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EXAMINING THE SOCIAL BEHAVIOR OF ANT COLONIES

USING COMPLEX NETWORKS

BOGDAN MURSA

Abstract. This paper proposes the use of Complex Network Theory to

model the interactions between ants and analyze their social behavior.

Specifically, the study focuses on six colonies of ants to investigate whether

their behavior is community-oriented or individual-oriented. The research

employs various nodes properties that define nodes’ importance to quantify

the existence of a social or individual-oriented behavior. The results aim to

provide insights into the social behavior of ants and may have implications

for understanding other complex social systems.

1. Introduction

In nature, a variety of species exhibit a pronounced social behavior, whereby
members of the same species tend to interact in order to increase their chances
of survival. Such behavior is not restricted to mammals alone, but also found
in insect colonies, schools of fish, and, to a lesser extent, reptiles. Certain
species of lizards have been observed to display social behavior and organize
themselves into complex social structures [6].

In species with smaller members, individual survival rates tend to be lower,
leading to the formation of complex communities characterized by homogen-
ity and defined roles. Ant colonies are a prime example of such communities,
often comprising millions of members [17, 2]. These colonies exhibit remark-
able synchronization in tasks such as food gathering, cleaning, and protection.
Ant behavior has been widely studied in numerous experiments [10, 25, 19],
although logistical challenges often pose a significant obstacle to researchers.

As the complexity of interactions between members within a system is dif-
ficult for human observation and measurement in real-time, researchers have
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sought frameworks to model the underlying dynamic system. Complex Net-
work Theory (CNT) has emerged as an increasingly popular framework in
recent years [7], as it enables the modeling of complex systems as topological
spaces, specifically as graphs, where the members are represented as nodes
and their interactions as edges.

By studying a modeled network, it is possible to gain insight into the be-
havior of the network’s members using a range of properties. Some properties
provide information at the level of individual nodes, such as node degree, as-
sortativity degree, and centrality measurements [22, 4, 21]. Other properties
are oriented towards characterizing the network as a whole, such as clustering
coefficient [16], communities [9, 8], and network motifs [1, 13, 14].

Various studies have demonstrated the advantages of utilizing CNT to
model ant colonies as intricate networks, enabling researchers to investigate
ant social behavior and dynamic processes such as food collection and commu-
nication. However, most of these studies have focused on the colony as a whole
rather than individual ants. Given the existence of well-defined structure and
organization in ant colonies, the lack of research on individual behavior is no-
table. Therefore, the paper aims to explore whether individual ants prioritize
their well being instead of their defined role in the organization or strive to
exhibit purely altruistic behavior by acting for the benefit of the community
without expecting anything in return.

A set of research inquiries will be developed to steer an experimental anal-
ysis of six ant colonies monitored for a duration of 41 days [18]. The objective
is to employ properties at the node and network levels derived from CNT to
measure and confirm the central query: do ants act altruistically or selfishly?
The objective is to distinguish between selfish and altruistic behavior in ants
by employing centrality measurements, which are commonly used to evaluate
the significance of a node in complex networks. There will be utilized network
properties that optimize the exchange of information within the colony, such
as maintaining a low average shortest path, to identify altruistic behavior. Ul-
timately, a qualitative analysis will be conducted to compare the two methods
of quantifying altruistic and selfish behavior.

The following sections aim to provide an overview and clarification on the
challenges that arise when studying small-sized creatures, as well as how CNT
can help overcome these challenges based on the existing state-of-the-art. Ad-
ditionally, there will be detailed each of the metrics employed in the experi-
ment, explaining their relevance and how they will be applied. There will be
introduced the dataset and the research questions that will guide the experi-
ment, with the results being validated against the network properties obtained.
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Finally, the paper will conclude with a discussion that will confirm or reject
the initial assumptions regarding the research questions posed.

1.1. Problem definition. From a logistical standpoint, studying ant colonies
is challenging due to the small size of the ants, making them difficult to observe
by the naked eye. Additionally, the high number of members that share a
similar appearance can complicate the study of their behavior, as they move
quickly and often exhibit chaotic movement patterns. Manually observing the
behavior of ants in such a scenario would be time-consuming and exhaustive,
requiring video recording and subsequent frame-by-frame tracking by one or
more researchers [20, 26].

