missing for some puzzle pieces.

3. Methodology

The manner in which we have approached the problem of matching puzzle
pieces from images consists of two phases: the development of a model for
segmenting puzzle pieces from images and the development of a deep-learning
model for finding matching pairs of pieces.

3.1. Segmentation. The model for image segmentation has a very large in-
fluence on the success of the attempted approach, as the predictions generated
by it will be the network input for edge-matching. The higher the quality of
the segmentations, the better the piece-matching results will be. In particu-
lar, the edge of the pieces is preferable to be as well defined as possible, but
the difficulty arises when the shadow of a piece appears in the image, which
misleads the model about its edge.

We have decided to use for this task the model called U-NET, due to its
effectiveness in capturing fine-grained details. The authors of this model [19]
prove the usefulness and the very good performance of their network archi-
tecture, by applying it to three segmentation tasks: segmentation of neuronal
structures in electron microscopic recordings, segmentation of cells on a poly-
acrylamide substrate recorded by phase contrast microscopy, and HeLa cells
on a flat glass recorded by differential interference contrast microscopy. The
results of the U-NET outperform the state-of-the-art (up until 2015) on these
tasks.

This U-NET architecture is based on using fewer images than usual for
training neural networks while exploiting the given images more efficiently.
The authors use data augmentation techniques to achieve this performance,
by elastically deforming images. In this way, the model can learn invariance to
different types of deformations, which in their case of biomedical segmentation
was very useful, because deformation in tissue is very common. For our case,
data augmentation is also useful because images of puzzle pieces can vary
greatly in terms of object position, brightness, colour, and so on.
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The architecture of the network comprises a downsampling of the feature
map, followed by an upsampling of these features. The model encodes an
image, extracts features using multiple convolutional layers. Then, the decoder
upsamples the features using the transpose convolution and concatenates them
using a process, called skip connection. Through this process, the model skips
some of the network layers and feeds the output of one layer as the input to
the next layers. The output of the network is a segmentation mask. The pixels
of this mask have values ranging from 0 to 1 and for increasing the chances of
the edge-matching model, a threshold of value 0.4 was applied, meaning that
all pixels under this value were converted to 0 and 1, respectively. The value
of the threshold was set experimentally.

3.2. Edge matching. What comes after segmenting the puzzle pieces is find-
ing pairs that match, depending on the shape of their sides. For this matter,
we chose a deep-learning approach, following a Siamese architecture. The idea
of this architecture dates back to 1993 [3], when a group of researchers pro-
posed the use of two identical neural networks merged at the output. Their
goal was to check if two signatures written on a touch-sensitive pad are iden-
tical. They obtained impressive results on test data, the model being able to
detect a real signature in 95.5% of the cases and forgeries in 80%.

Siamese networks are used for measuring the similarity or the dissimilarity
between two images, by comparing the feature vectors outputted by the twin
networks. Our architecture is presented in Fig. 1. The network comprises two
identical branches with shared weights, meaning that the parameters (weights
and biases) of these branches are the same. Each branch is made out of three
convolutional blocks. Each of them is composed of 2 convolutional layers with
64, 128, and 256 filters and kernel sizes of 11x11, 5x5, and 3x3 respectively,
one batch normalization layer, one ReLu activation layer, and lastly, a max-
pooling layer, which reduces the image size by 2.

Figure 1. Edge-matching network architecture
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At this point in the network, most of the Siamese architectures propose
computing a loss between the two feature vectors, usually a contrastive loss,
as in [4]. We tried out this method too, but the results were disappointing.
The best model we obtained with this approach was able to make correct es-
timations only in half of the cases. Moreover, the Euclidian distance between
one image and 50 others from the test set, was the same for 25 of them and
equal to 0.26116937. This value for the distance would mean that the images
are compatible, but when we reviewed them, we discovered both suitable im-
ages and completely not suitable ones. These facts led us to the conclusion
that this path cannot be successful, since the model was focusing on finding if
the two input images are similar or not and this was not what we specifically
needed.

