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EXTENDED MAMMOGRAM CLASSIFICATION FROM

TEXTURAL FEATURES
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Abstract. The efficient analysis of digital mammograms has an impor-
tant role in the early detection of breast cancer and can lead to a higher
percentage of recovery. This paper presents an extended computer-aided
diagnosis system for the classification of mammograms into three classes
(normal, benign and malignant). The performance of the system is evalu-
ated for two different mammogram databases (MIAS and DDSM) in order
to assess its robustness. We discuss the changes required in the system,
particularly at the level of the image preprocessing and feature extraction.
Computational experiments are performed based on different methods for
feature extraction, selection and classification. The results indicate an ac-
curacy of 66.95% for the MIAS dataset and 54.1% for DDSM obtained
using genetic algorithm based feature selection and Random Forest classi-
fication.

1. Introduction

Computer-aided detection and diagnosis (CAD) relies on medical image pro-
cessing, being used nowadays for a big variety of diseases, including breast can-
cer. In the current research, our aim is to create a CAD system able to detect
breast cancer from mammograms. Input images are used from two different
mammogram datasets (Mammographic Image Analysis Society – MIAS [15],
Digital Database for Screening Mammography – DDSM [7]) in order to verify
a stable performance for the stages of preprocessing, feature extraction and
classification.
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A multi-class classifier is built to distinguish normal, benign and malignant
classes. We start from a recently proposed CAD system [2], which consists of
the following five steps:

(1) mammogram preprocessing, (2) segmentation of the image, (3) fea-
ture extraction (FE) by calculating characteristics from GLRLM (Gray-Level
Run-Length Matrix [6]), (4) feature selection (FS) and (5) classification
(CLS).

In reference [2], multiple experiments are reported with competitive results
for medical images from the MIAS database [15] using Principal Component
Analysis (PCA) for feature selection and Random Forest (RF) classifiers. As
the system was created and tested for MIAS images, our main objective in
this study is to determine if the system can be extended to obtain a good
performance for other medical images. For DDSM images, the system is likely
to generate errors because the intensity of the mammograms is different com-
pared to images in MIAS. Also, images from DDSM have a high variance in
their intensities and white patches could be found on DDSM entries, connected
to the breast.

Considering the abovementioned issues, in the current paper we extend the
previously proposed system mainly concerning the preprocessing and feature
extraction steps. The preprocessing step is extended by

(1) removing white patches outside the breast, (2) setting the threshold to
define the breast dynamically, instead of hard-coding it, (3) creating a more
robust method to define the location of the pectoral muscle, (4) selecting
the proper component overlapping with the pectoral muscle and (5) filling its
concave parts.

Moreover, feature extraction considers characteristics calculated from Gray-
Level Co-Occurrence Matrices (GLCM) with different distances and is reim-
plemented to use the graphical processing unit. For segmentation, feature
selection, and classification, the same methods are used as in [2], namely, k-
means, PCA and genetic algorithm (GA) based feature selection, and Decision
Tree (DT) and RF respectively.

The rest of the article is organized as follows: in section 2 we will discuss
existing solutions in the literature to solve the problem. In section 3 the
proposed approach is presented in detail. Section 4 describes the data used
and the results achieved. In section 5 we draw the conclusions of the conducted
research and the future directions are defined.

2. Related work

With the development of image processing techniques and online (freely)
accessible databases, experiments for image analysis are being conducted in
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various fields. One of these fields is medicine. With the help of machines,
illnesses can be easier detected and confirmed by doctors. Breast cancer is
one of these illnesses being studied. The problem of detecting cancer from
mammograms is highly important and complex because of the difference in
the images created with different machines, the size of the mammograms, and
the appropriate selection of the used features. In the following paragraphs, we
will present existing methods in the literature to detect breast cancer.

In [13] a comprehensive review is presented on the methods used from 1998
to 2018. In the review 129 papers were included. As the review highlights,
there are three major types of experiments:

(1) studies where only normal and abnormal classes are considered [16]
(2) where benign and malignant classes are considered [1, 4, 4, 6, 8, 8] and
(3) where all three classes (normal, benign and malignant) are considered
[10,12,14].

The authors concluded that the most used classifiers were Artificial Neural
Networks (ANN), Support Vector Machines (SVM) and K-Nearest Neighbors
(k-NN). As for evaluation metrics most of the researchers used accuracy, area
under curve, sensitivity and/or specificity.