Following the logistical difficulties of studying ant colonies, there is a sec-
ondary issue that arises during the process of analyzing the interactions be-
tween ants. This issue is caused by the need for a framework to facilitate
the entire process, starting from defining interactions and culminating with
the impact a group of interactions has on the dynamic of the colony. One
solution to this issue is to model ant colonies as systems that can be studied
using mathematical and statistical approaches. This allows for the numerical
quantification of ant behavior, leading to a feasible and valid way of answer-
ing research questions. However, even with a colony modeled as a system,
it can be difficult to understand the apparent chaotic behavior between ant
interactions. To address this challenge, a set of tools is required to extract
properties from the system that may lead to paths not initially intended by
the researchers. Complex Network Theory is one such framework that pro-
vides a wide range of tools to extract properties about the system modeled
as a complex network. By modeling the colony’s system as a network, where
ants are nodes and their interactions are edges, it can be explicitly analyzed
the interactions a given ant or group of ants have, defining statements about
their social or individual behavior [24].

Complex Network Theory has emerged as a valuable analytical tool for
studying the organizational dynamics of ant colonies. Its applications in this
field are numerous, including investigations into the community structures of
colonies [12] and the role of information flow in collective decision-making
[5]. By modeling the networks underlying ant colonies, researchers aim to
gain insights into the structural organization of the colonies, the development
of modular structures, and the resilience and optimality of information flows
among colony members. These studies also provide insights into the potential
impact of member loss in the event of a disaster [3, 11].
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In the subsequent section, there will be provided an overview of the fun-
damental properties existing in complex networks that are pertinent to the
examination of social interactions among ants belonging to the same colony,
accentuating the practical implementation of the theoretical aspects in the
context of a real-world ant colony.

2. Theoretical insights

Any complex network is characterized by a collection of nodes and a set
of edges that connect them. Although these two fundamental components
are simple, they give rise to multidimensional complex topologies with unique
properties that can be explored, underscoring the advantages of representing
real-world systems as complex networks. One of the most widely researched
concepts, particularly in social networks, is the definition of critical, important,
or popular nodes. However, this is more of a philosophical question that has
been debated extensively in the literature [15]. Nevertheless, the literature
proposes a group of metrics known as centrality measures that aim to offer
various ways of characterizing important nodes.

In this section, there will be provided detailed descriptions of the graphs
and their respective nodes’ centrality measures, as shown in Figure 1. The
figures illustrate that different nodes are identified as ”important” by each
centrality measure, highlighting that each metric has a distinct approach to
determining a node’s significance.

Degree centrality (Dc) is one of the fundamental measures of centrality in
complex networks. It quantifies the importance of a node based on the number
of edges it has with other nodes in the network. Nodes with a high number of
edges have higher degree centrality and are considered more important. The
mathematical formula for degree centrality is as follows:

Dc(x) =
dx

n− 1
where Dc(x) is the degree centrality of node x, dx is the degree of node x,

and n is the total number of nodes in the network [22].
In addition to degree centrality, another centrality measure that takes into

account the number of links and goes further in assessing a node’s importance
is eigenvector centrality (Ec) [22]. This property evaluates a node’s influence
in the network based on the degree centrality of its neighboring nodes. From a
real-world perspective, a node with a high eigenvector centrality is connected
to other nodes that are also important, meaning that being connected to pop-
ular nodes increases one’s own popularity. The eigenvector centrality formula
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(a) Betweenness centrality (b) Closeness centrality

(c) Degree centrality (d) Eigenvector centrality

Figure 1. Centrality measures in a Newman Watss Strogatz
graph with 100 nodes. Light blue - low value, Dark blue - high
value.

follows a recursive approach that calculates a value for a node by using the
values computed for its neighboring nodes, as follows:

Ec(x) =
1

λ

∑
u∈N(v)

Ec(u)

where Ec(x) is the eigenvector centrality of node x, N(x) is the set of nodes
that are connected to node x, and λ is a constant called the leading eigenvalue
of the adjacency matrix of the network [15].

A distinct perspective on defining node importance or popularity is based
on the flow of information in the network, whereby nodes that enable the flow
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of information in the network tend to be more important or popular to other
nodes. In this regard, the next group of centrality measures uses the path
between the nodes and their lengths to evaluate the significance of the nodes.
Betweenness centrality (Bc) assesses the importance of a node by its ability to
control the flow of information through the number of shortest paths between
any two nodes that pass through it. Having more shortest paths passing
through it means that the node is a hub facilitating the information flow in
the most rapid manner through the shortest paths it is part of. The formula
below depicts the quantification of this centrality measure:

Bc(x) =
∑

s ̸=x ̸=t ̸=x

σst(x)

σst

where x is the node for which there was computed the metric, σst is the
total number of shortest paths from any node s to any node t and σst(x) is
the number of those paths that pass through x (not where x is an end point)
[22].