Inspired by [18] and [14], we decided to subtract the two feature vectors ele-
ment by element. The result was flattened and we obtained a one-dimensional
feature vector of size 20408. As visible in Fig. 1, the vector is afterwards passed
through a couple of linear transformations. After the first linear transforma-
tion, we tried adding a dropout layer, with a probability of 0.5, to prevent the
model from overfitting. In some situations, this layer helped, but not always,
as we will discuss in the next section. Lastly, the Softmax layer computes the
probability of the two images forming a match or not. Further on, we used
the Cross-Entropy loss from PyTorch [16], to compute the distance between
the probabilities outputted by the model and the true ones.

4. Experimental results

Based on the models presented above, experiments were conducted for both
tasks. In the following, the most relevant experiments will be presented, dis-
cussed and compared, together with the dataset and the methodology used in
their evaluation. The code used for experiments is available here1.

4.1. Data. For this study, a dataset was created taking into account the use of
various puzzle piece sizes, the need for having a minimum of several hundred
images for training, testing and validation, and a reduced difficulty for the
pre-processing and mask generation step. The dataset is available here2.

The first step in creating the dataset was to photograph seven puzzles with
different numbers of pieces and different piece sizes, ranging from 1.6x1.8 cm
to 4.9x4.1 cm. All the pieces had the classic shape of puzzle pieces, namely
four sides, each with an indent or an outdent. The exception was the edge
pieces, which had one or two straight sides. The pieces were placed face
down, on a black background, to have a bigger contrast between the piece

1https://github.com/RalucaChis/PiecePerfect
2https://www.kaggle.com/datasets/ralucachiss/pieceperfect-dataset/
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Figure 2. Puzzle piece images preprocessing pipeline: mask generation, mask
resize and crop, mask with reversed colours and an only-edge mask

and the background, which helped enormously the binarization process. The
photographs were taken with an iPhone, version XS, with a focal length of 26
mm, aperture ratio of f/1.8, and image size of 3024x3024. In total, we took
462 pictures, belonging to 7 different puzzles. The quality of the images was
good enough for our task, but only very late in the research a possible problem
in the data collection occurred to us. Since we did not use a fixed setup for
taking the pictures (a camera setup [8] or a photocopier [7]), the distances
between the camera and the pieces may be different by a few centimetres,
thus affecting the ratio between the size of the piece and the image.

To generate the masks, images were first opened in grayscale mode and
then converted into binary images with thresholding, separating foreground
(objects of interest) and background. Experiments revealed that a threshold
value of 140 (with pixels ranging from 0 to 255) was optimal.

The generated masks have white pixels for puzzle pieces (value 1) and black
pixels (value 0) for the background. Since the masks had some black gaps
inside the pieces, we made use of the ”floodFill” method from OpenCV to
fill the gaps. FloodFill is a technique for changing the colour or value of a
connected region of pixels in an image, starting from a seeding point. The
filling process began from the left top corner of the image, by converting to
white the whole background. The colours of the retrieved image were inverted
and then we applied a logical OR operation on the resulting image and the
original one. The obtained masks have very good quality and correspond
completely to the shape of the pieces (Fig. 2).

The obtained dataset consists of 462 pictures of puzzle pieces, suitable for
training a segmentation model. However, the model was limited to identifying
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puzzle pieces without an image and a simple background. Therefore, we gen-
erated five additional variants for each image, randomly selecting backgrounds
from a set of 13 and foregrounds from a set of 19. This augmentation resulted
in a dataset of 2772 images (original 462 + 5*462 augmented), significantly
improving segmentation performance on test images.

The initial images have a size of 3024x3024 pixels. Since working with very
large images is difficult, we chose to resize the images to 256x256 pixels. After
performing several experiments with unsatisfactory numeric results on the
edge-matching model, we found that reducing the background area by cropping
the images improved model performance. For this, we cropped the images,
keeping 5 pixels on each side between the piece and the edge of the image. To
maintain uniform mask sizes without losing quality through resizing, we added
black padding to each side, resulting in images standardized to the largest size
(148x148 pixels). For future reference, we will call this set DS1.