Reference [5] conducted an experiment to compare several feature extraction
methods, namely, First Order Statistic (FOS), Gray Level Co-Occurrence Ma-
trix (GLCM), Gray-Level Run-Length Matrix (GLRLM), and Gray Level Dif-
ference Matrix (GLDM). The authors concluded that the best result (93.98%
accuracy) was achieved using the GLRLM features for building ECOC SVM
classifiers.

Another survey [6] focused on various feature extraction and selection meth-
ods. Besides the four features mentioned before, the authors analyzed Tamura
features, Gabor features, Wavelet transform features, Hu’s invariant moments
features, and other shape features such as perimeter, area, compactness, as-
pect ratio, and so on. For feature selection, Tabu search, Genetic algorithm,
ReliefF algorithm, and Sequential forward/backward selection are included.
The authors [6] showed that for building a classifier, GLRLM features are the
most appropriate. Using these features 66.66% and 90.9% respective to AUC
and precision were achieved [6].

In [1] is reported 88% for both accuracy and AUC using classification
with Neural Networks. As input the authors proposed using a concatenation
of different Convolutional Neural Networks (AlexNet, VGG16, GoogLeNet,
ResNet18, InceptionResNet). In reference [10] a novel approach is proposed
to solve the problem of classifying the mammograms into normal, benign and
malignant classes. Two types of features are extracted from the images:
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(1) low-level features calculated using ResNet and transfer learning and
(2) high-level features calculated using RNN-LSTM.

From the resulting feature set, a CNN selects the relevant features, then the
final classification is made by an ensemble learning model (using RF learning
and boosting). With this method, the authors achieved 96% accuracy. In [16]
ANNs are used for feature extraction (DenseNet and MobileNet) and fed to a
fully connected network. With this approach, accuracy of 96.34% was achieved
using DenseNet features.

In [4] the application of super-resolution is presented to better distinguish
abnormal masses. With this method, the authors boosted the result and
achieved 96.7% accuracy. The authors used a combination of FOS and GLRLM
features as input to nine different classifiers. Reference [14] proposes the ex-
traction of features from the spatial pyramid and called Pyramid Histogram
of Colors. Feeding an ANN with the calculated features, 82.1% AUC was
achieved. In [12] a Forest Optimized Algorithm is proposed to select features
from characteristics calculated from GLCM and wavelet transform. For clas-
sification, the authors used SVM, k-NN and Decision Trees (DTs).

Reference [8] presents a Fuzzy Rule-Based interpolative classifier for making
differences between benign and malignant lesions. The input of the classifier
consists of 18 features included shape features (shape and morphological char-
acteristics), margin features (sharpness and roughness of the boundary), and
density features. With this method, the authors get accuracy of 91.65%.

3. Proposed approach

In our research, we extended the approach presented in [2] in order to be able
to apply it to other mammogram datasets. The system in [2] is not working
accordingly if the breast tissue has too low intensity or if white patches appear
on the image. In this section, we present the original CAD system proposed
in [2] and then detail the method’s extension and the main improvements
proposed in the current paper.

3.1. The base CAD system. As already mentioned, the CAD system intro-
duced in [2] has five main steps: preprocessing, segmentation, feature extrac-
tion, selection and classification. Essential aspects for a successful computer-
aided diagnosis include calculating the features and classification of the ob-
servations. The most important is to properly clear the image (remove the
information – pixel –, which is not important from the problem’s perspec-
tive). For instance, to diagnose breast cancer from medical images (such as
mammograms), everything outside the breast tissue and the pectoral muscle
is irrelevant. The pectoral muscle is not a possible location of a lesion, leading
to its disregardment during the image analysis process.
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Figure 1. Defining the possible location of the pectoral muscle on
image mdb015 from MIAS.