Closeness centrality (Cc) is another measure that quantifies the importance
of a node in a network. Unlike betweenness centrality, Cc considers how quickly
a node can be reached by all other nodes in the network. A node with a high
Cc is considered to be ”close” to all other nodes in terms of its shortest paths,
making it an important hub that facilitates the flow of information in the
network:

Cc(x) =
1∑

u ̸=x

d(u, x)

where Cc(x) is the closeness centrality of node x, d(u, v) is the shortest path
distance between nodes u and v, and the summation is taken over all nodes
u ̸= v in the network [22].

In recent studies, a new approach to defining the significance of nodes has
emerged, focusing on their role in maintaining network integrity. Articula-
tion points (AP ) are nodes that, when removed, divide the network into two
or more connected components, acting as bridges between isolated groups of
nodes (Figure 2). In social networks, an AP could be a social media influencer
or politician, while in an ant colony, the queen can be an AP . This concept
is gaining popularity as it provides insights into the structure of networks and
can inform strategies for improving network efficiency and stability [23].

The centrality measures detailed earlier are indicative of macro-level charac-
teristics of a node, which describes its role in influencing the overall dynamics
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Figure 2. Example of Articulation Points (in red)

of the network. Conversely, there are other properties that are more relevant
to micro-level behavior, which tend to be oriented towards the individual node
itself. For instance, the local clustering coefficient (CCl) is used to quantify
the tendency of nodes to form communities with other nodes that share similar
characteristics or interests (e.g., ants performing similar tasks). The following
formula expresses CCl as the ratio of the actual number of links (Ei) con-
necting the vertices within a node (i) neighbors to the maximum number of
possible links that could exist among them (ki(ki − 1))).

CCli =
2Ei

ki(ki − 1)

Assortativity degree (ρ) measures the tendency of nodes to connect with
other nodes that share similar degrees (e.g., popular individuals preferring to
associate with others who share a similar level of popularity). In this sense it
can defined ρ as the correlation between the degrees of connected nodes in a
network, with values in interval -1 to 1 computed with the following formula:

ρ =

∑
jk jk(ejk − qjqk)

σ2
q

where ejk is the join probability between excess degree of j and k (excess
degree, also known as remaining degree, is computed by subtracting one from

the degree of a given node), qk =
(k+1)pk+1∑

j≥1 jpj
is the normalized distribution of the

excess degree of a randomly chosen node, respectively σq is standard deviation
of qk, used to normalize ρ in interval [-1, 1].
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Positive values indicate nodes tend to connect with others with similar de-
grees, while negative values indicate nodes tend to connect with nodes with dif-
ferent degrees. An r value of 1 indicates perfect assortative mixing, 0 indicates
non-assortative mixing, and -1 indicates completely disassortative mixing.

In the experiment described in the following section, the aim is to investi-
gate the social behavior of ants in their colonies by analyzing their network
properties. Specifically, it will be explored whether nodes with high values for
centrality measures, such as degree centrality, eigenvector centrality, between-
ness centrality, and closeness centrality, respectively local clustering coeffient
and assortativity degree, but also existence of articulation points, are associ-
ated with the emergence of individual behavior among ants that is not aligned
with the organization of the colony as a whole.

3. Experiment

The following section will overview the experiment proposed to analyze the
social behaviour of ants, making use of a comprehesive dataset for which there
were validated a series of research questions that will be evaluated using a de-
fined methodology. The results of the extracted properties (detailed in Section
2) obtained in the experiment will be analyzed and a series of conclusions will
be drawn to conclude the formulated research questions.

3.1. Dataset. To conduct a robust and meaningful experiment, it was deemed
necessary to utilize a diverse dataset that is both horizontally and vertically
scaled. To this end, there will be employed a complex dataset of complex
networks that consist of six ant colonies that were completely isolated, as pro-
posed by Mersch D. et al. in their research paper [18]. The complex networks
were modeled by observing each ant colony over a timespan of 41 days, uti-
lizing a video tracking system that was based on fiducial identification labels.
Each ant’s position was tracked twice per video frame, resulting in a vast
amount of data - 2,433,250,580 ant positions and 9,363,100 social interactions.
Social interactions were defined as instances where one ant’s front end was
within the trapezoidal shape representing another ant. From this data, a total
of 246 networks were modeled, utilizing both the ant positions and the tracked
interactions.