Furthermore, we thought it might help if, when analyzing a pair of masks,
the second image had the colours reversed. In this way, the side of the first
piece would be white, and the outside of the pair side of the second image would
still be white, and thus the model would more easily identify the compatibility
of the two pieces. So we generated a set of images with the colours reversed
(DS2 ). Also, in order to simplify the work of the model, we generated a set
of images containing only the edges of the pieces (DS3 ). To obtain them, we
resized the masks to 135x135 pixels, added black padding to the images on all
sides until we obtained pictures of 148x148 pixels with the piece in the centre,
and then applied a logical XOR operation between the initial mask and the
transformed one. Fig. 2 contains an example mask from each of the three
resulting sets.

For efficient image management, we scanned each puzzle solved and num-
bered each piece. The numbers on each puzzle were manually translated into
a matrix, which we used to create the pairs of pieces. Thus, for each piece
we considered the neighbouring pieces in the 4 directions (top, bottom, left,
right) as compatible, and the neighbours on the diagonal (top-left, top-right,
bottom-left, bottom-right) as incompatible.

We started from the premise that all pieces are oriented in the final position
in the puzzle, so between any two puzzle pieces there are 4 possible matches,
plus the case where they do not match at all. An example of the 4 matching
cases can be seen in Fig. 3.

The compatibility of two pieces is determined by how well two of their sides
complement each other. Thus, to encourage the model to pay more attention
to the edges of the pieces, we chose to train the model with the images cut in
half for all experiments. Following the pre-processing procedures applied to
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Figure 3. Matching Possibilities: 1&3 are top-down matches (the top of a
piece matches the bottom of the other and vice-versa) and 2&4 are left-right
matches.

the masks, in each of them the piece is in the centre of the image, so there is
no risk that a half of the image does not contain any part of the piece. Prior
to cropping, the images were rotated 90◦, 180◦ or 270◦, according to their
match-case, so that the right side of the first image (first from left to right)
matches the left side of the second image. Since we rotated and cropped the
images, the task of differentiating the four types of match is almost impossible,
so we chose to classify the pairs as binary, match or non-match. With this
strategy, we obtained a total of 3318 entries, of which 1618 represent matches
and 1700 non-matches.

4.2. Evaluation methods. In order to evaluate the segmentation model, we
split the image dataset into three sets: for training (70%), validation (20%)
and testing (10%). One of the evaluation metrics used is L1 loss, which is
also known as the absolute error loss. It is defined as the absolute difference
between the predicted and actual values, as follows: L1 = |yactual − ypredicted|.
The mean absolute error (MAE), which is computed as the mean of L1 values,
will be used for evaluating the mean value of pixels, that have not been cor-
rectly predicted (with values from 0 to 1, where 1 states that all pixels have
been wrongly classified and 0 the opposite).

Moreover, the Dice coefficient was used to estimate how well the mask over-
laps the input image. The Dice coefficient is computed as twice the intersection
of the predicted and ground truth masks, divided by the sum of their areas:
Dice coefficient = (2 * Intersection) / (Sum of areas). It takes values in the
range of 0 and 1, where 1 indicates a perfect overlap, while 0 indicates no
overlap.

For the edge-matching task, the main criterion applied for evaluating the
model is the accuracy of the predictions. The pairs discussed in Section 4.1
were divided into three sets: training (70% of them), validation (20%) and
testing (10%). The accuracy of this task is simply computed by dividing the
number of correctly estimated pairs from the test set, by the total number
of pairs. For an improved perspective, we also computed the F1 score. This
evaluation method is computed as a harmonic mean of precision and recall,
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with the following formula: F1 = 2 ∗ (precision ∗ recall)/(precision+ recall).
The F1 score ranges from 0 to 1, where 1 represents the best possible value
and 0 is the worst.