In the first step, the tissue is separated from the rest of the image. To
get a precise result, noise reduction (morphological opening) and emphasis
(histogram equalisation) are applied. To remove the pectoral muscle, the
Seeded Region Growing (SRG) algorithm, proposed by Maitra et al. [9], is
used by selecting the pixels corresponding to the muscle. The requirement
of this approach is that the pectoral muscle must be on the left side of the
image. To decrease the image to the possible location of the muscle first, the
left- (A) and rightmost bounds (C) of the breast at the top (vertical lines
across the left-/rightmost points – lines AB and CD on image fig. 1) are
defined, and then the top of the right bounding line is connected to the lower-
left corner (O) of the image. As a result, a triangle should be formatted (on the
top between the two bounding lines – ACE), containing the pectoral muscle.
For this triangle, the SRG was applied using as seeds the pixels from the
section between the right angle and the bisector of the hypotenuse. The final
step of the preprocessing is to selecting a smaller bounding box surrounding
the breast. Next (segmentation step), k-means was performed to segment
the images into 12 clusters. During the feature extraction, from both the
original and the segmented image GLRLMs are calculated and characteristics
are extracted (resulting in 44 features per image – 11 features× 4 directions).
Following with the feature selection step, which aims to reduce the size of
the input. For this purpose, two algorithms are implemented: PCA and GA.
Later, the result of the feature selection method is passed to the classification.
To differentiate normal, benign and malignant classes, DT and RF models are
built.

3.2. Extended method.
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When introducing new images to the system, presented in the previous sub-
section, there could be cases when the execution differs from the expected be-
haviour because it was specified for mammograms from a specific dataset. For
instance, referring to images from DDSM, there are cases when the intensity
of the breast tissue is low, and the tissue disappears after the thresholding, or
the position of the pectoral muscle is misdetected. The most vulnerable part is
the preprocessing. This subsection details the changes made in the previously
presented system.

On the side(s) of some images (from DDSM), a white column/row could
appear. Previously, the position of the pectoral muscle was defined based on
the longest vertical line found with Hough transform with an average intensity
lower than 180 or if no line was found based on the pixel intensities in the
upper corners of the mammogram. This method worked for images from
MIAS. Even though MIAS mammograms could contain white columns, they
are not connected to the breast and therefore they are removed together with
the labels. Images from MIAS are squares and the actual mammogram is
positioned in the centre. On the other hand, in DDSM, these columns could
be mistaken for the pectoral muscle (because no lines will be detected due
to the lack of surrounding black columns). Hence, before the preprocessing,
every pixel with high intensity (> 240) on the margin of the image will be set
to 0.

The first step of the preprocessing is the removal of the labels using thresh-
olding. For images from MIAS the threshold value of 50 was defined ex-
perimentally. However, using the same value on the new images led to the
disappearance of the breast tissue in some cases (due to its low intensity as on
Fig. 2(b)). To overcome this problem, we decided to use a dynamic definition
for the threshold values by calculating the median intensity value from the
image – I (omitting pixels with 0 value). The result of the new thresholding
is shown in Fig. 2(c). Next, we must ensure that the pectoral muscle is on the
left side of the image (this is a prerequisite of the used SRG method).

To define the initial orientation of the breast, the intensities in the upper
corners are used. We further break this down into two cases. First, we calcu-
late the first and last non-zero positions from the first row. If one of the values
is close enough to the side (within 100 pixels), then the location of the muscle
is clear. Otherwise, we add zero padding around the image and apply Hough’s
line transform to determine vertical lines on the image. The longest line found
specifies the position of the pectoral muscle. The zero-padding helps to define
the border, even if this is exactly on the edge of the image.
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(a) Original (b) θ = 50 (c) θ based on me-
dian

Figure 2. Separating foreground and background using threshold-
ing presented on image A-1833-1.LEFT MLO from DDSM.

The result of SRG, mentioned in the previous section, could contain more
(unconnected) components (see Fig. 3(b)). Of these components, we should
select the largest and closest to the top left corner of the image (Fig. 3(c)).

Moreover, we investigate the shape of the different resulting components and
found that some of them are concave (Fig. 4(a)). For a more precise removal,
we fill these holes in the component (Fig. 4(b)). To accelerate the pipeline,
we propose a new feature extraction version that uses a graphical procession
unit. In the current research, we had an Nvidia GeForce GTX 960M GPU
and achieved ≈ 62× acceleration. Heretofore, the GLRLM was calculated at
265.39s. Even with parallel threads, it takes 14.52s to construct the matrix.
However, using GPU, we can get the result matrix in 4.3s (depending on the
image’s size).