Table 1 provides a comprehensive summary of the modeled networks based
on their nodes and edges - ants are represented as nodes, and the interactions
between them are represented as undirected edges. The weight of each edge
is determined by the number of interactions between the same ants. Since
the ant colonies were observed for a period of 41 days, changes in the number
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Table 1. General properties of the studied networks [18]

colony id metric mean 95% percentile Stdev

1 nodes 89.21 [82.35, 96.06] ± 21.15
edges 2803.97 [2429.41, 3178.54] ± 1155.48

2 nodes 100.13 [91.47, 108.79] ± 26.71
edges 3541.03 [2909.48, 4172.57] ± 1948.25

3 nodes 130.05 [122.01, 138.09] ± 24.80
edges 6036.79 [5274.19, 6799.40] ± 2352.55

4 nodes 68.77 [60.73, 76.80] ± 24.79
edges 2067.03 [1640.79, 2493.26] ± 1314.88

5 nodes 113.31 [102.26, 124.35] ± 34.07
edges 4905.05 [4034.66, 5775.44] ± 2685.03

6 nodes 131.85 [123.07, 140.63] ± 27.09
edges 6338.82 [5451.44, 7226.20] ± 2737.44

of individuals within each colony could occur, resulting in variations in the
network’s characteristics. These changes were captured by the mean, standard
deviation, and 95% percentile values, enabling the dynamics of the colonies to
be analyzed.

The metrics obtained from the modeled networks exhibit a significant degree
of diversity with regards to the number of members in each colony, which is
reflected in the number of edges present in each network. This phenomenon
can be attributed to the fact that larger colonies tend to have more interactions
among members, resulting in a higher number of edges.

3.2. Research questions. The experiment is designed to address two re-
search questions, a primary one (RQ1) and a secondary one (RQ2):

RQ1 - What is the extent of variation in individual behavior within ant
colonies, and does this variation lead to the presence of outliers ex-
hibiting selfish behavior or does the colony exhibit a predominantly
homogeneous altruistic behavior?

RQ2 - Does the dynamics of ant colonies optimize the flow of information
through interactions among the ants?

3.3. Methodology. In accordance with the formulated research question, the
methodology of the experiment will involve the extraction of centrality mea-
sures and articulation points from each network to investigate the occurrence
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of nodes with abnormally high values for these metrics, indicating their incli-
nation to strategically position themselves to maximize their valuable connec-
tions. In addition to the previously mentioned topological indicators, there
will be also extracted two additional measures, namely CCl and ρ, to gain a
deeper understanding of the global social behaviour of ants and to investigate
if any specific behaviour emerges. These measures will aid in addressing the
research questions posed in this experiment.

By quantifying and validating RQ1 through this approach, it can be em-
ployed the concept of popularity, which is defined in various ways as discussed
in Section 2.

To investigate whether the networks and colonies aim to optimize the per-
formance of the information flow among their members, there will be used
two topological indicators: density and average shortest path. Density (d) is
a measure of how close a network is to being fully connected, where all ants
interact with one another. Networks with high density tend to optimize the
information flow by ensuring that all members are easily reachable through
a high density of edges. The average shortest path is a measure of the aver-
age number of steps needed to travel between any two ants in the network.
There will be computed and used these indicators to demonstrate the colonies’
dynamics and to answer the research question. The calculation of the aver-
age shortest path (AV Gsp) can aid in determining if ants strive to optimize
the formation of valuable links within the context of an efficient information
flow. A low average shortest path, which denotes the average number of links
needed to create an optimal path between two members, suggests that ants
can easily reach each other. By analyzing this metric, it can be provided a
formal response to RQ2.

3.4. Results. In accordance with the methodology outlined in the preceding
section, there were derived all the centrality measures outlined in Section 2 as
well as other topological properties, including CCl, d, AV Gsp, and ρ (Table
2). This was done to enable the quantification of the propositions that could
potentially serve as answers to the formulated research questions.

Ants are social animals with highly organized behavior and specialized roles
throughout their lifetime [18]. Their division into groups is strictly task-
oriented, which may result in a large number of interconnections between
ants within the same group. This behavior is well-reflected in the high values
of CCl observed in all the studied colonies.