In addition to these classical evaluation methods, we considered it important
to analyze the performance of the model in the context of finding the ideal pair
of a part. We chose from the test set the pieces that had a pair and analysed
the fit between one piece and all the others. If the true match is among the
top 10 pieces with a very high probability of being a match, we will consider
it a success. For future reference, we will call this evaluation top 10.

4.3. Segmentation results. The segmentation part of the problem did not
impose as many difficulties as the edge-matching task, so a small number
of experiments was adequate. After a few tries, we noticed that the model
behaved best when using the Adam optimizer and a batch size of 16. The
difference between using a learning rate of 0.003 and 0.0003 was minimal.
After applying the second value, the mean absolute error (MAE) obtained
was 0.003490, and the Dice coefficient value on average was 0.9751, confirming
that the model learns the proposed task very well.

The results of both experiments are visible in Table 1. A mean value as
high as 0.97 out of 1 for the Dice coefficient suggests that the masks generated
by the segmentation model overlap almost perfectly with the ground truth.
This result is further supported by the very low value achieved for the MAE
score, 0.0034. The progress of the L1 loss during training supports the good
performance of the model (Fig. 4). The values range from 0.0896 to 0.0092
for training and from 0.5906 to 0.0123 for validation. The trainings have been
conducted for 30 epochs, as we noticed that the loss stabilizes and fluctuates
very little after the first 10 epochs.

4.4. Edge matching results. The edge-matching task was difficult, so sev-
eral experiments were needed to come up with at least a satisfactory solution.
Table 2 exposes the numerical results and we are going to detail each of the
experiments in what follows. All experiments were done with a batch size of
value 64, a learning rate of 0.001 and with the Adam optimizer [10]. These
specifications have been established experimentally. The batches are computed
before training and images are randomized. For all experiments, the images
were halved. As we noticed that accuracy and loss stabilize after 30 epochs,
we did all our experiments with this number of epochs. All the experiments
described in the next chapter are done on Google Colaboratory, using GPU
Nvidia T4, with 16 GB.

Inspired by the architecture shown in [18], where the authors present a
model with an accuracy of 79% on matching papyrus fragments, we tried
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Table 1. Experimental results for image segmentation with U-Net.

Dataset Batch Size LR Optimizer MAE Dice coeff.
DS1 16 0.003 Adam 0.004968 0.9649
DS1 16 0.0003 Adam 0.003490 0.9751

Table 2. Experimental results for edge-matching (columns Img1 and Img2
state the dataset used as input for the first and second branches respectively;
Drp stands for Dropout Layer)

Id Img1 Img2 Drp. LR Opt. Acc. % F1 top 10 %
1 DS1 DS1 NO 0.001 Adam 51.2048 0 0
2 DS1 DS1 YES 0.001 Adam 83.4337 82.9721 10.17
3 DS1 DS1 NO 0.001 Adam 84.6385 84.9557 12.34
4 DS1 DS2 YES 0.001 Adam 80.4216 79.4952 17.36
5 DS3 DS3 YES 0.001 Adam 87.3493 85.6164 8.982

flattening the feature vectors outputted by the two identical branches and
only afterwards perform the absolute difference between the two (experiment
with id 1 ). The model performed poorly, predicting that almost all pairs
are not matching, which lead to very low results for all three performance
measures. The behaviour of the model is unexpected and worth investigating
in future.

The second experiment (id 2 ) is based on the architecture described in
Section 3.2, having as input the preprocessed puzzle pieces images, rotated
and cut in half, as described in Section 4.1. Although this approach obtained
very good results on all evaluation methods, it was outperformed with more
than one percent on each metric by the experiment in which we removed the
dropout layer from the neural network (experiment with id 3 ). The reason for
this lies in the fact that the model used had a rather simple design, which was
not prone to overfitting, so the dropout layer could be omitted. This was not
the case for the last two experiments. The fourth experiment performed better
when we used the dropout layer and the same for the fifth. This happened
thanks to the ability of the dropout layer to reduce the sensitivity of a model,
which helped the model focus on the most salient features.