For steps (2), (4) and (5) the same methods are used as in the originally
proposed method from [2]. Besides GLRLM features, GLCM features are cal-
culated (for distances 1 - default - and 8) and used for classification. From
the constructed (normalized) GLCM, the features are calculated using (3), (4)
and (7) to (23), where level denotes the number of gray levels on the mam-
mogram. The functions in (1) and (2) help the definition of sum average (18),
sum variance (20), sum entropy (19) and difference average (21), difference
variance (23), difference entropy (22) respectively.
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(a) ROI of pectoral (b) Result of SRG
(used in the original
version)

(c) Pectoral mask

Figure 3. Selecting the mask corresponding to the pectoral muscle
from the result of the SRG [9] on image mdb015 from MIAS.

(a) Result of SRG
(used in the original
version)

(b) Final mask

Figure 4. Filling the wholes on the SRG [9] result on image mdb017
from MIAS.

px+y(k) =

levels−1∑
i,j=0

GLCMij ,

where i+ j = k

(1)
px−y(k) =

levels−1∑
i,j=0

GLCMij ,

where |i− j| = k

(2)
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(3) µx =

levels−1∑
i,j=0

iGLCMij (4) σ2
x =

levels−1∑
i,j=0

(i− µx)
2GLCMij

(5) µy =

levels−1∑
i,j=0

jGLCMij (6) σ2
y =

levels−1∑
i,j=0

(j − µy)
2GLCMij

(7)

ent = −
levels−1∑
i,j=0

GLCMij lnGLCMij

(8) cont =

levels−1∑
i,j=0

(i− j)2GLCMij

(9) ASM =

levels−1∑
i,j=0

GLCM2
ij

(10) energy =
√
ASM

(11) diss =

levels−1∑
i,j=0

|i− j|GLCMij

(12)

corr =

levels−1∑
i,j=0

(i− µx)(j − µy)√
σ2
xσ

2
y

GLCMij

(13)

IDM =

levels−1∑
i,j=0

1

1 + (i− j)2
GLCMij

(14)

sim =

levels−1∑
i,j=0

1

1 + |i− j|
GLCMij

(15)

DM =

levels−1∑
i,j=0

√
|i− j|

2
GLCMij

(16)

CP =

levels−1∑
i=0

(i+j−µx−µy)
4GLCMij

(17)

CS =

levels−1∑
i=0

(i+j−µx−µy)
3GLCMij

(18) SA =

2levels∑
i=2

ipx+y(i)

(19)

SE = −
2levels∑
i=2

px+y(i) ln px+y(i)
(20) SV =

2levels∑
i=2

(i− SA)2px+y(i)

(21) DA =

levels−1∑
i=0

ipx−y(i)
(22)

DE = −
levels−1∑

i=0

px−y(i) ln px−y(i)
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(23) DV =

levels−1∑
i=0

(i−DA)2px−y(i)

4. Experiments and results

In this section, we present the details of our experiments, starting with the
used datasets, the conditions of the splitting (into train and test) the datasets
and the results of our research.

4.1. Datasets. MIAS [15] is a database of MLO (mediolateral oblique view)
mammograms published in 1994. It contains 322 (161 pairs) images. Of these,
207 are from normal tissues, 64 are from tissues containing benign lesions and
the remaining 51 contain malignant lesions.

DDSM [7] is another database that was first published in 1998. Over the
years it was further developed. The database consists of 7808 mammograms
from approximately 1950 patients. Compared to MIAS, DDSM contains both
MLO and CC ( craniocaudal view) view images. From the total images, we will
use only the MLO ones, so 3904 images. The distribution of the observations
is as follows: 1204 normal, 1342 benign and 1358 malignant.

4.2. Experiment setup. Each dataset is split into train and test sets con-
taining 75% and 25% of the data. When creating the split, we maintain the
same distribution in the result sets as in the original data (stratified sampling).
Also, to reduce the possible bias of the classification, we place the observations
from one person into the same set. Considering these, from MIAS, there will
be 242 mammograms in the train set and 80 in the test set. As for the DDSM
2928 mammograms will be in the train set and the remaining 976 in the test
set.

To define the optimal parameters, K-fold cross-validation was applied. The
best parameter is defined based on the highest mean accuracy across the mod-
els built during cross-validation. In these experiments 5-folds are used.