It is well known that each of the examined ant colonies has a queen, whose
exclusive responsibility is to lay eggs. Given its role as being one that it is
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unique in the structure of the colony (only one ant, namely the queen, lays
eggs), it is reasonable to classify the queen as an articulation point (AP ).
However, the analysis showed that the queen is not often an articulation point
in any of the modeled networks. This indicates that despite the queen’s crit-
ical role, it is part of a well-connected community, and her death would not
necessarily lead to the colony’s disintegration.

At a macro level, the social behavior of ants does not exhibit a particular
tendency to create links with new ants, as indicated by the value of ρ which is
equal to 0. This suggests that the creation of links is not driven by individual
preferences, but rather by the collective behavior of the group as a whole.

This hypothesis is strongly supported by all of the computed centrality mea-
sures, which do not identify any notable group of nodes that exhibit excep-
tional values for their centrality measures. By computing the 95% percentile
interval and mean values, it can be observed the homogeneity of centrality
measure values across all nodes, with insignificant standard deviation. Even
though the standard deviation of the centrality measures’ computed values is
insignificant, the real-world implications of each metric should be taken into
consideration while interpreting their mean values. It is noticeable that Cc has
a substantially high value, reaching the maximum value of 1, which suggests
that the colony’s organization is optimized for efficient information flow, with
every ant only a few connections away from any other ant. A similar obser-
vation can be made for Dc, which approaches a value of 1, indicating that all
ants have nearly equal connectivity with each other. These findings reinforce
the conclusions drawn regarding the ρ property.

The Bc value in the colony’s centrality measures shows a relatively low
value from the range of [0, 1]. Typically, a higher Bc value indicates that
a network node has a greater ability to control information flow. This low
value may, therefore, suggest that the colony is organized dynamically and
oriented toward the collective benefit. Although members with high Bc values
are essential to the network, they are also critical points whose loss could
disrupt the system’s functionality. This robust organization enables the colony
to sustain itself even if some members are lost. Additionally, the centrality
measure Ec shows a low value, suggesting that the ants’ interactions are task-
oriented, with little emphasis on creating new links based on other ants’ links,
resulting in an organization geared towards the benefit of the system as a
whole.

Using these two observations it can be concluded the altruistic behaviour
of the ants (RQ1), meaning their interactions are ones established purely
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on their role in the community they are part of and the only thing that is
important to them is to succesfully complete their task.

Table 2. Network properties extracted for each of the six ant
colonies

ID Metric Mean 95% percent. Stdev ID Mean 95% percent. Stdev

1 AV Gsp 1.31 [1.30, 1.33] 0.05 2 1.36 [1.34, 1.38] 0.07
CCl 0.79 [0.78, 0.80] 0.03 0.77 [0.76, 0.78] 0.03
ρ 0.03 [0.02, 0.04] 0.03 0.09 [0.07, 0.11] 0.06
d 0.69 [0.67, 0.70] 0.05 0.64 [0.62, 0.66] 0.06
AP 0.08 [0.00, 0.16] 0.27 0.03 [0.03, 0.08] 0.16
Cc 0.77 [0.74, 0.80] 0.08 0.75 [0.72, 0.77] 0.08
Bc 0.0035 [0.003, 0.005] 0.0027 0.0041 [0.003, 0.006] 0.0038
Dc 0.69 [0.64, 0.73] 0.15 0.64 [0.59, 0.70] 0.16
Ec 0.11 [0.10, 0.12] 0.02 0.10 [0.09, 0.11] 0.03

3 AV Gsp 1.31 [1.30, 1.32] 0.04 4 1.20 [1.19, 1.21] 0.04
CCl 0.79 [0.78, 0.80] 0.03 0.86 [0.85, 0.87] 0.03
ρ 0.01 [0.00, 0.02] 0.02 0.03 [0.00, 0.05] 0.04
d 0.69 [0.68, 0.71] 0.04 0.80 [0.79, 0.82] 0.04
AP 0.15 [0.04, 0.27] 0.37 0.00 [0.00, 0.00] 0.00
Cc 0.77 [0.75, 0.80] 0.08 0.85 [0.82, 0.88] 0.08
Bc 0.0025 [0.002, 0.003] 0.0015 0.0032 [0.002, 0.004] 0.0020
Dc 0.69 [0.65, 0.73] 0.15 0.80 [0.76, 0.85] 0.14
Ec 0.09 [0.08, 0.09] 0.02 0.13 [0.11, 0.14] 0.02