The experiment with id 4 was very similar to the one with id 2, with the
exception that for experiment 4 the second inputted image had its colours
inverted (white became black and vice-versa). While the accuracy and the F1
score value were considerably lower than in the approach with id 3, the model
managed to find the perfect match of a piece among the top 10 most suitable
piece images in 29 out of 167 cases. On the other side, for the experiment 5
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we used as input the images containing only the edge of the puzzle pieces. In
this case, the model obtained the best accuracy, 87.3493%, and the highest
F1 score, 85.6164. However, it performed the worst on the top 10 evaluation,
with only 8.9820% of matches identified. This discrepancy can be explained by
the fact that the model did a little overfitting, and when evaluating top 10, it
obtained unrealistically high probabilities for many parts (in one of the cases
the probabilities were 1.4511e-07 non-match and 1.0000e+00 match) and it
was difficult to find the true pair.

Regarding the evolution of the cross-entropy loss at each epoch for the
training and validation sets, the results stabilize somewhere after 30 epochs
(Fig. 4). They fluctuate between 0.693 and 0.4101 for training and between
0.6933 and 0.4367 for the validation process. As expected after discussing the
outcomes of the experiment 5, the loss in this case was the lowest, for both
training and validation, while the approach with id 1 had the highest loss
values.

4.5. Discussion. The results presented in the previous section can be summed
up to achieving an MAE score as low as 0.0034 for the segmentation task and
accuracy as high as 87.34% for the edge-matching model. Even though these
are very good results from our perspective, some issues remain, which will be
discussed at length below.

Regarding the segmentation task, as mentioned, good results were achieved
on the test set. For situations where only one piece appears in an image, and
the contrast between the piece and the background is high enough, the model
manages to do the segmentation correctly. In a more complicated situation,
however, it fails to estimate the mask accurately enough so that the mask can
be used for further edge-matching. There is certainly room for improvement
in the model, especially on the part of the diversity of the data used as input,
but from the perspective of the purpose of this paper, the current capability
of the mask estimation model is satisfactory.

As for the results obtained for the evaluation top 10, an example of what
they look like can be seen in Fig. 5. Despite the actual pair not being within
the top 10, all featured images depict pieces remarkably similar to the sought
pair, each possessing a framing-compatible hole. Distinguishing the true pair
is challenging, even for a human, due to minimal differences between pieces.
Notably, with a smaller image set, finding the actual match becomes more
probable. In our experiments, the task was challenging, with a test set com-
prising 332 pairs. Another attribute that influences the model results for edge-
matching is the ratio between the piece and the image sizes. Some images were
taken at a shorter distance between the camera and the piece, and others at
a longer distance. Thus, the model may learn to classify as non-match two
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Figure 4. Epoch loss for training and validation on segmentation (left col-
umn) and on edge-matching (right column)

pieces that in reality match, but the images do not overlap perfectly because of
the different size ratios. To investigate the extent of this issue, we constructed
a confusion matrix (Fig. 6) for the model trained using the DS3 dataset (ex-
periment id 5 ). False negatives account for 11.14% of the total predictions,
but only 11.9% of the incorrect predictions are false positives, revealing that
the model is more prone to generating false negatives than false positives.

For the specific situation of a puzzle, where the solution is guaranteed to
be unique, the process can be continued with the assembly of the puzzle. The
compatibility of a piece with the top 10 possible pairs is very high, with small
differences between them, which is why, for the purpose of automatic puzzle
assembly, we consider it appropriate to find tuples of 4 pieces that match two
by two, and then match them all together. For what we set out to do, this
step is not necessary.

Comparing the results presented in this paper with those obtained by other
researchers is difficult. One reason is that in some papers the authors used

Figure 5. Example of very probable
matches found for a piece, yet none of
them is the true pair.