As shown above, the datasets are imbalanced. Therefore, stratification is
used to preserve the original distribution of the classes in each fold. With the
use of stratified cross-validation, the average of the result metrics will be a
close approximation to the result on the original sets.

For evaluation purpose accuracy (A), precision (P ), recall (R) and f1-score
(F1) measures are used. As also shown in [13], the first three metrics are
frequently used in studies related to breast cancer detection or diagnosis.
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Figure 5. Result metrics using
GLRLM features calculated from
MIAS images.

Figure 6. Result metrics using
GLRLM features calculated from
DDSM images.

4.3. Results. The results of the classifications are presented in Tables 1 and 2
and figs. (5) to (10). In columns A, P , R and F1 of the tables, the mean values
are reported over the folds with their corresponding standard deviation. In
Table 1 and Table 2 only the test results are presented. During the training
of the models, we achieved 100% (as show on Figs. (5) to (10)) with each
parameter mentioned in the setup.

From Table 1, we can see that the results on MIAS are slightly different from
the ones reported in [2]. This can be explained with the changes mentioned
in Section 3.2. However, these modifications are necessary in order to use the
proposed method on images from DDSM.

The best results for MIAS are obtained using GLCM8 (for step (3)), GA
feature selection (for step (4)) and RF classifier (for step (5)). With k-fold
cross-validation we reached 66.95% average test accuracy. For the extended
method, the average test accuracy using GLRLM, PCA and RF was 63.23%.
The made in the preprocessing can cause the difference between the results of
the original [2] and extended system. Now each image has the same orientation
(previously the flip and the pectoral removal did not work on some images)
and by applying CLAHE ( contrast limited adaptive histogram equalization
) filtering to the images. The different split, explained above, can also affect
the result.

Table 2 presents the results obtained on DDSM images using the extended
system proposed in this paper. The best classification result on DDSM is
54.1% for average test accuracy, when classifying the observations into three
classes using features calculated from GLRLM, GA feature selection and RF
classification.
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FE FS Dir.a CLS A P R F1
G
L
R
L
M P

C
A

DT
0.5372 0.5449 0.5372 0.5381
±0.0478 ±0.0255 ±0.0478 ±0.0346

RF
0.6323 0.5815 0.6323 0.5473
±0.0184 ±0.0852 ±0.0184 ±0.0310

G
A

DT
0.5662 0.5611 0.5662 0.5594
±0.0469 ±0.0478 ±0.0469 ±0.0433

RF
0.6529 0.5453 0.6529 0.5491
±0.0239 ±0.1135 ±0.0239 ±0.0319

G
L
C
M

P
C
A

DT
0.5373 0.5112 0.5373 0.5099
±0.0641 ±0.0818 ±0.0641 ±0.0543

RF
0.5869 0.5023 0.5869 0.5288
±0.0497 ±0.0721 ±0.0497 ±0.0545

G
A

DT
0.5949 0.5880 0.5949 0.5785
±0.0543 ±0.0660 ±0.0543 ±0.0492

RF
0.6491 0.5573 0.6491 0.5681
±0.0541 ±0.0718 ±0.0541 ±0.0555

G
L
C
M

8 P
C
A

DT
0.5327 0.5326 0.5327 0.5301
±0.0415 ±0.0170 ±0.0415 ±0.0271

RF
0.5910 0.4733 0.5910 0.5143
±0.0415 ±0.0608 ±0.0415 ±0.0462

G
A

DT
0.5538 0.5581 0.5538 0.5512
±0.0569 ±0.0564 ±0.0569 ±0.0553

RF
0.6695 0.6318 0.6695 0.5938
±0.0214 ±0.0640 ±0.0214 ±0.0171

a the column marks the direction of the used features.

Table 1. Test result metrics for MIAS

Figure 7. Result metrics using
GLCM features calculated from
MIAS images.

Figure 8. Result metrics using
GLCM features calculated from
DDSM images.
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Figure 9. Result metrics using
GLCM8 features calculated from
MIAS images.

Figure 10. Result metrics using
GLCM8 features calculated from
DDSM images.

From Table 1 (and Figures 5, 7 and 9) we can also see that the results
using GA and RF are very close for all three feature extraction methods.
However, in Table 2 (and Figures 6, 8 and 10) the results from GLCM and
GLCM8 are worse, hence, concluding the advantage of using GLRLM (run-
length information) over GLCM (pixel correlation). When comparing the
results of the two classifiers (DT/RF) we can see that a single DT obtains a
lower accuracy value than RF. By using more models (DTs in the forest) we
can increase the performance of the classification.