5 AV Gsp 1.29 [1.28, 1.30] 0.04 6 1.31 [1.29, 1.32] 0.05
CCl 0.80 [0.79, 0.81] 0.03 0.79 [0.78, 0.80] 0.03
ρ 0.01 [0.00, 0.02] 0.05 0.03 [0.02, 0.03] 0.02
d 0.71 [0.70, 0.72] 0.04 0.69 [0.68, 0.71] 0.05
AP 0.00 [0.00, 0.00] 0.00 0.03 [0.00, 0.08] 0.16
Cc 0.78 [0.76, 0.81] 0.08 0.78 [0.75, 0.80] 0.08
Bc 0.0029 [0.002, 0.004] 0.0021 0.0025 [0.002, 0.003] 0.0015
Dc 0.71 [0.67, 0.75] 0.15 0.69 [0.65, 0.74] 0.15
Ec 0.10 [0.09, 0.11] 0.02 0.09 [0.08, 0.09] 0.02

The current findings strongly indicate the well-organized nature of ant
colonies. The AV Gsp metric is another measure demonstrating that colonies
are optimized not only in terms of creating specific groups for efficient task
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completion, but also for the rapid flow of information among members. Ac-
cording to this metric, it takes approximately 1.30 edges for any ant to reach
another ant using the shortest path in the modeled network. This value is
remarkably low for any network, highlighting the communication efficiency
present in ant colonies and confirming the answer to RQ2.

Another notable finding is that the ant colonies exhibit both a low AV Gsp

and a high CCl, which are characteristic features of small-world networks.
These networks are commonly observed in various real-world systems, such
as transportation networks, and have been the subject of many studies aimed
at understanding their effective information flow and how to replicate it in
other contexts. Given the well-organized structure of ant colonies, it is not
surprising to find that the networks derived from observing them exhibit small-
world characteristics.

4. Conclusions

Ants have been a subject of fascination for the scientific community for
a long time due to their ability to develop highly intricate social structures
organically, which enables them to efficiently accomplish tasks such as forag-
ing, cleaning, and defense. However, research on ants has largely focused on
their collective behavior rather than individual behavior. While it is widely
acknowledged that ants exhibit altruistic behavior at the group level, it re-
mains to be seen whether this behavior is universal across all members of the
colony or if some individuals display a more self-centered approach aimed at
maximizing their own benefit.

Continuing this line of inquiry and utilizing a set of intricate network models
based on observations of six distinct ant colonies over a span of 41 days, our
research aimed to address two fundamental questions. These questions were
formulated to resolve the previous uncertainties:

RQ1 - What is the extent of variation in individual behavior within ant
colonies, and does this variation lead to the presence of outliers ex-
hibiting selfish behavior or does the colony exhibit a predominantly
homogeneous altruistic behavior?

RQ2 - Does the dynamics of ant colonies optimize the flow of information
through interactions among the ants?

During the study experiment, there were obtained various topological prop-
erties and centrality measures of the examined networks. The analysis revealed
that there is a considerable consistency among the centrality values of the in-
dividual nodes, with insignificant standard deviation. Furthermore, based on
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the property ρ, it was observed that the ants do not have any macro-level
inclination towards preferential attachment, but rather establish connections
through their task-based activities. These two observations led us to confirm
the altruistic behavior of ants as an answer to RQ1.

In addition to ants’ ability to naturally and organically evolve complex
groups that optimize task performance, the observations indicate that the
information flow within their networks is highly efficient, confirming RQ2.
The average shortest path between any two ants in the network is close to one
edge, indicating that every ant is almost directly connected to every other ant.
Furthermore, all studied networks show a high CCl and exhibit characteristics
of small-world networks, which optimize information flow performance and
evolve strong and complex structures, as commonly observed in other real-
world systems such as transportation networks.

The experiment corroborates the widely accepted behavior of ants as al-
truistic individuals that prioritize the collective good over individual interests,
while also demonstrating their capacity to naturally develop sophisticated sys-
tems that optimize task performance for the group.

In future studies of this paper, a significant enhancement would entail ex-
ploring other network properties, including communities and network motifs,
to gain a deeper understanding of the organization structure and how ants
interact in small modules. Such an approach would provide further insights
into the optimized interactions that drive task-oriented actions.
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