Figure 6. Confusion matrix for the
edge-matching model trained with
DS3
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image patches ([18], [14]), as discussed in Section 2. In [18], the highest accu-
racy obtained for predicting if two patches belong to the same image is 79%,
while in a similar situation, we obtained 87.3493%. Paper [14] exposes no
numerical results done on a test set, but presents a 96% accuracy achieved on
the validation set. Our best accuracy on the validation is only 89.15%, but
our dataset had just 2322 entries for training and 664 for validation, while in
the mentioned paper a set of 6000 entries was used for training and 1000 for
validation. An overfit on the training data cannot be excluded in their case,
since the authors of [14] mentioned poor results in reconstructing an image
from patches, despite the high accuracy.

Another difficulty comes from the fact that some works exhibit working with
three-dimensional models of artefacts [8] or 3D puzzles [5], and our solving is
strictly based on 2D images. While [8] lacks numerical results, in [5] the model
manages to solve a 3D 18-piece puzzle successfully. However, when tested on
a broken ostrich eggshell, only 11 out of 15 shell pieces are placed correctly.

As for the papers [6], [7], [12] and [2], they come closest to our work in
terms of the proposed problem, because they use 2D puzzle pieces, i.e. pieces
of documents, as input data. What distinguishes our work is the use of deep
learning techniques, whose help is difficult to estimate in comparison with im-
age processing techniques. This happens especially because in the previously
mentioned works the methodology for evaluating the experiments is to mea-
sure the time taken to reassemble the puzzle, i.e. the document, while this was
not a main focus of our work. Also, in the case of [2], the reassembled docu-
ments are cut into only 4 parts, and the puzzle pieces used in [6] and [12] have
very different shapes from each other, much more irregular than the pieces of
a normal jigsaw puzzle. These aspects favour the success of the model. In
terms of results, Makridis et al [12] present the assembly of a puzzle, without
mentioning the time needed for the whole process, and in [2] the best image
preprocessing time was 0.394s, and the best joining time was 0.336s. The
results provided in [6] refer to the solving of a 48-piece puzzle in 58 minutes
and a 67-piece one in 31 minutes. The same 48-piece puzzle was solved in 3
minutes with the approach from [7], which is a great improvement. However,
the approach from [7] is not as robust, since the authors mentioned a higher
assembly time in comparison with [6], for the same 67-piece puzzle.

5. Conclusions and future work

The aim of this paper is to develop a solution to the problem of matching
puzzle pieces from images, using deep learning methods. Solving this problem
is the first step in the digital approach to the difficult task of restoring artefacts
(e.g. putting together ostraca pieces). The solution proposed consists of two
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phases: segmenting the puzzle pieces, followed by finding matching pairs for
each side of a puzzle piece.

Regarding segmentation, the method applied is the U-Net model, trained
with 462 images with puzzle pieces and related masks. The main result ob-
tained in this respect is a score for the dice coefficient of 0.9751 for the test
set, which represents a very good result given that the highest possible value
is 1 for perfect overlap.

The edge-matching task has been addressed with a Siamese architecture
model. Two masks are processed at the same time by two identical networks,
and then the absolute difference between the two feature vectors is computed.
The result is flattened, linearized, and at the end, the output consists of two
probabilities: match or non-match. The main result obtained is an accuracy
as high as 87.3493% and an F1 score of 85.6164, for a number of 332 pairs of
masks used in the test. This result was achieved when the masks used to feed
the network were processed so that they contained only the contours of the
pieces. Reversing the colours of the second mask also proved effective, so the
model managed to find for 17.36% of cases among the best 10 predictions (the
most compatible images), the ideal match of the piece in the initial image.

In the future, we plan to improve the image set with more puzzle pieces
in different contexts, to help the segmentation model identify the contours of
the pieces in any situation. Also, for the edge-matching model, the results of
the top 10 evaluation need improvement, which could be done by developing a
more complex model and diversifying the dataset. The differences between the
puzzle pieces are small, at least for the puzzles we used, which made learning
the matches difficult.

The current study contributes to the exploration of artefact reconstruction,
obtaining good results on both segmentation and edge-matching of images
with puzzle pieces.
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