4.4. Discussion. In the previous subsection, the results of the proposed ex-
tended method have been compared to the system proposed in [2]. We now
focus on a comparative analysis between the obtained results for MIAS and
DDSM and relevant results from the literature.

In [3], the authors report 60.7% test accuracy using an approach based on
GLCM features, correlation feature selection and RF classification (on MIAS).
In our research, we achieved higher accuracy which can be explained by the
different feature selection (GA) used in the proposed approach.

In [11] presents a comparison of different combinations of feature selection
and classification (evaluated on MIAS). The best result reported was 70.53%
using Local Binary Pattern and Deep Neural Network. This is comparable
with our result. Results achieved with homogeneity, energy, HOG features and
DNN, NB, NN, SVM classification are also reported in [11] with accuracies
between 42.6% and 59.6%. These methods are outperformed by the proposed
extended method.
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FE FS Dir.b CLS A P R F1
G
L
R
L
M P

C
A

DT
0.4139 0.4143 0.4139 0.4139
±0.0255 ±0.0252 ±0.0255 ±0.0254

RF
0.4498 0.4487 0.4498 0.4487
±0.0234 ±0.0247 ±0.0234 ±0.0243

G
A

DT
0.4839 0.4845 0.4839 0.4838
±0.0191 ±0.0185 ±0.0191 ±0.0187

RF
0.5410 0.5442 0.5410 0.5411
±0.0248 ±0.0225 ±0.0248 ±0.0239

G
L
C
M

P
C
A

DT
0.3600 0.3598 0.3600 0.3594
±0.0106 ±0.0113 ±0.0106 ±0.0112

RF
0.3839 0.3838 0.3839 0.3835
±0.0175 ±0.0182 ±0.0175 ±0.0180

G
A

DT
0.4252 0.4250 0.4252 0.4247
±0.0098 ±0.0097 ±0.0098 ±0.0098

RF
0.4754 0.4709 0.4754 0.4717
±0.0124 ±0.0123 ±0.0124 ±0.0127

G
L
C
M

8 P
C
A

DT
0.3583 0.3585 0.3585 0.3582
±0.0034 ±0.0035 x±0.0034 ±0.0034

RF
0.4037 0.4037 0.4037 0.4028
±0.0231 ±0.0233 ±0.0231 ±0.0234

G
A

DT
0.4334 0.4332 0.4334 0.4330
±0.0260 ±0.0266 ±0.0260 ±0.0263

RF
0.4867 0.4838 0.4867 0.4843
±0.0229 ±0.0225 ±0.0229 ±0.0224

b the column marks the direction of the used features.

Table 2. Test result metrics for DDSM

In [10], the authors presented the results of CNNs and reported 95% accu-
racy for classifying images in MIAS into three classes and 96% on the DDSM.
From this, we can see that with this basic classification further improvements
are necessary to outperform ANNs.

5. Conclusions and Future Work

The scope of the current paper is to apply the CAD system presented in [2]
to images from DDSM. However, some changes are needed to adapt the previ-
ously presented method to the new images. To determine the best parameters
5-fold cross-validation is applied. Based on the presented results we can see an
overfitting of the classification (100% train metrics while around 60% test met-
rics). The extended system achieved 54.1% accuracy on DDSM using GLRLM,
GA and RF. On MIAS, the best result is 66.95% from GLCM8, applying GA
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and RF. They are comparative with related results from the literature. How-
ever, the results are lower then expected, therefore the system needs further
investigation.

As highlighted in [13] building a classifier using images from more datasets
can lead to a more robust solution. Hence, in future work, we will investigate
the result of the proposed solution on a combined input using images from
MIAS and DDSM at the same time. Also, according to the same review, Ran-
dom Forests and Decision Trees are least frequently used than other classifiers,
such as Support Vector Machines and Artificial Neural Networks. Thus, we
will dive deeper into these classifiers in order to explore their potential for
breast cancer detection. Likewise, we will experiment building two separate
classifiers that distinguish: (1) normal and abnormal and (2) benign and ma-
lignant tissues. In future work it would worth experimenting some typical
failure cases and interpretation of behaviour.
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